JPH0572299A - Method and apparatus for measuring voltage signal of integrated circuit - Google Patents

Method and apparatus for measuring voltage signal of integrated circuit

Info

Publication number
JPH0572299A
JPH0572299A JP4058351A JP5835192A JPH0572299A JP H0572299 A JPH0572299 A JP H0572299A JP 4058351 A JP4058351 A JP 4058351A JP 5835192 A JP5835192 A JP 5835192A JP H0572299 A JPH0572299 A JP H0572299A
Authority
JP
Japan
Prior art keywords
probe
measured
circuit
change
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4058351A
Other languages
Japanese (ja)
Other versions
JP2607798B2 (en
Inventor
Mitsuru Shinagawa
満 品川
Tadao Nagatsuma
忠夫 永妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4058351A priority Critical patent/JP2607798B2/en
Publication of JPH0572299A publication Critical patent/JPH0572299A/en
Application granted granted Critical
Publication of JP2607798B2 publication Critical patent/JP2607798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement of an absolute voltage necessary for comparison of waveforms and the amplitude of the waveforms by achieving higher reproducibility of the measurement. CONSTITUTION:A means is provided which makes a probe 1 approaches a circuit X to be measured until both contacts each other with a finely moving mechanism to determine a clearance between the two and positions the probe 1 by separating the two at a desired distance with the contact point thereof as reference and a means to detect a slight contact between the probe 1 and the circuit X to be measured at a high sensitive achieve a positioning at a high accuracy. First, a voltage signal with a low frequency known is inputted into an input or output of the circuit or a terminal for a power source with the circuit X to be measured not operated and a change in the intensity of light measured by irradiating the probe 1 with a laser light with the probe 1 contacting a wiring connected to the terminal and a change in the intensity of light measured by irradiating the probe 1 with the laser light with the probe 1 being separated at a desired distance from the circuit to be measured at the same measuring point are used to determine an absolute voltage at the measuring point from a change in the intensity of light measured by irradiating the probe 1 with the laser light with the probe 1 being separated only at a desired distance from the circuit to be measured at an arbitrary measuring point of the circuit X to be measured which operates at a high frequency as being used normally.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、集積回路の試験診断装
置において、電気光学効果とレーザ光を利用して集積回
路の電圧信号を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit test / diagnosis apparatus for measuring a voltage signal of an integrated circuit by utilizing an electro-optic effect and laser light.

【0002】[0002]

【従来の技術】電界によって複屈折率が変化する電気光
学材料を集積回路の動作によって生じる電界中に置き、
この材料にレーザ光を入射すると、その複屈折率変化に
よりレーザ光の偏光が変化する。この偏光変化を受けた
レーザ光をポラライザを用いた偏光検出光学系に通す
と、レーザ光の偏光変化をレーザ光の強度変化に変換で
きる。このレーザ光の強度変化(以後、光強度変化とす
る)を測定することにより電気光学材料に結合した電
界、つまり測定点での電圧信号が測定できる。
2. Description of the Related Art An electro-optic material whose birefringence is changed by an electric field is placed in an electric field generated by the operation of an integrated circuit,
When laser light is incident on this material, the polarization of the laser light changes due to the change in its birefringence. When the laser light that has undergone this polarization change is passed through a polarization detection optical system that uses a polarizer, the polarization change of the laser light can be converted into a change in the intensity of the laser light. By measuring the intensity change of the laser light (hereinafter referred to as light intensity change), the electric field coupled to the electro-optical material, that is, the voltage signal at the measurement point can be measured.

【0003】以上の集積回路の電圧信号測定技術を電気
光学サンプリングと呼んでいる。この電気光学サンプリ
ングはプローブと被測定回路の間隔(以後、離間距離と
する)によって電気光学材料と電界の結合量が異なるの
で、検出される光強度変化は離間距離に強く依存する。
The above-described voltage signal measuring technique for integrated circuits is called electro-optical sampling. In this electro-optic sampling, the amount of coupling between the electro-optic material and the electric field varies depending on the distance between the probe and the circuit to be measured (hereinafter referred to as the distance), so that the change in the detected light intensity strongly depends on the distance.

【0004】しかし、この離間距離を定めるためのプロ
ーブ位置決めに関する従来技術はなく、これまでは電圧
信号を測定するに十分なS/Nが得られるまでプローブ
を被測定回路に近づけるか、あるいは接触した状態で測
定していた。
However, there is no conventional technique relating to probe positioning for determining this separation distance, and until now, the probe was brought close to or in contact with the circuit to be measured until S / N sufficient to measure the voltage signal was obtained. I was measuring in the state.

【0005】[0005]

【発明が解決しようとする課題】上記従来の集積回路の
電圧信号測定法では、プローブの繰り返し位置決めに対
して離間距離にばらつきがあり測定の再現性が悪く、ま
た、電圧波形間の相対的な時間遅れや波形の立上り時
間、立下り時間などの時間情報は得られていたが、アナ
ログ回路測定に特に重要な波形の振幅や絶対電圧の測定
は行われていなかった。
In the above-mentioned conventional method for measuring the voltage signal of the integrated circuit, the reproducibility of the measurement is poor due to the variation in the separation distance with respect to the repeated positioning of the probe, and the relative voltage waveforms are relatively different from each other. Although the time information such as the time delay and the rise time and fall time of the waveform was obtained, the amplitude and absolute voltage of the waveform, which are especially important for analog circuit measurement, were not measured.

【0006】本発明は上述した従来技術の問題点を解消
して、測定の再現性を向上させ、波形の比較に必要な絶
対電圧や波形振幅の測定が可能となる集積回路の電圧信
号測定方法および測定装置を提供することを目的とす
る。
The present invention solves the above-mentioned problems of the prior art, improves the reproducibility of measurement, and makes it possible to measure the absolute voltage and waveform amplitude required for waveform comparison, and a voltage signal measuring method for an integrated circuit. And a measuring device.

【0007】[0007]

【課題を解決するための手段】本発明による集積回路の
電圧信号測定装置の構成は、プローブと被測定回路の離
間距離を定めるために両者を微動機構により接触するま
で近づけ、その接触点を基準に両者を所望の距離だけ離
してプローブを位置決めする手段を備え、高精度に位置
決めするためにプローブと被測定回路とのわずかな接触
を高感度に検出する手段を備え、その接触時にプローブ
と被測定回路に与えるダメージを緩和する手段を備える
ことを特徴とするものである。
In order to determine the distance between the probe and the circuit to be measured, the integrated circuit voltage signal measuring apparatus according to the present invention is arranged so that the probe and the circuit to be measured are brought close to each other by a fine movement mechanism, and the contact point is used as a reference. Is equipped with means for positioning the probe at a desired distance from each other, and means for detecting a slight contact between the probe and the circuit to be measured with high sensitivity for positioning with high accuracy. It is characterized in that it is provided with means for mitigating damage given to the measuring circuit.

【0008】また、本発明による集積回路の電圧信号測
定方法は、まず、被測定回路を動作させず、回路の入出
力あるいは電源用端子に既知の低周波の電圧信号を入力
して、その端子に接続された配線にプローブを接触した
状態で、プローブにレーザ光を照射して測定した光強度
変化と、同じ測定点でプローブを被測定回路から所望の
距離だけ離した状態でプローブにレーザ光を照射して測
定した光強度変化とを用い、通常の使用状態の高周波で
動作している被測定回路の任意の測定点で、プローブを
被測定回路から所望の距離だけ離した状態でプローブに
レーザ光を照射して測定した光強度変化からその測定点
での絶対電圧を求めることを特徴とするものである。
In the method of measuring a voltage signal of an integrated circuit according to the present invention, first, a known low-frequency voltage signal is input to the input / output or power supply terminal of the circuit without operating the circuit to be measured, and the terminal is input. With the probe in contact with the wiring connected to the laser beam, change the light intensity measured by irradiating the laser beam on the probe and the laser beam on the probe at the same measurement point with the probe separated from the circuit under test by the desired distance. Using the change in the light intensity measured by irradiating with, measure the probe at a desired distance from the circuit under test at any measurement point of the circuit under test operating at high frequency under normal use conditions. It is characterized in that the absolute voltage at the measurement point is obtained from the change in light intensity measured by irradiating the laser beam.

【0009】また、本発明による集積回路の電圧信号測
定装置は、プローブに用いる電気光学材料は配線直上の
縦方向の電界を検出することを特徴とするものである。
The voltage signal measuring device for an integrated circuit according to the present invention is characterized in that the electro-optical material used for the probe detects an electric field in the vertical direction immediately above the wiring.

【0010】[0010]

【作用】プローブと被測定回路を微動機構により接触す
るまで近づけ。その接触点を基準に両者を所望の距離だ
け離して位置決めする。これによりプローブと被測定回
路の間隔を容易かつ高精度に定めることができる。
[Function] The probe and the circuit to be measured are brought close to each other by the fine movement mechanism. Based on the contact point, they are positioned apart from each other by a desired distance. As a result, the distance between the probe and the circuit to be measured can be easily and accurately determined.

【0011】さらに、以上のプローブと被測定回路を接
触させてから両者を離すという機構を利用して低周波信
号で光強度変化の離間距離依存性を測定することによ
り、通常の使用状態の高周波で動作している被測定回路
の任意の測定点で、かつ任意の離間距離で絶対電圧を求
めることができる。
Further, by measuring the separation distance dependency of the light intensity change with a low frequency signal by utilizing the above-mentioned mechanism of bringing the probe and the circuit to be measured into contact with each other and separating them from each other, The absolute voltage can be obtained at any measurement point of the circuit under measurement operating at, and at any separation distance.

