JPH0572134A - Optical wave guide type biosensor system - Google Patents

Optical wave guide type biosensor system

Info

Publication number
JPH0572134A
JPH0572134A JP26516591A JP26516591A JPH0572134A JP H0572134 A JPH0572134 A JP H0572134A JP 26516591 A JP26516591 A JP 26516591A JP 26516591 A JP26516591 A JP 26516591A JP H0572134 A JPH0572134 A JP H0572134A
Authority
JP
Japan
Prior art keywords
optical waveguide
thin film
wave guide
metal oxide
optical wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26516591A
Other languages
Japanese (ja)
Other versions
JP3016640B2 (en
Inventor
Akira Fujishima
昭 藤嶋
Kazuhito Hashimoto
和仁 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP3265165A priority Critical patent/JP3016640B2/en
Publication of JPH0572134A publication Critical patent/JPH0572134A/en
Application granted granted Critical
Publication of JP3016640B2 publication Critical patent/JP3016640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain a biosensor having high sensitivity by using the microorganism such as yeasts, as a molecular discriminating element and using the metal oxide which shows a photochromic reaction, as a transducer, and measuring the photochromism of the metal oxide by the optical wave guide method. CONSTITUTION:A planary optical wave guide 10 is formed on the surface of a glass substrate 1, and a WO3 thin film 2 is formed through evaporation on the wave guide 10, and is covered by a Teflon membrane filter 4 having a carrier 5 on which the baker's yeast fixed on the surface. When the yeast generates ethanol because of the existence of glucose, the degree of coloration of the thin film 2 changes according to the concentration of the ethanol. If the degree of coloration of the thin film 2 in contact with the optical wave guide 10 varies during the time when the laser beam 21 is transmitted from a grating 11 and outputted through the reflection on the wall surface of the optical wave guide 10, the light absorptivity lowers, and the intensity of the laser beam in passing varies. An optical sensor 22 measures this variation. Further, ultraviolet rays are irradiated onto the thin film 2 by an ultraviolet light source 7, and a photochromic reaction is generated efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バイオセンサに関す
る。より詳細には、感度および精度が高いグルコースセ
ンサとして動作するバイオセンサに関する。
FIELD OF THE INVENTION This invention relates to biosensors. More specifically, it relates to a biosensor that operates as a glucose sensor with high sensitivity and accuracy.

【0002】[0002]

【従来の技術】バイオセンサは、各種の生体物質の有す
る分子識別機能を利用して化学物質を測定する装置であ
る。一般に、バイオセンサは分子識別素子である生体物
質と、トランスデューサと呼ばれる物理化学デバイスと
を組み合わせて構成される。分子識別素子としては、酵
素、抗体、レセプタ、動物および植物細胞、微生物等が
使用される。一方、トランスデューサとしては、電極、
サーミスタ、化学発光、FET等が使用されている。
2. Description of the Related Art A biosensor is a device for measuring chemical substances by utilizing the molecular recognition function of various biological substances. Generally, a biosensor is configured by combining a biological substance that is a molecular identification element and a physicochemical device called a transducer. Enzymes, antibodies, receptors, animal and plant cells, microorganisms, etc. are used as the molecular identification element. On the other hand, as a transducer, electrodes,
Thermistors, chemiluminescence, FETs, etc. are used.

【0003】最初に開発されたバイオセンサは、酵素電
極型バイオセンサである。これは、分子識別素子として
酵素を用い、トランスデューサに電極を組み合わせたも
のである。その後、分子識別素子に上記の各種の生体物
質が使用された電極型バイオセンサが開発された。電極
型バイオセンサは、分子識別素子である生体の反応で消
費されたり、生成されたりする化学物質を電極で検知
し、電気信号に変換して測定する。
The first developed biosensor is an enzyme electrode type biosensor. This uses an enzyme as a molecular identification element and combines an electrode with a transducer. After that, an electrode-type biosensor was developed in which the above-mentioned various biological substances were used for the molecular identification element. The electrode-type biosensor detects chemical substances that are consumed or generated by the reaction of the living body, which is a molecular identification element, at the electrodes and converts them into electric signals for measurement.

【0004】一方、生化学反応や化学反応に伴う発光を
もとに、化学物質の測定を行うバイオセンサとして、フ
ォトバイオセンサがある。具体的には、ルミノールと過
酸化水素の混液に金属錯体や金属酵素を添加した場合に
起こるルミノールの発光を、トランスデューサに利用し
たものがある。この場合、分子識別素子には酸化還元酵
素を使用し、生成する過酸化水素により起こる上記の発
光を測定する。このようなフォトバイオセンサは、電極
型バイオセンサよりも高い感度で化学物質を測定するこ
とが可能である。
On the other hand, there is a photobiosensor as a biosensor for measuring a chemical substance based on a biochemical reaction or light emission accompanying the chemical reaction. Specifically, there is a transducer that utilizes the emission of luminol that occurs when a metal complex or a metal enzyme is added to a mixed liquid of luminol and hydrogen peroxide. In this case, an oxidoreductase is used as the molecular identification element, and the above-mentioned luminescence caused by the produced hydrogen peroxide is measured. Such a photo biosensor can measure a chemical substance with higher sensitivity than an electrode type biosensor.

