JPH0735827A - Electrooptical measuring apparatus - Google Patents

Electrooptical measuring apparatus

Info

Publication number
JPH0735827A
JPH0735827A JP5181687A JP18168793A JPH0735827A JP H0735827 A JPH0735827 A JP H0735827A JP 5181687 A JP5181687 A JP 5181687A JP 18168793 A JP18168793 A JP 18168793A JP H0735827 A JPH0735827 A JP H0735827A
Authority
JP
Japan
Prior art keywords
probe
electro
measured
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5181687A
Other languages
Japanese (ja)
Inventor
Koichiro Takeuchi
恒一郎 竹内
Hideto Iwaoka
秀人 岩岡
Sunao Sugiyama
直 杉山
Masao Kasahara
征夫 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TARA TEC KK
Original Assignee
TARA TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TARA TEC KK filed Critical TARA TEC KK
Priority to JP5181687A priority Critical patent/JPH0735827A/en
Priority to PCT/JP1994/000611 priority patent/WO1994024575A1/en
Priority to DE69434641T priority patent/DE69434641T2/en
Priority to EP94912091A priority patent/EP0650067B1/en
Priority to US08/351,396 priority patent/US5583446A/en
Priority to EP04008313A priority patent/EP1443337B1/en
Priority to DE69433974T priority patent/DE69433974T2/en
Publication of JPH0735827A publication Critical patent/JPH0735827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable highly accurate positioning control by irradiating a probe supported on a cantilever with light to detect and control the position, of the probe from the reflected light thereof. CONSTITUTION:A part to be measured of a subject 20 set on a piezo-electric element 8 is set near a probe 1 by the operation from a probe position operating section 6. Subsequently, the probe 1 is brought into contact with the subject 20 to scan. light irradiated from a light source 52 is reflected on the probe 1 to be incident into a photodetector 112. The irradiation position of the reflected light incident into the photo detector 112 changes according to changes in the position of the probe 1. The changes in the position are measured with a probe position detecting circuit 2 to detect the position of the probe 1. Since a cantilever 10 the same as that used in a scan type interatomic force microscope is used as holding part of the probe 1, less mass reduces a force working on the subject 20 and thus, there is little possibility of damaging the subject 20 physically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体の研究および製造
に利用する。特に、高速集積電子回路の動作状態計測技
術に関する。
FIELD OF THE INVENTION The present invention finds use in the research and manufacture of semiconductors. In particular, it relates to a technique for measuring an operating state of a high speed integrated electronic circuit.

【0002】[0002]

【従来の技術】近年のエレクトロニクスの分野において
扱われる信号の周波数は250GHzにおよび、これら
の高速電気波形を観測する手段が技術の進歩に追いつか
ないというのが現在の高速電気計測技術の現状である。
さらに、素子の微細化が進み時分解能のみならず、電気
計測装置の空間分解能も現在の技術の進歩に追いつかな
いのが現状である。
2. Description of the Related Art In recent years, the frequency of signals handled in the field of electronics has reached 250 GHz, and the means for observing these high-speed electrical waveforms cannot keep up with the technological progress at the present time. .
In addition, the miniaturization of elements is progressing, and not only the temporal resolution but also the spatial resolution of electrical measuring devices cannot keep up with the current technological progress.

【0003】微小素子の高速動作状態など高速現象を観
測するには、従来からその代表的なものとしてサンプリ
ング・オシロスコープがある。また、近年では電気光学
結晶の電気光学効果を利用したEOサンプリング法が研
究されている(EOサンプリング 神谷武志 高橋亮
半導体レーザを光源とする電気光学サンプリング 応用
物理第61巻第1号p30,1992、T.Nagatsuma,"M
easurement of High-Speed Devices and Integrated Ci
rcuits Using Electro-Optic Sampling Technique"IEIC
E Trans.Electron.,vol.E-76C,no.1,January 1993.)。
In order to observe a high speed phenomenon such as a high speed operation state of a minute element, a sampling oscilloscope has conventionally been a typical one. Further, in recent years, EO sampling method utilizing the electro-optic effect of electro-optic crystal has been studied (EO sampling Takeshi Kamiya Ryo Takahashi.
Electro-Optical Sampling Using Semiconductor Laser as Light Source Applied Physics Vol. 61, No. 1, p30, 1992, T. Nagatsuma, "M
measurement of High-Speed Devices and Integrated Ci
rcuits Using Electro-Optic Sampling Technique "IEIC
E Trans. Electron., Vol.E-76C, no.1, January 1993.).