【0012】[0012]

【実施例】以下、図面に基づいて本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】図1は本発明に係わる集積回路の電圧信号
測定装置の一般構成を示すものである。以下、この集積
回路の電圧信号測定装置の構成と、この装置を用いた電
圧信号測定方法を説明する。
FIG. 1 shows a general configuration of a voltage signal measuring device for an integrated circuit according to the present invention. The configuration of the voltage signal measuring device of this integrated circuit and the voltage signal measuring method using this device will be described below.

【0014】図1において、1は透明な材料の先端に電
気光学材料が固定されている電界測定用のプローブ、2
はプローブホルダ、3はプローブホルダ2を高精度に上
下微動できる第一上下微動機構、4は接続部、5は被測
定回路Xを高精度に上下微動できる第二上下微動機構、
8はレーザ光源、9はレーザ光検出装置、10はミラ
ー、12は接触検出部である。被測定回路Xは第二上下
微動機構5にセットされ、その上方に第一上下微動機構
3にセットしたプローブホルダ2を配置し、レーザ光源
8はレーザ光がプローブ1に入射し、プローブ1から反
射したレーザ光がミラー10により光路を変えられレー
ザ光検出装置9に入るように配慮してある。
In FIG. 1, 1 is a probe for measuring an electric field in which an electro-optic material is fixed to the tip of a transparent material, 2
Is a probe holder, 3 is a first vertical fine movement mechanism capable of finely moving the probe holder 2 up and down with high precision, 4 is a connecting portion, and 5 is a second vertical fine movement mechanism capable of finely moving the circuit under test X with high precision.
Reference numeral 8 is a laser light source, 9 is a laser light detection device, 10 is a mirror, and 12 is a contact detection unit. The circuit to be measured X is set on the second vertical fine movement mechanism 5 and the probe holder 2 set on the first vertical fine movement mechanism 3 is arranged above the circuit. The laser light source 8 causes the laser light to enter the probe 1, Care is taken so that the reflected laser light is changed in its optical path by the mirror 10 and enters the laser light detecting device 9.

【0015】プローブ1は、より詳細には電気光学材料
を透明な材料で固定し先端を集積回路測定用に針状に加
工したものである。プローブ1に用いる電気光学材料は
配線直上の縦方向の電界を検出するものであり、たとえ
ばGaAs、KD* P、ZnTe、CdTeなどの結晶
や縦電界に感度を持つように生成した有機光学材料など
を用いる。
More specifically, the probe 1 is formed by fixing an electro-optic material with a transparent material and processing the tip into a needle shape for measuring an integrated circuit. The electro-optical material used for the probe 1 is for detecting an electric field in the vertical direction immediately above the wiring. For example, a crystal such as GaAs, KD * P, ZnTe, CdTe, or an organic optical material generated so as to have sensitivity to the vertical electric field. To use.

【0016】第一および第二上下微動機構3,5にはエ
ピゾアクチュエータ、電磁コイル、ステッピングモータ
等を用いる。
Epizo actuators, electromagnetic coils, stepping motors and the like are used for the first and second vertical fine movement mechanisms 3 and 5.

【0017】接続部4はプローブホルダ2を含むプロー
ブ1の実効重量を減らしプローブ接触時にプローブ1と
被測定回路Xへのダメージを緩和するもので、たとえば
天秤、バネ、磁石、空気圧などの機構を利用する。
The connecting portion 4 reduces the effective weight of the probe 1 including the probe holder 2 and alleviates damage to the probe 1 and the circuit under test X when the probe comes into contact with the connecting portion 4. For example, a mechanism such as a balance, a spring, a magnet, or pneumatic pressure is used. To use.

【0018】接触検出器12はプローブ1と被測定回路
Xの接触によって生じるプローブ1あるいはプローブホ
ルダ2の変位を検出するもので、たとえば画像処理装
置、レーザ変位計、うず電源検出センサ、容量検出セン
サを用いる。
The contact detector 12 detects the displacement of the probe 1 or the probe holder 2 caused by the contact between the probe 1 and the circuit under test X. For example, an image processing device, a laser displacement meter, an eddy power source detection sensor, a capacitance detection sensor. To use.

【0019】レーザ光検出装置9はプローブ1内で偏光
変化を受けたレーザ光をポラライザにより光強度変化に
変換し、その光強度変化を測定するものである。
The laser light detecting device 9 converts the laser light, which has undergone polarization change in the probe 1, into a light intensity change by a polarizer and measures the light intensity change.

【0020】レーザ光源8にはYAGレーザ、YLFレ
ーザ、半導体レーザなどの短パルスが発生可能なレーザ
を用い、被測定電圧信号の帯域や電気光学材料の波長特
性からレーザ光源を選択する。
As the laser light source 8, a laser capable of generating a short pulse such as a YAG laser, a YLF laser, or a semiconductor laser is used, and the laser light source is selected according to the band of the voltage signal to be measured and the wavelength characteristic of the electro-optical material.

【0021】本発明による集積回路の電圧信号測定方法
では、上記構成の測定装置を用いて、プローブ1と被測
定回路Xの離間距離を定めるために両者を第一および第
二微動機構3,5により接触するまで近づけ、その接触
点を基準に両者を所望の距離だけ離してプローブ1を高
精度に位置決めするためにプローブ1と被測定回路Xと
のわずかな接触を高感度に接触検出部12で検出する。
In the integrated circuit voltage signal measuring method according to the present invention, the measuring device having the above-mentioned configuration is used to determine the distance between the probe 1 and the circuit X to be measured by setting the first and second fine movement mechanisms 3, 5 therebetween. To bring the probe 1 and the circuit under test X into close contact with each other by a desired distance based on the contact point, and to detect the slight contact between the probe 1 and the circuit to be measured X with high sensitivity. Detect with.

【0022】このような接触点を基準として用いる手順
によりプローブ1と被測定回路Xとを高精度に位置決め
することが出来る。。
The probe 1 and the circuit under test X can be positioned with high precision by the procedure using the contact point as a reference. ..

【0023】また、接続部4の機能によりプローブ接触
時にプローブ1と被測定回路Xに与えるダメージを緩和
することが出来る。
Further, the function of the connecting portion 4 can mitigate the damage given to the probe 1 and the circuit under test X at the time of contact of the probe.

【0024】また、本発明により集積回路の電圧信号測
定方法では、上記位置決め方法を利用して、まず、被測
定回路を動作させず、回路の入出力あるいは電源用端子
に既知の低周波の電圧信号を入力して、その端子に接続
された配線にプローブを接触した状態で、プローブにレ
ーザ光を照射して測定した光強度変化と、同じ測定点で
プローブを被測定回路から所望の距離だけ離した状態で
プローブにレーザ光を照射して測定した光強度変化とを
用いて、通常の使用状態の高周波で動作している被測定
回路の任意の測定点で、プローブを被測定回路から所望
の距離だけ離した状態でプローブにレーザ光を照射して
測定した光強度変化からその測定点での絶対電圧を求め
ることが可能となる。
Further, in the method of measuring the voltage signal of the integrated circuit according to the present invention, by utilizing the positioning method, first, the circuit under test is not operated and the voltage of the known low frequency is applied to the input / output terminal of the circuit or the power supply terminal. A signal is input, the probe is in contact with the wiring connected to the terminal, and the change in the light intensity measured by irradiating the probe with laser light and the probe at the same measurement point at the desired distance from the circuit under test Using the light intensity change measured by irradiating the probe with laser light in a separated state, the probe is desired from the measured circuit at any measurement point of the measured circuit operating at high frequency under normal use conditions. It is possible to obtain the absolute voltage at the measurement point from the change in the light intensity measured by irradiating the probe with laser light in the state of being separated by the distance of.

【0025】以下、図面に基づいて本発明のより具体的
な実施例を詳細に説明する。
A more specific embodiment of the present invention will be described in detail below with reference to the drawings.

【0026】図2は本発明の第1実施例に係わる集積回
路の電圧信号測定装置である。この装置は重量が極めて
小さいプローブを用いた場合に特に適用している。以
下、この集積回路の電圧信号測定装置の構成と、この装
置を用いた電圧信号測定方法を説明する。
FIG. 2 shows a voltage signal measuring device for an integrated circuit according to the first embodiment of the present invention. This device is particularly applicable when using a probe having an extremely small weight. The configuration of the voltage signal measuring device of this integrated circuit and the voltage signal measuring method using this device will be described below.

【0027】図2において、1は透明な材料の先端に電
気光学材料が固定されている電界測定用のプローブ、2
はプローブホルダ、3はプローブホルダ2を高精度に上
下微動できる第一上下微動機構、5は被測定回路Xを高
精度に上下微動できる第二上下微動機構、6はカメラ、
7は画像処理装置、8はレーザ光源、9はレーザ光検出
装置、10はミラー、11はダイクロイックミラーであ
る。被測定回路Xは第二上下微動機構にセットされ、そ
の上方に第一上下動機構3にセットしたプローブホルダ
2を配置し、プローブホルダ2に乗ったプローブ1を撮
影できるようにカメラ6を配置し、レーザ光源8はレー
ザ光がプローブに入射し、プローブ1から反射したレー
ザ光がミラー10により光路を変えられレーザ光検出装
置9に入るように配置してある。
In FIG. 2, 1 is a probe for measuring an electric field in which an electro-optic material is fixed to the tip of a transparent material, 2
Is a probe holder, 3 is a first vertical fine movement mechanism capable of finely moving the probe holder 2 up and down with high precision, 5 is a second vertical fine movement mechanism capable of finely moving the circuit under test X with high precision, 6 is a camera,
Reference numeral 7 is an image processing device, 8 is a laser light source, 9 is a laser light detection device, 10 is a mirror, and 11 is a dichroic mirror. The measured circuit X is set in the second vertical fine movement mechanism, the probe holder 2 set in the first vertical movement mechanism 3 is arranged above it, and the camera 6 is arranged so that the probe 1 mounted on the probe holder 2 can be photographed. The laser light source 8 is arranged so that the laser light is incident on the probe, and the laser light reflected from the probe 1 changes its optical path by the mirror 10 and enters the laser light detection device 9.

【0028】プローブ1は電気光学材料を透明な材料で
固定し先端を集積回路測定用に針状に加工したものであ
り、上部に鍔14を形成してある。
The probe 1 is made by fixing an electro-optical material with a transparent material and has a tip processed into a needle shape for measuring an integrated circuit, and has a collar 14 formed on an upper portion thereof.

【0029】プローブホルダ2は、図3に示すようにプ
ローブ1の先端(下部)が被測定回路Xに接触して上方
向に力を受けた場合にプローブ1が容易に動ける状態に
あるようにプローブ1を支えるものである。本実施例で
はプローブホルダ2には、プローブ1が鍔1Aでひっか
かる程度にゆるく貫通できる孔2Aを形成し、この孔2
Aにプローブ1を挿入してある。
As shown in FIG. 3, the probe holder 2 is arranged so that the probe 1 can be easily moved when the tip (lower part) of the probe 1 contacts the circuit under test X and receives a force in the upward direction. It supports the probe 1. In this embodiment, the probe holder 2 is formed with a hole 2A through which the probe 1 can be loosely penetrated so that it is caught by the collar 1A.
Probe 1 is inserted in A.

【0030】このようにプローブ1を上方向の力で容易
に動くことができるようにプローブホルダ2に乗せる構
造には、下記(1)〜(3)の利点がある。
The structure in which the probe 1 is placed on the probe holder 2 so that it can be easily moved by an upward force has the following advantages (1) to (3).

【0031】(1)0.1g〜0.3g程度の重量のプ
ローブ1を製作することは可能であり、このような極め
て軽量のプローブ1を用いれば、プローブ1が被測定回
路Xに接触しても両者に与えるダメージはほとんどな
い。
(1) It is possible to manufacture the probe 1 having a weight of about 0.1 g to 0.3 g. If such an extremely lightweight probe 1 is used, the probe 1 comes into contact with the circuit X to be measured. However, there is almost no damage to both.

【0032】(2)わずかな接触に対してプローブ1が
変位しやすいため、高感度に接触を検出することができ
る。
(2) Since the probe 1 is easily displaced by a slight contact, the contact can be detected with high sensitivity.

【0033】(3)接触点を高感度に検出できれば、接
触時のプローブ1のずれは極めてわずかであるため無視
でき、繰り返しプローブ位置決めに対して測定の再現性
が保たれる。
(3) If the contact point can be detected with high sensitivity, the displacement of the probe 1 at the time of contact can be neglected because it is extremely small, and the reproducibility of measurement can be maintained for repeated probe positioning.

【0034】カメラ6と画像処理装置7は接触点を検出
するために用いるものである。すなわち、プローブ1を
カメラで観察し、接触前後のプローブの観察像のわずか
なずれをダイクロイックミラー11を介して画像処理装
置7で検出することにより接触点を求める。
The camera 6 and the image processing device 7 are used to detect a contact point. That is, the contact point is obtained by observing the probe 1 with a camera and detecting a slight deviation of the observed image of the probe before and after the contact with the image processing device 7 via the dichroic mirror 11.

【0035】次に図4、図5、図6、図7、図8を参照
して第1実施例の装置を用いた本発明の集積回路の電圧
信号測定方法を説明する。
Next, the method of measuring the voltage signal of the integrated circuit of the present invention using the device of the first embodiment will be described with reference to FIGS. 4, 5, 6, 7 and 8.

【0036】この電圧信号測定方法は配線直上の縦電界
に感度を持つ電気光学材料を用いる電気光学サンプリン
グの次の性質を利用するものである。
This voltage signal measuring method utilizes the following properties of electro-optical sampling using an electro-optical material having sensitivity to a vertical electric field directly above the wiring.

【0037】(1)プローブ1と配線が接触した状態で
測定する光強度変化は配線幅などの形状によらず一定で
あり、絶対電圧を測定することに相当する。
(1) The change in the light intensity measured with the probe 1 in contact with the wiring is constant regardless of the shape of the wiring width, which corresponds to the measurement of the absolute voltage.

【0038】(2)光強度変化はプローブ1と被測定回
路Xの離間距離に強く依存し、離間距離の増大により単
純に減少する。
(2) The change in light intensity strongly depends on the distance between the probe 1 and the circuit under measurement X, and simply decreases as the distance increases.

【0039】(3)プローブ1と被測定回路Xの離間距
離を一定とするならば、光強度変化と被測定電圧は比例
関係にある。
(3) If the distance between the probe 1 and the circuit under test X is constant, the change in light intensity and the voltage under test are in a proportional relationship.

【0040】はじめに以下の理由より、図4のS1の状
況において低周波信号を用いて被測定回路の信号の入出
力端子あるいは電源用端子に接続された配線上で光強度
変化を測定する。
First, for the following reason, the change in light intensity is measured on the wiring connected to the signal input / output terminal of the circuit under test or the power supply terminal using the low frequency signal in the situation of S1 in FIG.

【0041】(1)低周波信号ならば、入出力または電
源端子に印加した時、その端子に接続されている配線上
で振幅は変わらないので、その配線上のどの点で測定し
てもよい。
(1) When a low-frequency signal is applied to an input / output or power supply terminal, the amplitude does not change on the wiring connected to that terminal, so measurement may be performed at any point on the wiring. ..

【0042】(2)ここで用いる低周波信号から、回路
が動作している時の高周波信号まで、周波数特性がフラ
ットな電気光学材料を用いるので、低周波信号の測定結
果を高周波の測定結果に適用できる。
(2) From the low-frequency signal used here to the high-frequency signal when the circuit is operating, since the electro-optical material having flat frequency characteristics is used, the measurement result of the low-frequency signal is converted into the high-frequency measurement result. Applicable.

【0043】(3)低周波信号ならば発熱がないのでプ
ローブ1を配線に接触させても問題はない。また、低周
波信号ならば接触による擾乱の問題もない。
(3) Since there is no heat generation for low frequency signals, there is no problem even if the probe 1 is brought into contact with the wiring. Further, if it is a low frequency signal, there is no problem of disturbance due to contact.

【0044】(4)外部から既知の電圧信号を直接印加
できるのは入出力、電源端子に接続されている配線上の
測定点のみである。
(4) A known voltage signal can be directly applied from the outside only at the measurement points on the wiring connected to the input / output and power supply terminals.

【0045】低周波信号測定において、まず被測定回路
Xの信号の入出力端子あるいは電源用端子に接続された
配線に対してプローブ1を以下の手順で接触させさる。
In the low frequency signal measurement, first, the probe 1 is brought into contact with the wiring connected to the signal input / output terminal of the circuit under test X or the power supply terminal in the following procedure.

【0046】まずプローブ1を測定すべき配線の上方に
配置し、第一上下微動機構3は固定しておき、被測定回
路Xのみ第二上下微動機構5により徐々に上昇させる。
すると図3に示すように、ある位置でプローブ1と被測
定回路Xとが接触し、プローブ1が変位する。このわず
かな変位をカメラ6を介して画像処理装置7によって検
出し、この時点で第二上下微動機構5を停止させる。
First, the probe 1 is arranged above the wiring to be measured, the first vertical fine movement mechanism 3 is fixed, and only the circuit under test X is gradually raised by the second vertical fine movement mechanism 5.
Then, as shown in FIG. 3, the probe 1 and the circuit under test X come into contact with each other at a certain position, and the probe 1 is displaced. This slight displacement is detected by the image processing device 7 via the camera 6, and the second vertical fine movement mechanism 5 is stopped at this point.

【0047】次に被測定回路Xは動作させず、接触した
配線に端子から既知の低周波信号(電圧V0 )を印加す
る。そしてプローブ1にレーザ光を照射してレーザ光の
光強度変化ΔI0 (図5の状態A)を得る。プローブ1
には配線直上の縦電界のみに感度を持つ電気光学材料を
用いているので、ここで得られたデータは配線の絶対電
圧に相当する。
Next, the circuit under test X is not operated, and a known low frequency signal (voltage V 0 ) is applied to the contacted wiring from the terminal. Then, the probe 1 is irradiated with the laser light to obtain the light intensity change ΔI 0 (state A in FIG. 5) of the laser light. Probe 1
Since an electro-optic material having sensitivity only to the vertical electric field directly above the wiring is used for, the data obtained here corresponds to the absolute voltage of the wiring.