【0004】従来例を図8を参照して説明する。図8は
従来例装置の構成図である。試験台30に載った被測定
物20の被測定部位が試験台操作部32の操作によりプ
ローブ1の近傍に設定される。つづいて、プローブ1を
一度被測定物20に接触させ、その後にピエゾ素子等で
形成される高さ調整部3で高さ方向の調整を行い最適な
測定位置を決定する。このプローブ1に光源5から光を
照射する。被測定物20の被測定部位に電位が存在すれ
ば、電気光学効果により電気光学結晶の屈折率が変化
し、光源5からの照射された光の偏光方向が電位が存在
しないときに比較して変化する。この変位量は、波長板
9、偏光子7、受光素子11からなる光学系で検知され
る。この変位量は電位測定器12の入力となり、被測定
部位の電位が測定される。
A conventional example will be described with reference to FIG. FIG. 8 is a block diagram of a conventional device. The site to be measured of the object to be measured 20 placed on the test table 30 is set near the probe 1 by operating the test table operating unit 32. Subsequently, the probe 1 is once brought into contact with the object 20 to be measured, and then the height adjustment section 3 formed of a piezo element or the like adjusts the height direction to determine the optimum measurement position. The light source 5 irradiates the probe 1 with light. If an electric potential exists at the measured portion of the object to be measured 20, the refractive index of the electro-optical crystal changes due to the electro-optical effect, and the polarization direction of the light emitted from the light source 5 is compared with that when the electric potential does not exist. Change. This amount of displacement is detected by an optical system including the wave plate 9, the polarizer 7, and the light receiving element 11. This displacement amount is input to the potential measuring device 12, and the potential of the measurement site is measured.

【0005】[0005]

【発明が解決しようとする課題】このような従来例装置
では、集積回路などの部分的に厚さが均一ではない被測
定物に対しては、測定部分を変える毎にプローブを接触
させ、位置決め動作を繰り返す必要があり、測定時間
が長くかかる、プローブの保持部分の質量が大きく、
被測定物の回路に物理的な損傷を与える可能性が高いな
どの問題がある。このように、従来例装置では、サンプ
リング速度の追及のみが重要視され、位置制御に対する
配慮はあまりなされていない。
In such a conventional apparatus, a probe is brought into contact with an object to be measured, such as an integrated circuit, whose thickness is not partially uniform, every time the measuring portion is changed, and positioning is performed. It is necessary to repeat the operation, it takes a long time to measure, the mass of the holding part of the probe is large,
There is a problem that the circuit of the device under test is likely to be physically damaged. As described above, in the conventional device, only the pursuit of the sampling speed is regarded as important and the position control is not considered so much.

【0006】本発明は、このような背景に行われたもの
であり、高い精度を持つ位置決め制御を行うことができ
る電気光学計測装置を提供することを目的とする。
The present invention has been made against such a background, and an object of the present invention is to provide an electro-optical measuring device capable of performing positioning control with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明は、少なくとも一
部が電気光学結晶により形成され被測定物に近接させる
プローブと、この電気光学結晶に光を照射する第一の光
源と、この第一の光源の前記電気光学結晶を通過した反
射光からこの電気光学結晶の光学的変位量を検出する変
位量検出手段と、この変位量検出手段の検出結果から前
記被測定物の電位を測定する手段とを備えた電気光学計
測装置である。
According to the present invention, there is provided a probe, at least a part of which is formed of an electro-optic crystal and is brought close to an object to be measured, a first light source for irradiating the electro-optic crystal with light, and a first light source for irradiating the electro-optic crystal with light. Displacement amount detecting means for detecting the optical displacement amount of the electro-optical crystal from the reflected light of the light source that has passed through the electro-optical crystal, and means for measuring the potential of the measured object from the detection result of the displacement amount detecting means. It is an electro-optical measuring device provided with.

【0008】ここで、本発明の特徴とするところは、前
記プローブはカンチレバーにより支持され、前記プロー
ブに光を照射する第二の光源と、この第二の光源の前記
プローブの反射光からこのプローブの位置を検出する位
置検出手段と、この位置検出手段の検出結果を入力とし
て前記プローブの前記被測定物に対する位置を制御する
手段とを備えたところにある。
Here, a feature of the present invention is that the probe is supported by a cantilever, and a second light source for irradiating the probe with light and a reflected light of the probe of the second light source Position detecting means for detecting the position of the probe and means for controlling the position of the probe with respect to the object to be measured by using the detection result of the position detecting means as an input.