【0048】また、この接触した状態の測定データは配
線幅などのパタンに依存しないので集積回路回路内の端
子や接触用の別のパタン、あるは回路内に接触させて測
定する場所がなければ、図4のS3の状況において別の
チップ上のパタンYで測定してもよい。
Further, since the measurement data of the contact state does not depend on the pattern such as the wiring width, there is no terminal in the integrated circuit circuit or another pattern for contact, or there is no place to contact and measure in the circuit. The pattern Y on another chip may be measured in the situation of S3 in FIG.

【0049】次に同じ測定点でプローブ1と被測定回路
Xが接触した上記状態から、第二上下微動機構5により
被測定回路Xを下降させて、接触点を基準にプローブ1
と被測定回路Xとを所望の距離h1 、h2 だけ離し、プ
ローブ1にレーサー光を照射してレーザ光の光強度変化
ΔI1 、ΔI2 (図5の状態Bおよび状態C)を得る。
Next, from the above state where the probe 1 and the circuit to be measured X are in contact with each other at the same measuring point, the circuit to be measured X is lowered by the second vertical fine movement mechanism 5, and the probe 1 is set with the contact point as a reference.
And the circuit under test X are separated by desired distances h 1 and h 2, and the probe 1 is irradiated with the racer light to obtain the light intensity changes ΔI 1 and ΔI 2 of the laser light (state B and state C in FIG. 5). ..

【0050】図6に示すように光強度変化は離間距離h
が大きくなるとともに単調に減少することから、簡単な
関数、たとえば二次関数で近似できる。そこで実際の集
積回路の測定においては離間距離hを変えて何点かデー
タをとり、図7のように二次関数でフィッティングして
おけば、任意の離間距離hに対する光強度変化を知るこ
とができる。
As shown in FIG. 6, the change in the light intensity depends on the separation distance h.
Can be approximated by a simple function, for example, a quadratic function, since increases with increasing. Therefore, in the actual measurement of the integrated circuit, if the separation distance h is changed and data is collected at some points and fitting is performed with a quadratic function as shown in FIG. 7, it is possible to know the change in the light intensity with respect to an arbitrary separation distance h. it can.

【0051】また、図6からもわかるように、一般にh
=0近傍での変化は極めて急激となるためh≠0の値か
らh=0の値を推定するのは困難であり、推定したとし
ても精度が悪くなる。逆にh=0での値がわかれば、h
≠0でのデータ数はあまり必要ないのでフィッティング
の精度を向上させるためにh=0の測定は不可欠であ
る。
Further, as can be seen from FIG. 6, generally h
Since the change in the vicinity of = 0 becomes extremely rapid, it is difficult to estimate the value of h = 0 from the value of h ≠ 0, and even if it is estimated, the accuracy becomes poor. On the contrary, if the value at h = 0 is known, h
Since the number of data when ≠ 0 is not required so much, the measurement of h = 0 is indispensable to improve the accuracy of fitting.

【0052】次に図4のS2の状況において通常の使用
状態の高周波で動作している被測定回路Xの回路部Xc
内の任意の測定点で光強度変化を測定する。ここで高周
波で動作している回路にプローブ1を接触したまま光強
度変化を測定すると、回路からの発熱のプローブ1への
影響や容量的な回路への擾乱(負荷)の影響があるた
め、ある一定の距離だけプローブ1を離して測定しなけ
ればならない。
Next, in the situation of S2 in FIG. 4, the circuit portion X c of the circuit under test X operating at a high frequency in a normal use state.
The change in light intensity is measured at any of the measurement points. Here, if the light intensity change is measured while the probe 1 is in contact with the circuit operating at high frequency, there is an influence of heat generated from the circuit on the probe 1 and an influence of a disturbance (load) on the capacitive circuit. The probe 1 must be separated by a certain distance.

【0053】そこで、まず、感度、擾乱、熱的効果の相
反する条件の中から、測定者が最も適当とする離間距離
hmを決定する。次に、図7の光強度の離間距離依存性
から離間距離がhmの場合の基準電圧V0 に対応する光
強度変化ΔI3 を求める。
Therefore, first, the most appropriate separation distance hm is determined by the measurer from the contradictory conditions of sensitivity, disturbance, and thermal effect. Next, the light intensity change ΔI 3 corresponding to the reference voltage V 0 when the distance is hm is obtained from the distance dependency of the light intensity in FIG. 7.

【0054】ここで、光強度変化は離間距離が一定なら
ば被測定電圧に比例するので、電圧Vと光強度変化ΔI
の関係は図8に示す直線として求められる。最後にこの
図8をもとに高周波で動作する回路の絶対電圧を求め
る。
Here, since the change in light intensity is proportional to the voltage to be measured if the distance is constant, the voltage V and the change in light intensity ΔI.
The relationship is obtained as a straight line shown in FIG. Finally, the absolute voltage of the circuit operating at high frequency is obtained based on FIG.

【0055】測定においては測定点(接触点)の上方に
プローブ1を配置し、第一上下微動機構3は固定してお
き、被測定回路Xのみ第二上下微動機構5により徐々に
上昇させる。すると図3に示すように、ある位置でプロ
ーブ1と被測定回路Xとが接触し、プローブ1が変化す
る。
In the measurement, the probe 1 is arranged above the measurement point (contact point), the first vertical fine movement mechanism 3 is fixed, and only the circuit under test X is gradually raised by the second vertical fine movement mechanism 5. Then, as shown in FIG. 3, the probe 1 and the circuit under test X come into contact with each other at a certain position, and the probe 1 changes.

【0056】この変位の開始をカメラ6からの観察像の
わずかな変化から画像処理装置7が検出すると、この時
点で第二上下微動機構5を停止させる。
When the image processing device 7 detects the start of this displacement from the slight change in the observed image from the camera 6, the second vertical fine movement mechanism 5 is stopped at this point.

【0057】この接触状態から、第二上下微動機構5に
より被測定回路Xを下降させて、接触点を基準にプロー
ブ1と被測定回路4とを所望の離間距離hmだけ離し、
プローブ1にレーザ光を照射してレーザ光の光強度変化
ΔIm(図5の状態D)測定する。
From this contact state, the circuit to be measured X is lowered by the second vertical fine movement mechanism 5 to separate the probe 1 and the circuit to be measured 4 from the contact point by a desired separation distance hm,
The probe 1 is irradiated with laser light and the change in the light intensity of the laser light ΔIm (state D in FIG. 5) is measured.

【0058】その結果、図8に示される電圧Vと光強度
変化ΔIの関係からΔImに対応する電圧Vが求まる。
これが高周波で動作する被測定回路の測定点で絶対電圧
となる。
As a result, the voltage V corresponding to ΔIm can be obtained from the relationship between the voltage V and the light intensity change ΔI shown in FIG.
This is the absolute voltage at the measurement point of the circuit under test operating at high frequency.

【0059】尚、上記説明では第二上下微動機構5のみ
を用いて離間距離を定めていたが、下記(1)〜(3)
のようにしても良い。
In the above description, the separation distance is set using only the second vertical fine movement mechanism 5, but the following (1) to (3) are used.
You may do like this.

【0060】(1)まず、第二上下微動機構5を固定
し、第一上下微動機構3によりプローブ1を徐々に下降
させ、プローブ1の変位からプローブ1と被測定回路X
との接触を検出した時点で第一上下微動機構3を停止さ
せる。次に所望の間隔まで第一上下微動機構3によりプ
ローブ1を上昇させて、プローブ1と被測定回路Xとの
間隔を決め、プローブ位置決めを行う。
(1) First, the second vertical fine movement mechanism 5 is fixed, the probe 1 is gradually lowered by the first vertical fine movement mechanism 3, and the displacement of the probe 1 causes the probe 1 and the circuit under test X to be measured.
The first up-and-down fine movement mechanism 3 is stopped at the time when the contact with is detected. Next, the probe 1 is raised by the first vertical fine movement mechanism 3 to a desired distance, the distance between the probe 1 and the circuit under test X is determined, and the probe is positioned.

【0061】(2)まず、第一上下微動機構3を固定
し、第二上下微動機構5により被測定回路Xを徐々に上
昇させ、プローブ1の変位からプローブ1と被測定回路
Xとの接触を検出した時点で第二上下微動機構5を停止
させる。次に所望の間隔まで第一上下微動機構3により
プローブ1を上昇させて、プローブ1と被測定回路Xと
の間隔を決め、プローブ位置決めを行う。
(2) First, the first vertical fine movement mechanism 3 is fixed, the circuit under test X is gradually raised by the second vertical fine movement mechanism 5, and the displacement of the probe 1 causes the probe 1 to contact the circuit under measurement X. The second up-and-down fine movement mechanism 5 is stopped at the time point when is detected. Next, the probe 1 is raised by the first vertical fine movement mechanism 3 to a desired distance, the distance between the probe 1 and the circuit under test X is determined, and the probe is positioned.

【0062】(3)まず、第二上下微動機構5を固定
し、第一上下微動機構3によりプローブ1を徐々に下降
させ、プローブ1の変位からプローブ1と被測定回路X
との接触を検出した時点で第一上下微動機構3を停止さ
せる。次に所望の間隔まで第二上下微動機構5により被
測定回路Xを下降させて、プローブ1と被測定回路Xと
の間隔を決め、プローブ位置決めを行う。
(3) First, the second vertical fine movement mechanism 5 is fixed, the probe 1 is gradually lowered by the first vertical fine movement mechanism 3, and the displacement of the probe 1 causes the probe 1 and the circuit under test X to be measured.
The first up-and-down fine movement mechanism 3 is stopped at the time when the contact with is detected. Next, the circuit to be measured X is lowered by the second vertical fine movement mechanism 5 to a desired distance, the distance between the probe 1 and the circuit to be measured X is determined, and probe positioning is performed.

【0063】図9は本発明の第2実施例に係わる集積回
路の電圧信号測定装置である。この装置は実効的にプロ
ーブの重量が小さくなる機構でプローブを保持するよう
にしたものであり、軽いプローブだけでなく、数グラム
以上の重いプローブを位置決めする場合に特に有用であ
る。以下、この集積回路の電圧信号測定装置の構成と、
この装置を用いた電圧信号測定方法を説明する。
FIG. 9 shows an integrated circuit voltage signal measuring device according to a second embodiment of the present invention. This device is designed to hold the probe by a mechanism that effectively reduces the weight of the probe and is particularly useful for positioning not only a light probe but also a heavy probe weighing several grams or more. Hereinafter, the configuration of the voltage signal measuring device of this integrated circuit,
A voltage signal measuring method using this device will be described.

【0064】図9において、1は透明な材料の先端に電
気光学材料が固定さている電界測定用のプローブ、2´
はプローブホルダ、3´は天秤機構13を高精度に上下
微動できる第一上下微動機構、5は被測定回路Xを高精
度に上下微動できる第二上下微動機構5、8はレーザ光
源、9はレーザ光検出装置、10はミラー、13はFを
支点とする天秤機構、14はバランサ、15は天秤機構
13のE点の位置変化を高感度に検出する変位計であ
る。変位計15としては、たとえばレーザ光の反射を利
用した市販の光学式変位計を用いることができる。
In FIG. 9, 1 is a probe for measuring an electric field in which an electro-optic material is fixed to the tip of a transparent material, 2 '.
Is a probe holder, 3'is a first vertical fine movement mechanism capable of finely moving the balance mechanism 13 up and down with high precision, 5 is a second vertical fine movement mechanism 5 capable of finely moving the circuit under test X with high precision, 8 is a laser light source, and 9 is A laser beam detector, 10 is a mirror, 13 is a balance mechanism having F as a fulcrum, 14 is a balancer, and 15 is a displacement gauge for highly sensitively detecting a position change at point E of the balance mechanism 13. As the displacement meter 15, for example, a commercially available optical displacement meter utilizing reflection of laser light can be used.

【0065】被測定回路Xは第二上下微動機構5にセッ
トされ、その上方に天秤機構13にセットしたプローブ
ホルダ2´を配置してある。
The circuit X to be measured is set on the second vertical fine movement mechanism 5, and the probe holder 2'set on the balance mechanism 13 is arranged above it.

【0066】本実施例のプローブホルダ2´は、前述の
第1の実施例とは異なり、プローブ1を固定して保持す
るものである。その代りに、プローブホルダ2´は支点
Fを挟んでバランサ14とは反対側で天秤機構13に接
続してある。バランサ14は位置が移動できよるように
天秤機構13に接続してある。天秤機構13はプローブ
1側への傾を制限するストッパ16を備える。
The probe holder 2'of the present embodiment is different from the above-mentioned first embodiment in that the probe 1 is fixed and held. Instead, the probe holder 2'is connected to the balance mechanism 13 on the side opposite to the balancer 14 with the fulcrum F interposed therebetween. The balancer 14 is connected to the balance mechanism 13 so that its position can be moved. The balance mechanism 13 includes a stopper 16 that limits the tilt toward the probe 1 side.

【0067】このように、天秤機構13とバランサ14
を用いてプローブ1を保持することにより、下記(1)
〜(3)の利点がある。
In this way, the balance mechanism 13 and the balancer 14 are
By holding the probe 1 using
There are advantages of (3).

【0068】(1)バランサ14の位置を調節すること
により任意のプローブ実効重量が得られるから、第1実
施例に関して説明した0.1〜0.3グラム程度の軽量
プローブだけでなく、数グラム以上の重いプローブの場
合でも、接触によるプローブ1や被測定回路Xへのダメ
ージが無視できるまでプローブ実効重量を小さくするこ
とができる。
(1) Since an arbitrary probe effective weight can be obtained by adjusting the position of the balancer 14, not only the lightweight probe of about 0.1 to 0.3 grams described in the first embodiment but also several grams. Even in the case of the heavy probe described above, the effective probe weight can be reduced until damage to the probe 1 and the circuit under measurement X due to contact can be ignored.

【0069】(2)また、プローブ実効重量が小さくな
ることにより、わずかな接触に対しても、天秤機構13
の支点Fを中心にプローブ1が高感度に回転変位する。
(2) Since the probe effective weight is reduced, the balance mechanism 13 can handle even a slight contact.
The probe 1 is rotationally displaced with high sensitivity around the fulcrum F of.

【0070】(3)更に、支点Fからプローブ1の先端
までの長さにL2 に対して、支点Fから観測点Eまでの
長さL1 を長くすれば、接触によるプローブ1の微小な
変位を増加して観測点Eの大きな変位にできるので、接
触点検出の高感度化が実現する。
(3) Furthermore, if the length L 1 from the fulcrum F to the observation point E is made longer than the length L 2 from the fulcrum F to the tip of the probe 1, a minute amount of the probe 1 due to contact is obtained. Since the displacement can be increased to a large displacement of the observation point E, high sensitivity of contact point detection can be realized.

【0071】次に、図4、図5、図6、図7、図8を参
照して第2実施例の装置を用いた本発明の集積回路の電
圧信号測定方法を説明する。
Next, the method of measuring the voltage signal of the integrated circuit of the present invention using the device of the second embodiment will be described with reference to FIGS. 4, 5, 6, 7 and 8.

【0072】はじめに図4のS1の状況において被測定
回路の信号の入出力端子あるいは電源用端子に接続され
た配線上で低周波信号を用いて光強度変化を測定する。
First, in the situation of S1 in FIG. 4, the change in light intensity is measured using a low frequency signal on the wiring connected to the signal input / output terminal of the circuit under test or the power supply terminal.

【0073】低周波信号測定において、まず被測定回路
Xの信号の入出力端子あるいは電源用端子に接続された
配線に対してプローブ1を以下の手順で接触させる。
In the low frequency signal measurement, first, the probe 1 is brought into contact with the wiring connected to the signal input / output terminal of the circuit under test X or the power supply terminal in the following procedure.

【0074】プローブ1を測定すべき配線の上方に配置
し、第一上下微動機構3´は固定しておき、被測定回路
4Xのみ第二上下微動機構5により徐々に上昇させる。
すると図10に示すように、ある位置でプローブ1と被
測定回路Xとが接触し、天秤機構13が水平状態から傾
斜状態になる。すなわち、接触によりプローブ1が変位
し、その変位が天秤機構13により観測点Eの変位とな
る。この観測点Eの変位を高感度な変位計15で検出
し、その時点で第二上下微動機構5を停止させる。 こ
のとき被測定回路Xは動作せず、接触した配線に端子か
ら既知の低周波信号(電圧V0 )を印加する。そしてプ
ローブ1にレーザ光を照射してレーザ光の光強度変化Δ
0 (図5の状態A)を測定する。
The probe 1 is arranged above the wiring to be measured, the first vertical fine movement mechanism 3'is fixed, and only the measured circuit 4X is gradually raised by the second vertical fine movement mechanism 5.
Then, as shown in FIG. 10, the probe 1 and the circuit under measurement X come into contact with each other at a certain position, and the balance mechanism 13 shifts from the horizontal state to the inclined state. That is, the probe 1 is displaced by the contact, and the displacement becomes the displacement of the observation point E by the balance mechanism 13. The displacement of the observation point E is detected by the highly sensitive displacement meter 15, and the second vertical fine movement mechanism 5 is stopped at that time. At this time, the circuit under test X does not operate and a known low frequency signal (voltage V 0 ) is applied to the contacted wiring from the terminal. Then, the probe 1 is irradiated with laser light to change the light intensity of the laser light Δ
I 0 (state A in FIG. 5) is measured.

【0075】次に、第1実施例と同様に、同じ測定点で
プローブ1と被測定回路Xが接触した上記状態から、第
二上下微動機構5により被測定回路Xを下降させて、接
触点を基準にプローブ1と被測定回路Xとを所望の距離
h1 ,h2 だけ離し、プローブ1にレーザ光を照射して
レーザ光の光強度変化ΔI1 、Δ2 (図5の状態Bおよ
びC)を測定する。
Next, as in the first embodiment, from the above-mentioned state in which the probe 1 and the circuit under test X are in contact with each other at the same measuring point, the circuit under test X is lowered by the second vertical fine movement mechanism 5 and the contact point is reached. the separated probe 1 relative to the circuit under test X desired distance h1, h2, light intensity change [delta] I 1 of the laser beam is irradiated with a laser beam to the probe 1, delta 2 (state B and C in FIG. 5) To measure.

【0076】以上の測定結果から光強度変化の離間距離
依存性を求め、図7のように二次関数でフィッティング
しておく。
From the above measurement results, the separation distance dependency of the change in light intensity is obtained, and fitting is performed with a quadratic function as shown in FIG.