【0009】また、前記第一の光源の前記プローブの反
射光からこのプローブの位置を検出する位置検出手段
と、この位置検出手段の検出結果を入力として前記プロ
ーブの前記被測定物に対する位置を制御する手段とを備
える構成とすることもできる。
Further, position detecting means for detecting the position of the probe from the reflected light of the probe of the first light source, and the position of the probe with respect to the object to be measured are input by using the detection result of the position detecting means. It may be configured to include a means for performing.

【0010】前記カンチレバーには、前記電気光学結晶
に照射する光およびまたは前記反射光が通過する導波路
を設ける構成とすることもできる。
The cantilever may be provided with a waveguide through which the light applied to the electro-optic crystal and / or the reflected light passes.

【0011】前記プローブに電極を備え、この電極を基
準電位に接続する回路手段を備える構成とすることもで
きる。
The probe may be provided with an electrode, and circuit means for connecting the electrode to a reference potential may be provided.

【0012】また、前記プローブは、被測定物に接する
探針およびその被測定物に近接する電気光学結晶を備
え、前記プローブの上面に光を照射する第二の光源と、
この第二の光源の前記プローブの反射光からこのプロー
ブの位置を検出する位置検出手段と、この位置検出手段
の検出結果を入力として前記プローブの前記被測定物に
対する位置を制御する手段とを備える構成とすることも
できる。
The probe includes a probe in contact with the object to be measured and an electro-optic crystal in proximity to the object to be measured, and a second light source for irradiating the upper surface of the probe with light.
Position detection means for detecting the position of the probe from the reflected light of the probe of the second light source, and means for controlling the position of the probe with respect to the object to be measured with the detection result of the position detection means as an input. It can also be configured.

【0013】[0013]

【作用】レーザの分野では、サブピコ秒領域の光パルス
が比較的容易に得られるようになってきたことから、こ
のレーザパルスを電気信号のサンプリングに用いる。こ
れにより、従来の電子計測よりも高速で、しかも信号を
外に引き出すことなく、測定したい点の電位を直接測定
することが可能である。この方法は、サンプリング・オ
シロスコープにおけるサンプリング用の電気パルスを光
パルスに置き換えたものといえる。
In the field of lasers, it has become relatively easy to obtain optical pulses in the sub-picosecond range, so this laser pulse is used for sampling electrical signals. As a result, it is possible to directly measure the potential at the point to be measured at a higher speed than conventional electronic measurement and without extracting the signal to the outside. It can be said that this method replaces the electrical pulse for sampling in the sampling oscilloscope with the optical pulse.

【0014】また、プローブの位置制御に関しては、プ
ローブの微細な位置変位は、プローブに照射した光の反
射光の照射位置の変位として表すことができる。この反
射光の照射位置の変位を受光素子が検知してプローブの
位置を検出する。プローブは被測定物の表面の凹凸にし
たがってその位置を変位させる。
Regarding the position control of the probe, the fine positional displacement of the probe can be expressed as the displacement of the irradiation position of the reflected light of the light irradiated on the probe. The light receiving element detects the displacement of the irradiation position of the reflected light to detect the position of the probe. The probe displaces its position according to the unevenness of the surface of the object to be measured.

【0015】集積回路等の凹凸のある被測定物において
は、あらかじめわかっている凹凸の状態と、プローブが
走査している凹凸の状態とを比較することで被測定物に
対するプローブの位置を高い精度で制御することができ
る。
For an object to be measured having an unevenness such as an integrated circuit, the position of the probe with respect to the object to be measured can be highly accurately compared by comparing the condition of the unevenness known in advance with the condition of the unevenness scanned by the probe. Can be controlled with.

【0016】この変位量検出のための光源と、電気光学
結晶の電気光学効果を計測するための光源とは、同一の
光源とすることができる。また、受光素子も同一とする
ことができる。
The light source for detecting the displacement amount and the light source for measuring the electro-optical effect of the electro-optical crystal can be the same light source. Further, the light receiving elements can be the same.

【0017】これにより、高い精度を持つ位置決め制御
を行うことができる電気光学計測装置が簡単な構成で実
現できる。
As a result, an electro-optical measuring device capable of highly accurate positioning control can be realized with a simple structure.

【0018】[0018]

【実施例】本発明第一実施例の構成を図1を参照して説
明する。図1は本発明第一実施例装置の構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram of a first embodiment device of the present invention.