【0077】次に、図4のS2の状況において通常の使
用状態の高周波で動作している被測定回路Xの回路部X
c 内の任意の測定点で光強度変化を測定する。
Next, in the state of S2 in FIG. 4, the circuit portion X of the circuit under test X operating at a high frequency in a normal use state.
Measure the light intensity change at any measurement point in c .

【0078】第1実施例と同様に適当な離間距離hmを
決定し、図7の光強度の離間距離依存性から離間距離が
hmの場合の基準電圧V0 に対応する光強度変化ΔI3
を求め、図8に示す電圧Vと光強度変化ΔIの関係を求
める。
Similar to the first embodiment, an appropriate separation distance hm is determined, and the light intensity change ΔI 3 corresponding to the reference voltage V 0 when the separation distance is hm is determined from the dependence of the light intensity on the separation distance in FIG.
Then, the relationship between the voltage V and the light intensity change ΔI shown in FIG. 8 is obtained.

【0079】測定においては測定点(接触点)の上方に
プローブを配置し、第一上下微動機構3´は固定してお
き、被測定回路Xのみ第二上下微動機構5により徐々に
上昇させる。すると図10に示すように、ある位置でプ
ローブ1と被測定回路Xとが接触し、天秤機構13が水
平状態から傾斜状態になる。すなわち、接触によりプロ
ーブ1が変位し、その変位が天秤機構13により観測点
Eの変位となる。
In the measurement, the probe is arranged above the measurement point (contact point), the first vertical fine movement mechanism 3'is fixed, and only the circuit under test X is gradually raised by the second vertical fine movement mechanism 5. Then, as shown in FIG. 10, the probe 1 and the circuit under measurement X come into contact with each other at a certain position, and the balance mechanism 13 shifts from the horizontal state to the inclined state. That is, the probe 1 is displaced by the contact, and the displacement becomes the displacement of the observation point E by the balance mechanism 13.

【0080】この観測点Eの変位開始を高感度な変位計
15で検出し、その時点で第二上下微動機構5を停止さ
せる。
The displacement start of the observation point E is detected by the highly sensitive displacement gauge 15, and the second vertical fine movement mechanism 5 is stopped at that time.

【0081】この接触状態から、第二上下微動機構5に
より被測定回路Xを下降させて、接触点を基準にしプロ
ーブ1と被測定回路Xとを離間距離hmだけ離し、プロ
ーブ1にレーザ光を照射してレーザ光の光強度変化ΔI
m(図5の状態D)を測定する。
From this contact state, the circuit to be measured X is lowered by the second vertical fine movement mechanism 5, and the probe 1 and the circuit to be measured X are separated by the separation distance hm based on the contact point, and the laser beam is emitted to the probe 1. Irradiation changes the laser light intensity ΔI
m (state D in FIG. 5) is measured.

【0082】その結果、図8に示される電圧Vと光強度
変化ΔIの関係からΔImに対応する電圧Vが求まる。
As a result, the voltage V corresponding to ΔIm can be obtained from the relationship between the voltage V and the light intensity change ΔI shown in FIG.

【0083】尚、上記説明では第二上下微動機構5のみ
を用いて離間距離を定めていたが、下記(1)〜(3)
のようにしても良い。
In the above description, the separation distance is determined using only the second vertical fine movement mechanism 5, but the following (1) to (3) are used.
You may do like this.

【0084】(1)まず、第二上下微動機構5を固定
し、第一上下微動機構3´によりプローブ1を徐々に下
降させ、プローブ1の変位からプローブ1と被測定回路
Xとの接触を検出した時点で第一上下微動機構3´を停
止させる。次に所望の間隔まで第一上下微動機構3´に
よりプローブ1を上昇させて、プローブ1と被測定回路
Xとの間隔を決め、プローブ位置決めを行う。
(1) First, the second vertical fine movement mechanism 5 is fixed, the probe 1 is gradually lowered by the first vertical fine movement mechanism 3 ', and the probe 1 and the circuit under test X are brought into contact with each other due to the displacement of the probe 1. At the time of detection, the first vertical fine movement mechanism 3'is stopped. Next, the probe 1 is raised by the first vertical fine movement mechanism 3'to a desired distance, the distance between the probe 1 and the circuit under test X is determined, and the probe is positioned.

【0085】(2)まず、第一上下微動機構3´を固定
し、第二上下微動機構5により被測定回路Xを徐々に上
昇させ、プローブ1の変位からプローブ1と被測定回路
Xとの接触を検出した時点で第二上下微動機構5を停止
さされる。次に所望の間隔まで第一上下微動機構3´に
よりプローブ1を上昇させて、プローブ1と被測定回路
Xとの間隔を決め、プローブ位置決めを行う。
(2) First, the first vertical fine movement mechanism 3'is fixed, and the circuit under test X is gradually raised by the second vertical fine movement mechanism 5, and the displacement of the probe 1 causes the probe 1 and the circuit under measurement X to move. When the contact is detected, the second vertical fine movement mechanism 5 is stopped. Next, the probe 1 is raised by the first vertical fine movement mechanism 3'to a desired distance, the distance between the probe 1 and the circuit under test X is determined, and the probe is positioned.

【0086】(3)まず、第二上下微動機構5を固定
し、第一上下微動機構3´によりプローブ1を徐々に下
降させ、プローブ1の変位からプローブ1と被測定回路
Xとの接触を検出した時点で第一上下微動機構3´を停
止させる。次に所望の間隔まで第二上下微動機構5によ
り被測定回路Xを下降させて、プローブ1と被測定回路
Xとの間隔を決め、プローブ位置決めを行う。
(3) First, the second vertical fine movement mechanism 5 is fixed, the probe 1 is gradually lowered by the first vertical fine movement mechanism 3 ', and the displacement of the probe 1 causes the probe 1 to come into contact with the circuit under test X. At the time of detection, the first vertical fine movement mechanism 3'is stopped. Next, the circuit to be measured X is lowered by the second vertical fine movement mechanism 5 to a desired distance, the distance between the probe 1 and the circuit to be measured X is determined, and probe positioning is performed.

【0087】図11、図12、図13、図14に、本発
明の電圧信号測定装置の第一上下微動機構、接続部、接
触検出部に関する他の実施例を示す。
FIG. 11, FIG. 12, FIG. 13, and FIG. 14 show another embodiment relating to the first fine vertical movement mechanism, the connecting portion, and the contact detecting portion of the voltage signal measuring device of the present invention.

【0088】図11の構成では、第一上下微動機構はプ
ローブホルダ2を支持しているフレーム21上に配置さ
れたピエゾアクチュエータ23によって実現されてい
る。又、接続部はプローブホルダ2とフレーム21の間
に配置された磁石24による斥力によって実現されてい
る。更に、接触検出部はプローブホルダ2とフレーム2
1の間に配置された渦電流変位センサ22の渦電流の変
化の検知により実現されている。
In the configuration of FIG. 11, the first vertical fine movement mechanism is realized by the piezo actuator 23 arranged on the frame 21 supporting the probe holder 2. The connecting portion is realized by the repulsive force of the magnet 24 arranged between the probe holder 2 and the frame 21. Further, the contact detection unit is composed of the probe holder 2 and the frame 2.
It is realized by detecting the change of the eddy current of the eddy current displacement sensor 22 arranged between the two.

【0089】図12の構成では、第一上下微動機構はプ
ローブホルダ2を支持しているフレーム21上に配置さ
れたピエゾアクチュエータ23によって実現されてい
る。又、接触部はプローブホルダ2に対して入射される
空気圧機構34からの空気による揚力によって実現され
ている。更に、接触検知部はプローブホルダ2とフレー
ム21の間に配置された容量変位センサ32の容量の変
化の検知により実現されている。
In the configuration of FIG. 12, the first vertical fine movement mechanism is realized by the piezo actuator 23 arranged on the frame 21 supporting the probe holder 2. Further, the contact portion is realized by the lift force of the air from the pneumatic mechanism 34 incident on the probe holder 2. Further, the contact detection unit is realized by detecting a change in the capacitance of the capacitance displacement sensor 32 arranged between the probe holder 2 and the frame 21.

【0090】図13の構成では、第一上下微動機構はプ
ローブホルダ2を支持しているフレーム21上に配置さ
れた電磁コイル33によって実現されている。又、接続
部はプローブホルダ2を支持している板バネ44によっ
て実現されている。更に、接触検出部はプローブホルダ
2とフレーム21の間に配置された電気接触センサ42
の電気導通の有無の検知により実現されている。
In the configuration of FIG. 13, the first vertical fine movement mechanism is realized by the electromagnetic coil 33 arranged on the frame 21 supporting the probe holder 2. The connecting portion is realized by the leaf spring 44 supporting the probe holder 2. Further, the contact detection unit is an electric contact sensor 42 arranged between the probe holder 2 and the frame 21.
It is realized by detecting the presence or absence of electrical continuity.

【0091】図14の構成では、第一上下微動機構はプ
ローブホルダ2を支持しているフレーム21上に配置さ
れたピエゾアクチュエータ23によって実現されてい
る。又、接続部はプローブホルダ2とフレーム21の間
に配置されたスプリング54によって実現されている。
更に、接触検出部はプローブホルダ2とフレーム21の
間に配置された渦電流変位センサ22の渦電流の変化の
検知により実現されている。
In the configuration of FIG. 14, the first vertical fine movement mechanism is realized by the piezo actuator 23 arranged on the frame 21 supporting the probe holder 2. The connecting portion is realized by a spring 54 arranged between the probe holder 2 and the frame 21.
Further, the contact detection unit is realized by detecting a change in the eddy current of an eddy current displacement sensor 22 arranged between the probe holder 2 and the frame 21.

【0092】尚、上述の実施例では触れなかったが、被
測定回路X上の任意の測定点を設定する必要があるの
で、第一および第二上下微動機構3、5のほかに、前後
左右に移動機構を用いてプローブ1又は被測定回路Xを
前後左右に移動し、測定点を設定する。
Although not mentioned in the above embodiment, since it is necessary to set an arbitrary measurement point on the circuit under test X, in addition to the first and second fine vertical movement mechanisms 3 and 5, the front, rear, left and right The moving mechanism is used to move the probe 1 or the circuit under test X back and forth and left and right to set measurement points.

【0093】また、接触のための第一上下微動機構3の
下降動作あるいは第二上下微動機構5の上昇動作、これ
に続く画像処理装置7又は変位計15による接触点の検
出および検出時の上下微動機構3または5の停止、接触
検出後の所望間隔までの第一上下微動機構3の上昇動作
あるいは第二上下微動機構5の下降動作、更にはプロー
ブ位置決め後の電圧信号測定、これら一連の動作を自動
的に行うに必要な制御機能を適宜な装置に持たせてもよ
い。
Further, the lowering operation of the first vertical fine movement mechanism 3 or the raising operation of the second vertical fine movement mechanism 5 for contact, and the subsequent detection of the contact point by the image processing device 7 or the displacement meter 15 and the vertical movement at the time of detection. The fine movement mechanism 3 or 5 is stopped, the first vertical fine movement mechanism 3 is moved up to a desired interval after contact detection, or the second vertical fine movement mechanism 5 is lowered, and the voltage signal is measured after the probe is positioned. An appropriate device may be provided with a control function necessary for automatically performing.

【0094】また、本発明における絶対電圧の測定とは
普遍的な電圧基準を決定することを意味するのではなく
電圧校正を行うことを意味するものである。
The absolute voltage measurement in the present invention does not mean to determine a universal voltage reference, but means to perform voltage calibration.

【0095】[0095]

【発明の効果】本発明によれば、回路に擾乱を与えず、
回路からの発熱のプローブへの影響なしに、集積回路の
任意の測定点で再現性よく絶対電圧が測定できる。その
結果アナログ回路で必要となる振幅の情報が得られ、同
一被測定回路内での波形比較、あるいは他の被測定回路
間での振幅の比較が可能となる。
According to the present invention, the circuit is not disturbed,
Absolute voltage can be measured with good reproducibility at any measurement point of the integrated circuit without the influence of heat generated from the circuit on the probe. As a result, the amplitude information required by the analog circuit is obtained, and it becomes possible to compare the waveforms within the same circuit under test or the amplitudes between other circuits under test.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電圧信号測定装置の一般構成を示す
図。
FIG. 1 is a diagram showing a general configuration of a voltage signal measuring device of the present invention.

【図2】本発明の第1実施例の電圧信号測定装置の構成
を示す図。
FIG. 2 is a diagram showing the configuration of the voltage signal measuring device according to the first embodiment of the present invention.

【図3】第1実施例の電圧信号測定装置におけるプロー
ブと被測定回路の接触時の状態を示す図。
FIG. 3 is a diagram showing a state when the probe and the circuit under measurement are in contact with each other in the voltage signal measuring device according to the first embodiment.

【図4】本発明の電圧信号測定方法におけるプローブ配
置位置の状況を示す図。
FIG. 4 is a diagram showing a situation of a probe arrangement position in the voltage signal measuring method of the present invention.

【図5】本発明の電圧信号測定方法における測定状態の
推移を示す図。
FIG. 5 is a diagram showing a transition of a measurement state in the voltage signal measuring method of the present invention.

【図6】電気光学サンプリングにおける光強度変化と離
間距離の関係を示す図。
FIG. 6 is a diagram showing a relationship between a change in light intensity and a separation distance in electro-optic sampling.

【図7】本発明の電圧信号測定方法において求められる
低周波信号入力時の光強度変化と離間距離の関係を示
す。
FIG. 7 shows the relationship between the change in light intensity and the distance when a low frequency signal is input, which is obtained by the voltage signal measuring method of the present invention.

【図8】本発明の電圧信号測定方法において求められる
高周波信号入力時の光強度変化と被測定回路の測定点の
絶対電圧の関係を示す図。
FIG. 8 is a diagram showing a relationship between a change in light intensity when a high-frequency signal is input and an absolute voltage at a measurement point of a circuit under measurement, which is obtained by the voltage signal measuring method of the present invention.

【図9】本発明の第2実施例の電圧信号測定装置の構成
を示す図。
FIG. 9 is a diagram showing the configuration of a voltage signal measuring device according to a second embodiment of the present invention.

【図10】第2実施例の電圧信号測定装置におけるプロ
ーブと被測定回路の接触時の状態を示す図。
FIG. 10 is a diagram showing a state when the probe and the circuit under measurement are in contact with each other in the voltage signal measuring device according to the second embodiment.

【図11】本発明の電圧信号測定装置の要部の他の構成
例を示す図。
FIG. 11 is a diagram showing another configuration example of the main part of the voltage signal measuring device of the present invention.

【図12】本発明の電圧信号測定装置の要部の他の構成
例を示す図。
FIG. 12 is a diagram showing another configuration example of the main part of the voltage signal measuring device of the present invention.

【図13】本発明の電圧信号測定装置の要部の他の構成
例を示す図。
FIG. 13 is a diagram showing another configuration example of the main part of the voltage signal measuring device of the present invention.