【0019】本発明は、少なくともその一部が電気光学
結晶により形成され被測定物20に近接させるプローブ
1と、この電気光学結晶に光を照射する第一の光源51
と、この第一の光源51の前記電気光学結晶を通過した
反射光からこの電気光学結晶の光学的変位量を検出する
変位量検出手段として受光素子111と、この受光素子
111の変位量検出結果から被測定物20の電位を測定
する手段として電位測定器12とを備えた電気光学計測
装置である。
According to the present invention, at least a part of the probe 1 is made of an electro-optic crystal and is brought close to the object to be measured 20, and a first light source 51 for irradiating the electro-optic crystal with light.
And a light receiving element 111 as a displacement amount detecting means for detecting an optical displacement amount of the electro-optical crystal from the reflected light of the first light source 51 passing through the electro-optical crystal, and a displacement amount detection result of the light receiving element 111. Is an electro-optical measuring device including a potential measuring device 12 as a means for measuring the potential of the DUT 20.

【0020】ここで、本発明の特徴とするところは、プ
ローブ1はカンチレバー10により支持され、プローブ
1に光を照射する第二の光源52と、この第二の光源5
2のプローブ1の反射光からこのプローブ1の位置を検
出する位置検出手段として受光素子112およびプロー
ブ位置検出回路2と、このプローブ位置検出回路2の検
出結果を入力としてプローブ1の被測定物20に対する
位置を制御する手段としてプローブ位置制御回路4およ
びプローブ位置操作部6とを備えたところにある。
Here, the feature of the present invention is that the probe 1 is supported by the cantilever 10, and the second light source 52 for irradiating the probe 1 with light and the second light source 5 are provided.
2 as the position detecting means for detecting the position of the probe 1 from the reflected light of the probe 1, and the object to be measured 20 of the probe 1 with the detection result of the probe position detecting circuit 2 as an input. The probe position control circuit 4 and the probe position operation unit 6 are provided as means for controlling the position with respect to.

【0021】次に、本発明第一実施例の動作を説明す
る。ピエゾ素子8に設置された被測定物20の被測定部
位がプローブ位置操作部6からの操作によりプローブ1
の近傍に設定される。つづいて、プローブ1を被測定物
20に接触させて走査を行う。光源52から照射された
光は、プローブ1に反射して受光素子112に入射す
る。プローブ1の位置変位に応じて受光素子112に入
射される反射光の照射位置が変位する。この変位量をプ
ローブ位置検出回路2が測定してプローブ1の位置を検
出する。本発明第一実施例では、プローブ1の保持部分
として走査型原子間力顕微鏡(AFM)に用いるものと
同様のカンチレバー10を用いているためその質量は小
さく、被測定物に使用する力も極めて小さいので従来例
で述べたような被測定物20に物理的な損傷を与える可
能性はほとんどない。
Next, the operation of the first embodiment of the present invention will be described. The measurement target portion of the measurement target 20 installed on the piezo element 8 is operated by the probe position operation unit 6 and the probe 1 is operated.
Is set near. Subsequently, the probe 1 is brought into contact with the object to be measured 20 to perform scanning. The light emitted from the light source 52 is reflected by the probe 1 and enters the light receiving element 112. The irradiation position of the reflected light incident on the light receiving element 112 is displaced according to the positional displacement of the probe 1. The displacement amount is measured by the probe position detection circuit 2 to detect the position of the probe 1. In the first embodiment of the present invention, since the cantilever 10 similar to that used in the scanning atomic force microscope (AFM) is used as the holding portion of the probe 1, its mass is small and the force used for the object to be measured is also extremely small. Therefore, there is almost no possibility of physically damaging the DUT 20 as described in the conventional example.

【0022】プローブ1は、被測定物20表面の凹凸状
態を検出しながら走査を行い、プローブ位置制御回路4
は、あらかじめ入力されている凹凸状態のマップと比較
しながらプローブ1の位置決めを行う。測定位置が決定
するとプローブ1に光源51から光を照射する。被測定
物20の被測定部位に電位が存在すれば、電気光学効果
により電気光学結晶の屈折率が変化し、光源51からの
照射された光の偏光方向が電位が存在しないときに比較
して変化する。この変位量は、波長板9、偏光子7、受
光素子111からなる光学系で検知される。この変位量
は電位測定器12の入力となり、被測定部位の電位が測
定される。光源51はパルス光を照射している。このパ
ルス光の発光周期が光サンプリングのサンプリング周期
となる。
The probe 1 performs scanning while detecting the unevenness of the surface of the object 20 to be measured, and the probe position control circuit 4
Performs positioning of the probe 1 while comparing with the map of the uneven state that has been input in advance. When the measurement position is determined, the light source 51 irradiates the probe 1 with light. If an electric potential exists at the measured portion of the object to be measured 20, the refractive index of the electro-optical crystal changes due to the electro-optical effect, and the polarization direction of the light emitted from the light source 51 is compared with that when the electric potential does not exist. Change. This displacement amount is detected by an optical system including the wave plate 9, the polarizer 7, and the light receiving element 111. This displacement amount is input to the potential measuring device 12, and the potential of the measurement site is measured. The light source 51 emits pulsed light. The light emission cycle of this pulsed light is the sampling cycle of optical sampling.