【図14】本発明の電圧信号測定装置の要部の他の構成
例を示す図。
FIG. 14 is a diagram showing another configuration example of the main part of the voltage signal measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 プローブ 2 プローブホルダ 3 第一上下微動機構 4 接続部 5 第二上下微動機構 6 カメラ 7 画像処理装置 8 レーザ光源 9 レーザ光検出装置 10 ミラー 11 ダイクロッイックミラー 12 接触検出部 13 天秤機構 14 バランサ 15 変位計 16 ストッパ 21 フレーム 22 渦電流変位センサ 23 ピエゾアクチュエータ 24 磁石 32 容量変位センサ 33 電磁コイル 34 空気圧機構 42 電気接触センサ 44 板バネ 54 スプリング X 被測定回路 DESCRIPTION OF SYMBOLS 1 probe 2 probe holder 3 first vertical fine movement mechanism 4 connection part 5 second vertical fine movement mechanism 6 camera 7 image processing device 8 laser light source 9 laser light detection device 10 mirror 11 dichroic mirror 12 contact detection unit 13 balance mechanism 14 balancer 15 Displacement Meter 16 Stopper 21 Frame 22 Eddy Current Displacement Sensor 23 Piezo Actuator 24 Magnet 32 Capacitance Displacement Sensor 33 Electromagnetic Coil 34 Pneumatic Mechanism 42 Electrical Contact Sensor 44 Leaf Spring 54 Spring X Measured Circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電界によって複屈折率が変化する電気光
学材料を透明な材料で固定したプローブを被測定回路に
近づけ、レーザ光を該プローブに照射し、被測定回路の
動作により発生する電界によって該レーザ光の偏光が変
化し、偏光変化を受けた該レーザ光をポラライザによっ
て光の強度変化に変換し、該強度変化を測定することに
より被測定回路の電圧信号を測定する方法おいて (a)被測定回路の端子に接続され電圧信号が直接供給
可能な配線上の測定点で既知の電圧の低周波信号を該端
子に印加し、レーザ光をプローブに照射して光強度変化
を測定し、 (b)上記(a)で測定した光強度変化と、測定で用い
たプローブと被測定回路との離間距離との関係を前記低
周波信号の既知の電圧について求め、 (c)上記(b)で求めた関係に基づいて、光強度変化
と絶対電圧との比例関係を所望の離間距離について求
め、 (d)被測定回路内の所望の測定点で、高周波信号を用
いて所望の離間距離をおいてレーザ光をプローブに照射
して光強度変化を測定し、 (e)上記(d)で測定した光強度変化と上記(c)で
求めた比例関係に基づいて所望の測定点の絶対電圧を求
める。ことを特徴とする集積回路の電圧信号測定方法。
1. A probe in which an electro-optic material whose birefringence index changes by an electric field is fixed by a transparent material is brought close to a circuit to be measured, the probe is irradiated with laser light, and an electric field generated by the operation of the circuit to be measured is used. A method of measuring a voltage signal of a circuit under measurement by changing the polarization of the laser light, converting the laser light subjected to the polarization change into a light intensity change by a polarizer, and measuring the intensity change. ) A low-frequency signal of known voltage is applied to the terminal at the measurement point on the wiring that is connected to the terminal of the circuit under test and a voltage signal can be directly supplied, and the laser light is irradiated to the probe to measure the change in light intensity. (B) The relationship between the change in light intensity measured in (a) above and the distance between the probe used in the measurement and the circuit under measurement is determined for a known voltage of the low frequency signal, and (c) above (b) ) Relationship found in On the basis of the above, the proportional relationship between the change in light intensity and the absolute voltage is obtained for a desired distance, and (d) a laser beam is placed at a desired distance using a high frequency signal at a desired measurement point in the circuit under test. Is irradiated to the probe to measure the change in the light intensity, and (e) the absolute voltage at the desired measurement point is obtained based on the proportional relationship obtained in (c) and the change in light intensity measured in (d) above. A method for measuring a voltage signal of an integrated circuit, comprising:
【請求項2】 電界によって被屈折率が変化する電気光
学材料を有するプローブと、該プローブと被測定回路を
相対的に移動させる手段と、該プローブにレーザ光を照
射するレーザ光源と、該プローブから反射される被測定
回路の電界によって偏光変化を受けたレーザ光から光強
度変化を測定する手段と、該プローブと被測定回路との
接触点を検知する手段と、を備えたことを特徴とする集
積回路の電圧信号測定装置。
2. A probe having an electro-optical material whose refractive index changes by an electric field, a means for moving the probe and a circuit under measurement relatively, a laser light source for irradiating the probe with laser light, and the probe. A means for measuring a change in light intensity from a laser beam that has undergone a polarization change due to an electric field of a circuit under measurement reflected from the device; and a means for detecting a contact point between the probe and the circuit under measurement. Voltage measuring device for integrated circuit.
【請求項3】 前記プローブが被測定回路に接触した時
のプローブおよび被測定回路に対するダメージを緩和す
る手段を更に備えたことを特徴とする請求項2記載の集
積回路の電圧信号測定装置。
3. The voltage signal measuring device for an integrated circuit according to claim 2, further comprising means for mitigating damage to the probe and the circuit under test when the probe comes into contact with the circuit under test.
【請求項4】 結晶にかかる電界強度に応じ結晶の屈折
率が変化する電気光学結晶を電界中に置き、該結晶を透
過したレーザ光の偏光状態の変化から電界強度を測定す
る方法を利用し、集積回路の電界測定用に加工された電
気光学結晶であるプローブを被測定集積回路に近接させ
て電気信号波形を測定する際に、 (1)プローブと被測定集積回路とを近づけ、 (2)プローブと被測定集積回路とが接触した点を検出
し、 (3)接触点を基準に所望の量だけプローブと被測定集
積回路との間隔を離すこと、を特徴とする集積回路の電
界測定用プローブの位置決め方法。
4. An electro-optic crystal whose refractive index changes according to the electric field strength applied to the crystal is placed in an electric field, and the electric field strength is measured from the change in the polarization state of the laser light transmitted through the crystal. When a probe, which is an electro-optic crystal processed for electric field measurement of an integrated circuit, is brought close to the measured integrated circuit to measure an electric signal waveform, (1) the probe and the measured integrated circuit are brought close to each other; ) Detecting the contact point between the probe and the integrated circuit under test, and (3) separating the probe and the integrated circuit under test by a desired amount based on the contact point, and measuring the electric field of the integrated circuit. Method for positioning probe.
【請求項5】 結晶にかかる電界強度に応じ結晶の屈折
率が変化する電気光学結晶を電界中に置き、該結晶を透
過したレーザ光の偏光状態の変化から電界強度を測定す
る方法を利用し、集積回路の電界測定用に加工された電
気光学結晶であるプローブを被測定集積回路に近接させ
て電気信号波形を測定するためのプローブ位置決め装置
において、 (1)プローブと被測定集積回路との接触検出する接触
検出手段と、 (2)プローブと被測定集積回路とを近接させ、接触検
出手段が両者の接触を検出した点を基準に、所望の量だ
けプローブと被測定集積回路とを離間させる移動手段
と、を具備することを特徴とする集積回路の電界測定用
プローブ位置決め装置。
5. A method of placing an electro-optic crystal in which the refractive index of the crystal changes according to the electric field strength applied to the crystal in an electric field and measuring the electric field strength from the change in the polarization state of the laser light transmitted through the crystal is used. In a probe positioning device for measuring an electric signal waveform by bringing a probe, which is an electro-optic crystal processed for electric field measurement of an integrated circuit, close to the measured integrated circuit, (1) the probe and the measured integrated circuit (2) The probe and the measured integrated circuit are separated from each other by a desired amount based on the point where the contact detection means detects the contact between the probe and the measured integrated circuit. A probe positioning device for measuring an electric field of an integrated circuit, comprising:
JP4058351A 1991-03-18 1992-03-16 Method and apparatus for measuring voltage signal of integrated circuit Expired - Lifetime JP2607798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4058351A JP2607798B2 (en) 1991-03-18 1992-03-16 Method and apparatus for measuring voltage signal of integrated circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-52439 1991-03-18
JP5243991 1991-03-18
JP4058351A JP2607798B2 (en) 1991-03-18 1992-03-16 Method and apparatus for measuring voltage signal of integrated circuit

Publications (2)

Publication Number Publication Date
JPH0572299A true JPH0572299A (en) 1993-03-23
JP2607798B2 JP2607798B2 (en) 1997-05-07

Family

ID=26393048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4058351A Expired - Lifetime JP2607798B2 (en) 1991-03-18 1992-03-16 Method and apparatus for measuring voltage signal of integrated circuit

Country Status (1)

Country Link
JP (1) JP2607798B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616239A3 (en) * 1993-03-15 1995-03-08 Hamamatsu Photonics Kk Method of positioning an electro-optic probe of an apparatus for the measurement of voltage.
US6087838A (en) * 1997-11-10 2000-07-11 Ando Electric Co., Ltd. Signal processing circuit for electro-optic probe
US6166845A (en) * 1998-05-28 2000-12-26 Ando Electric Co., Ltd. Electro-optic probe
US6201235B1 (en) 1998-05-01 2001-03-13 Ando Electric Co., Ltd. Electro-optic sampling oscilloscope
US6232765B1 (en) 1998-03-19 2001-05-15 Ando Electric Co., Ltd Electro-optical oscilloscope with improved sampling
US6288529B1 (en) 1998-06-03 2001-09-11 Ando Electric Co., Ltd Timing generation circuit for an electro-optic oscilloscope
US6567760B1 (en) 1998-05-06 2003-05-20 Ando Electric Co., Ltd. Electro-optic sampling oscilloscope
WO2017159869A1 (en) * 2016-03-17 2017-09-21 株式会社Soken Electromagnetic field imaging device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616239A3 (en) * 1993-03-15 1995-03-08 Hamamatsu Photonics Kk Method of positioning an electro-optic probe of an apparatus for the measurement of voltage.
US5552716A (en) * 1993-03-15 1996-09-03 Hamamatsu Photonics K.K. Method of positioning an electrooptic probe of an apparatus for the measurement of voltage
US6087838A (en) * 1997-11-10 2000-07-11 Ando Electric Co., Ltd. Signal processing circuit for electro-optic probe
US6232765B1 (en) 1998-03-19 2001-05-15 Ando Electric Co., Ltd Electro-optical oscilloscope with improved sampling
US6201235B1 (en) 1998-05-01 2001-03-13 Ando Electric Co., Ltd. Electro-optic sampling oscilloscope
US6567760B1 (en) 1998-05-06 2003-05-20 Ando Electric Co., Ltd. Electro-optic sampling oscilloscope
US6166845A (en) * 1998-05-28 2000-12-26 Ando Electric Co., Ltd. Electro-optic probe
US6288529B1 (en) 1998-06-03 2001-09-11 Ando Electric Co., Ltd Timing generation circuit for an electro-optic oscilloscope
WO2017159869A1 (en) * 2016-03-17 2017-09-21 株式会社Soken Electromagnetic field imaging device
JPWO2017159869A1 (en) * 2016-03-17 2019-02-14 株式会社Soken Electromagnetic field imaging device

Also Published As

Publication number Publication date
JP2607798B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US5543723A (en) Apparatus for electro-optic sampling measuring of electrical signals in integrated circuits with improved probe positioning accuracy
US5999005A (en) Voltage and displacement measuring apparatus and probe
JP2607798B2 (en) Method and apparatus for measuring voltage signal of integrated circuit
JPH01286431A (en) Method and apparatus for optoelectric measurement of voltage waveform on electric conductor
JP2868047B2 (en) Probe device and integrated circuit inspection device
JP3139644B2 (en) Integrated circuit voltage signal measuring device
US5583446A (en) Electro-optically controlled measurement probe system
JPH0429344A (en) Tester for semiconductor integrated circuit and method of controlling probe position of this tester
CN109967910A (en) Welding penetration on-line measuring device and method
US5715054A (en) Scanning force microscope with detector probe for the atomic resolution of a surface structure
JP3381018B2 (en) Electric field detector
US6347005B1 (en) Electro-optic sampling probe
JPH08335613A (en) Wafer inspecting apparatus
JPH06140479A (en) Device for testing semiconductor integrated circuit
JPH10115667A (en) Probe
JP3201655B2 (en) Electric field measurement device
JPH0351777A (en) Apparatus and method for measuring semiconductor device
JPH0735827A (en) Electrooptical measuring apparatus
JPH03167490A (en) Apparatus for testing mounted printed circuit board
JP2916871B2 (en) Characteristic measurement system
JPH0485846A (en) Signal waveform detector
JP2837933B2 (en) Signal waveform detector
JPH08101217A (en) Scanning probe microscope
JPH0473620B2 (en)
JPH05107273A (en) Voltage detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16