【0023】次に、本発明第二実施例を図2を参照して
説明する。図2は本発明第二実施例装置の構成図であ
る。本発明第二実施例は、本発明第一実施例装置と比較
すると一つの光源5でプローブ1の位置検出および電気
光学効果測定を行う構成である。受光素子111および
112は二分割受光素子であり、受光素子111は受光
部aおよびbからなり受光素子112は受光部cおよび
dからなる。ここで、受光部aの受光レベルをA、受光
部bの受光レベルをB、受光部cの受光レベルをC、受
光部dの受光レベルをDとすると、 〔A+D〕−〔B+C〕 を位置検出に用い、 〔A+B〕−〔C+D〕 を被測定物20の電位検出に用いている。光源5はパル
ス光を照射している。位置検出もパルス光を用いて実用
上の問題はない。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a block diagram of the apparatus of the second embodiment of the present invention. The second embodiment of the present invention is configured to detect the position of the probe 1 and measure the electro-optical effect with one light source 5 as compared with the device of the first embodiment of the present invention. The light receiving elements 111 and 112 are two-divided light receiving elements, the light receiving element 111 includes light receiving portions a and b, and the light receiving element 112 includes light receiving portions c and d. Assuming that the light receiving level of the light receiving section a is A, the light receiving level of the light receiving section b is B, the light receiving level of the light receiving section c is C, and the light receiving level of the light receiving section d is D, [A + D]-[B + C] is the position. It is used for detection, and [A + B]-[C + D] is used for potential detection of the DUT 20. The light source 5 emits pulsed light. Position detection also uses pulsed light and has no practical problem.

【0024】次に、本発明第三実施例を図3を参照して
説明する。図3は本発明第三実施例装置の構成図であ
る。本発明第三実施例は、本発明第一実施例装置と比較
すると一つの光源5と一つの受光素子11を用いる構成
である。受光素子11は二分割受光素子であり、受光部
aおよびbからなり、 〔A−B〕 を位置検出に用い、 〔A+B〕 を被測定物20の電位検出に用いる。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a block diagram of the apparatus of the third embodiment of the present invention. The third embodiment of the present invention has a configuration using one light source 5 and one light receiving element 11 as compared with the device of the first embodiment of the present invention. The light receiving element 11 is a two-divided light receiving element and is composed of light receiving portions a and b. [A−B] is used for position detection and [A + B] is used for potential detection of the DUT 20.

【0025】次に、本発明第四実施例を図4を参照して
説明する。図4は本発明第四実施例装置の構成図であ
る。本発明第四実施例は、カンチレバー10に光の導波
路を設けた構成である。光源5から照射される光は、カ
ンチレバー10の導波路に直接入射させてもよいし、光
ファイバを介して入射させてもよい。すなわち、光源5
の設置位置を任意に選ぶことができることがカンチレバ
ー10に導波路を設ける利点である。測定原理は、受光
器11を一つ設けた本発明第三実施例と同様である。
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a block diagram of the device of the fourth embodiment of the present invention. The fourth embodiment of the present invention has a structure in which the cantilever 10 is provided with an optical waveguide. The light emitted from the light source 5 may be directly incident on the waveguide of the cantilever 10 or may be incident via an optical fiber. That is, the light source 5
It is an advantage of providing the waveguide in the cantilever 10 that the installation position can be arbitrarily selected. The measurement principle is the same as that of the third embodiment of the present invention in which one light receiver 11 is provided.

【0026】次に、本発明第五実施例を図5を参照して
説明する。図5は本発明第五実施例の構成図である。本
発明第五実施例は、本発明第四実施例と同様にカンチレ
バー10に光の導波路を設けた構成である。位置検出は
受光素子111で行い、電位検出は受光素子112で行
う。測定原理は、本発明第二実施例と同様であるが本発
明第五実施例では電位検出を導波路を戻った光で行って
いる。
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a block diagram of the fifth embodiment of the present invention. The fifth embodiment of the present invention has a structure in which the cantilever 10 is provided with an optical waveguide as in the fourth embodiment of the present invention. The position is detected by the light receiving element 111, and the potential is detected by the light receiving element 112. The measurement principle is the same as that of the second embodiment of the present invention, but in the fifth embodiment of the present invention, the potential is detected by the light returning from the waveguide.

【0027】次に、本発明第六実施例を図6を参照して
説明する。図6は本発明第六実施例装置の構成図であ
る。本発明第六実施例は、電気光学結晶62と探針60
との二つの部分からプローブ1が構成されているところ
が特徴である。探針60は被測定物20の凹凸検出を行
う。また、探針60の位置検出は光源52と受光素子1
12により行われる。探針60により被測定物20の被
測定部位に電気光学結晶62を近接させる。電気光学結
晶62は被測定部位の電位にしたがって電気光学効果を
生ずる。光源51からの光は電気光学結晶62の中を複
数回反射して偏光子7を介して受光素子111に到達す
る。すなわち、複数回の反射により一回の反射では測定
できない微細な変位を測定することができる。このた
め、高感度な電位測定を行うことができることが本発明
第六実施例の利点である。
Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a block diagram of a sixth embodiment device of the present invention. The sixth embodiment of the present invention is the electro-optic crystal 62 and the probe 60.
The feature is that the probe 1 is composed of two parts. The probe 60 detects unevenness of the measured object 20. The position of the probe 60 is detected by the light source 52 and the light receiving element 1.
12 performed. The electro-optic crystal 62 is brought close to the measurement site of the measurement object 20 by the probe 60. The electro-optic crystal 62 produces an electro-optic effect according to the potential of the measurement site. The light from the light source 51 is reflected in the electro-optic crystal 62 a plurality of times and reaches the light receiving element 111 via the polarizer 7. That is, it is possible to measure a fine displacement that cannot be measured by one reflection by a plurality of reflections. Therefore, it is an advantage of the sixth embodiment of the present invention that it is possible to perform highly sensitive potential measurement.

【0028】次に、本発明第七実施例を図7を参照して
説明する。図7は本発明第七実施例装置の構成図であ
る。本発明第七実施例では、図7(a)に示すように、
プローブ1に接地電極70を設けている。接地電極70
は図7(b)に示すように、中心に穴が形成されて光の
照射を妨げない形状である。これにより、被測定物20
の被測定電位の絶対値を測定することができる。本発明
第一〜第七実施例において光の反射部位はすべて鏡面ま
たはハーフミラーに加工されている。
Next, a seventh embodiment of the present invention will be described with reference to FIG. FIG. 7 is a block diagram of the seventh embodiment device of the present invention. In the seventh embodiment of the present invention, as shown in FIG.
A ground electrode 70 is provided on the probe 1. Ground electrode 70
As shown in FIG. 7 (b), it has a shape in which a hole is formed at the center and does not hinder the irradiation of light. As a result, the DUT 20
The absolute value of the measured potential of can be measured. In the first to seventh embodiments of the present invention, all light reflecting portions are processed into a mirror surface or a half mirror.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば高
い精度を持つ位置決め制御を行うことができる電気光学
計測装置が簡単な構成で実現できる。
As described above, according to the present invention, an electro-optical measuring device capable of highly accurate positioning control can be realized with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例装置の構成図。FIG. 1 is a configuration diagram of an apparatus according to a first embodiment of the present invention.

【図2】本発明第二実施例装置の構成図。FIG. 2 is a configuration diagram of a second embodiment device of the present invention.

【図3】本発明第三実施例装置の構成図。FIG. 3 is a configuration diagram of an apparatus according to a third embodiment of the present invention.

【図4】本発明第四実施例装置の構成図。FIG. 4 is a configuration diagram of a fourth embodiment device of the present invention.

【図5】本発明第五実施例装置の構成図。FIG. 5 is a configuration diagram of a fifth embodiment device of the present invention.

【図6】本発明第六実施例装置の構成図。FIG. 6 is a configuration diagram of a sixth embodiment device of the present invention.

【図7】本発明第七実施例装置の構成図。FIG. 7 is a configuration diagram of a seventh embodiment device of the present invention.

【図8】従来例装置の構成図。FIG. 8 is a configuration diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1 プローブ 2 プローブ位置検出回路 3 高さ調整部 4 プローブ位置制御回路 5、51、52 光源 6 プローブ位置操作部 7、71、72 偏光子 8 ピエゾ素子 9 波長板 10 カンチレバー 11、111、112 受光素子 12 電位測定器 20 被測定物 30 試験台 32 試験台位置操作部 60 探針 62 電気光学結晶 70 接地電極 a、b、c、d 受光部 1 probe 2 probe position detection circuit 3 height adjustment unit 4 probe position control circuit 5, 51, 52 light source 6 probe position operation unit 7, 71, 72 polarizer 8 piezo element 9 wave plate 10 cantilever 11, 111, 112 light receiving element 12 potential measuring device 20 object to be measured 30 test table 32 test table position operation unit 60 probe 62 electro-optic crystal 70 ground electrode a, b, c, d light receiving unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠原 征夫 東京都武蔵野市中町二丁目11番13号 株式 会社テラテック内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masao Kasahara 2-11-13 Nakamachi, Musashino-shi, Tokyo Inside Terratec Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一部が電気光学結晶により形
成され被測定物に近接させるプローブ(1)と、この電
気光学結晶に光を照射する第一の光源(51)と、この
第一の光源の前記電気光学結晶を通過した反射光からこ
の電気光学結晶の光学的変位量を検出する変位量検出手
段(111)と、この変位量検出手段の検出結果から前
記被測定物の電位を測定する手段(12)とを備えた電
気光学計測装置において、 前記プローブはカンチレバー(10)により支持され、 前記プローブに光を照射する第二の光源(52)と、 この第二の光源の前記プローブの反射光からこのプロー
ブの位置を検出する位置検出手段(112、2)と、 この位置検出手段の検出結果を入力として前記プローブ
の前記被測定物に対する位置を制御する手段(4、8)
とを備えたことを特徴とする電気光学計測装置。
1. A probe (1), at least a part of which is formed of an electro-optic crystal and is brought close to an object to be measured, a first light source (51) for irradiating the electro-optic crystal with light, and the first light source. The displacement amount detecting means (111) for detecting the optical displacement amount of the electro-optical crystal from the reflected light that has passed through the electro-optical crystal, and the potential of the measured object is measured from the detection result of the displacement amount detecting means. An electro-optical measuring device comprising means (12), the probe being supported by a cantilever (10), a second light source (52) for irradiating the probe with light, and a probe for the second light source. Position detecting means (112, 2) for detecting the position of the probe from the reflected light, and means (4) for controlling the position of the probe with respect to the object to be measured using the detection result of the position detecting means as an input. 8)
An electro-optical measuring device comprising:
【請求項2】 少なくとも一部が電気光学結晶により形
成され被測定物に近接させるプローブ(1)と、この電
気光学結晶に光を照射する第一の光源(51)と、この
第一の光源の前記電気光学結晶を通過した反射光からこ
の電気光学結晶の光学的変位量を検出する変位量検出手
段(111)と、この変位量検出手段の検出結果から前
記被測定物の電位を測定する手段(12)とを備えた電
気光学計測装置において、 前記プローブはカンチレバー(10)により支持され、 前記第一の光源の前記プローブの反射光からこのプロー
ブの位置を検出する位置検出手段(112、2)と、 この位置検出手段の検出結果を入力として前記プローブ
の前記被測定物に対する位置を制御する手段(4、8)
とを備えたことを特徴とする電気光学計測装置。
2. A probe (1) at least a part of which is formed of an electro-optic crystal and which is brought close to an object to be measured, a first light source (51) for irradiating the electro-optic crystal with light, and a first light source of the first light source. The displacement amount detecting means (111) for detecting the optical displacement amount of the electro-optical crystal from the reflected light that has passed through the electro-optical crystal, and the potential of the measured object is measured from the detection result of the displacement amount detecting means. An electro-optical measuring device comprising means (12), wherein the probe is supported by a cantilever (10), and position detecting means (112, for detecting the position of the probe from reflected light of the probe of the first light source). 2) and means (4, 8) for controlling the position of the probe with respect to the object to be measured by using the detection result of the position detecting means as an input.
An electro-optical measuring device comprising:
【請求項3】 前記カンチレバーには、前記電気光学結
晶に照射する光およびまたは前記反射光が通過する導波
路を設けた請求項1または2記載の電気光学計測装置。
3. The electro-optical measuring device according to claim 1, wherein the cantilever is provided with a waveguide through which the light irradiating the electro-optical crystal and / or the reflected light passes.
【請求項4】 前記プローブに電極を備え、この電極を
基準電位に接続する回路手段を備えた請求項1ないし3
いずれかに記載の電気光学計測装置。
4. The probe according to claim 1, further comprising an electrode, and circuit means for connecting the electrode to a reference potential.
The electro-optical measurement device according to any one of claims.
【請求項5】 少なくとも一部が電気光学結晶により形
成され被測定物に近接させるプローブ(1)と、この電
気光学結晶に光を照射する第一の光源(51)と、この
第一の光源の前記電気光学結晶を通過した反射光からこ
の電気光学結晶の光学的変位量を検出する変位量検出手
段(111)と、この変位量検出手段の検出結果から前
記被測定物の電位を測定する手段(12)とを備えた電
気光学計測装置において、 前記プローブは、カンチレバー(10)により支持さ
れ、被測定物に接する探針(60)およびその被測定物
に近接する電気光学結晶(62)を備え、 前記プローブの上面に光を照射する第二の光源(52)
と、 この第二の光源の前記プローブの反射光からこのプロー
ブの位置を検出する位置検出手段(112、2)と、 この位置検出手段の検出結果を入力として前記プローブ
の前記被測定物に対する位置を制御する手段(4、8)
とを備えたことを特徴とする電気光学計測装置。
5. A probe (1) at least a part of which is formed of an electro-optical crystal and is brought close to an object to be measured, a first light source (51) for irradiating the electro-optical crystal with light, and a first light source of the first light source (51). The displacement amount detecting means (111) for detecting the optical displacement amount of the electro-optical crystal from the reflected light that has passed through the electro-optical crystal, and the potential of the measured object is measured from the detection result of the displacement amount detecting means. An electro-optical measuring device comprising means (12), wherein the probe is supported by a cantilever (10) and is in contact with an object to be measured (60) and an electro-optical crystal (62) adjacent to the object to be measured. And a second light source (52) for irradiating the upper surface of the probe with light.
Position detecting means (112, 2) for detecting the position of the probe from the reflected light of the probe of the second light source, and the position of the probe with respect to the object to be measured with the detection result of the position detecting means as an input. Means for controlling (4, 8)
An electro-optical measuring device comprising:
JP5181687A 1993-04-13 1993-07-22 Electrooptical measuring apparatus Pending JPH0735827A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5181687A JPH0735827A (en) 1993-07-22 1993-07-22 Electrooptical measuring apparatus
PCT/JP1994/000611 WO1994024575A1 (en) 1993-04-13 1994-04-12 Electrooptic instrument
DE69434641T DE69434641T2 (en) 1993-04-13 1994-04-12 Electro-optical measuring instrument
EP94912091A EP0650067B1 (en) 1993-04-13 1994-04-12 Electrooptic instrument
US08/351,396 US5583446A (en) 1993-04-13 1994-04-12 Electro-optically controlled measurement probe system
EP04008313A EP1443337B1 (en) 1993-04-13 1994-04-12 Electro-optic measuring instrument
DE69433974T DE69433974T2 (en) 1993-04-13 1994-04-12 ELECTRO-OPTICAL INSTRUMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5181687A JPH0735827A (en) 1993-07-22 1993-07-22 Electrooptical measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0735827A true JPH0735827A (en) 1995-02-07

Family

ID=16105119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5181687A Pending JPH0735827A (en) 1993-04-13 1993-07-22 Electrooptical measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0735827A (en)

Similar Documents

Publication Publication Date Title
JPS63313075A (en) Mechanical type probe for optically measuring potential
JP3278460B2 (en) Electro-optical measuring device for measuring electric signals in electronic components
US5583446A (en) Electro-optically controlled measurement probe system
US6259244B1 (en) Electrooptic voltage waveform measuring method employing light sampling technique using Pockels effect
JP3776073B2 (en) Semiconductor carrier lifetime measurement method and apparatus
JP2607798B2 (en) Method and apparatus for measuring voltage signal of integrated circuit
JPH02134584A (en) Measurement of electrooptic signal
JPH0580083A (en) Method and apparatus for testing integrated circuit
JP2947288B2 (en) Semiconductor integrated circuit test apparatus and probe position control method for the apparatus
JP3139644B2 (en) Integrated circuit voltage signal measuring device
JPH0735827A (en) Electrooptical measuring apparatus
JP3154531B2 (en) Signal measurement device
Yi et al. A practical electro-optic sampler for characterization internal to GaAs ICs
JPH0886816A (en) Voltage measuring apparatus
JPH03167490A (en) Apparatus for testing mounted printed circuit board
JPH06102318A (en) Probe device
JP2837933B2 (en) Signal waveform detector
JP3201655B2 (en) Electric field measurement device
JP4565627B2 (en) Semiconductor film anisotropy measuring device
JP3192831B2 (en) Electric measurement device
JP3063369B2 (en) Magnetic field detector
JPH08233879A (en) Short pulse-generating device for measurement of reflection point, sampling device for measurement of reflection point and reflection point-measuring apparatus using these devices
JP2001050985A (en) Electrooptical probe
KR920000565B1 (en) Electro-optic measurements of voltage waveforms on electrical conductors
JP3192833B2 (en) Atomic force microscope