【0005】[0005]

【発明が解決しようとする課題】上記のバイオセンサ
は、主にトランスデューサの性能により、その性能の限
界が決まってしまっていた。即ち、トランスデューサの
検出能、感度、精度を向上させるとバイオセンサそのも
のの性能を向上させることができる。そこで、本発明の
目的は、新規なトランスデューサを使用した高感度なバ
イオセンサシステムを提供することにある。
In the above biosensor, the performance limit is determined mainly by the performance of the transducer. That is, the performance of the biosensor itself can be improved by improving the detectability, sensitivity, and accuracy of the transducer. Therefore, it is an object of the present invention to provide a highly sensitive biosensor system using a novel transducer.

【0006】[0006]

【課題を解決するための手段】本発明に従うと、表面に
光導波路を有する透明誘電体基板と、該透明誘電体基板
の該光導波路の上に配置されたフォトクロミック反応を
示す金属酸化物の薄膜と、該金属酸化物薄膜の表面を被
覆する疏水性且つ気体透過性のフィルタと、該フィルタ
上に配置されたグルコースの存在によりエタノールを発
生する微生物を固定化した担体と、前記金属酸化物薄膜
に光を照射する光源と、前記光導波路を進行するレーザ
光の光源と、前記光導波路を透過したレーザ光の強度を
測定するセンサとを具備することを特徴とする光導波路
型バイオセンサが提供される。
According to the present invention, a transparent dielectric substrate having an optical waveguide on its surface, and a metal oxide thin film disposed on the optical waveguide of the transparent dielectric substrate and exhibiting a photochromic reaction. A hydrophobic and gas-permeable filter that covers the surface of the metal oxide thin film, a carrier on which a microorganism that produces ethanol due to the presence of glucose is immobilized, and the metal oxide thin film An optical waveguide type biosensor comprising: a light source for irradiating the optical waveguide, a light source for laser light traveling through the optical waveguide, and a sensor for measuring the intensity of the laser light transmitted through the optical waveguide. To be done.

【0007】[0007]

【作用】本発明の光導波路型バイオセンサは、分子識別
素子に例えば酵母のようなグルコースからエタノールを
合成する微生物を使用し、トランスデューサに、例えば
WO3 、MoO3 のようなフォトクロミック反応を示す金
属酸化物を使用している。また、トランスデューサの金
属酸化物のフォトクロミズムをレーザ光を使用した、い
わゆる光導波路法で測定する。
In the optical waveguide type biosensor of the present invention, a microorganism that synthesizes ethanol from glucose such as yeast is used as a molecular identification element, and a metal showing a photochromic reaction such as WO 3 and MoO 3 is used as a transducer. Uses oxides. Further, the photochromism of the metal oxide of the transducer is measured by a so-called optical waveguide method using laser light.

【0008】フォトクロミック反応とは、WO3 、MoO
3 等の金属酸化物に光(特に紫外光)を照射すると着色
する現象である。この着色の程度はエタノールのような
還元性の物質と接触した場合に、この還元性の物質の濃
度に依存して変化する。本発明の光導波路型バイオセン
サは、この現象をトランスデューサに使用している。本
発明の光導波路型バイオセンサでは、上記の金属酸化物
のフォトクロッミック反応による着色の程度を光導波路
法で測定する。具体的には、光導波路にモニタ用のレー
ザ光を導入し、このレーザ光の光導波路を透過した後の
強度を測定する。光導波路を進行するレーザ光は、光導
波路の壁面で反射しながら進行するので、光導波路に接
している上記の金属酸化物の薄膜の着色の度合が増すと
吸光度が低下して、光導波路を透過したレーザ光の強度
は変化する。このレーザ光の変化により上記の金属酸化
物の薄膜の着色の程度を測定する。
The photochromic reaction means WO 3 , MoO
This is a phenomenon in which metal oxides such as 3 are colored when irradiated with light (especially ultraviolet light). The degree of this coloring changes depending on the concentration of the reducing substance when it comes into contact with the reducing substance such as ethanol. The optical waveguide type biosensor of the present invention uses this phenomenon for the transducer. In the optical waveguide type biosensor of the present invention, the degree of coloring of the above metal oxide due to the photochromic reaction is measured by the optical waveguide method. Specifically, laser light for monitoring is introduced into the optical waveguide, and the intensity of the laser light after passing through the optical waveguide is measured. Since the laser light that travels through the optical waveguide travels while being reflected by the wall surface of the optical waveguide, the absorbance decreases when the degree of coloring of the above-mentioned metal oxide thin film in contact with the optical waveguide increases, and the optical waveguide The intensity of the transmitted laser light changes. The degree of coloring of the metal oxide thin film is measured by the change in the laser light.

【0009】上述のように、上記の金属酸化物の薄膜の
着色の程度は、接触するエタノールの濃度に依存する。
従って、この金属酸化物の薄膜上に酵母のようなグルコ
ースからエタノールを合成する微生物を固定化した担体
を配置することにより、本発明の光導波路型バイオセン
サが構成される。本発明の光導波路型バイオセンサで
は、電極型バイオセンサのように電極の設置が不要なの
で、電場が測定対象等に悪影響を与えることがない。ま
た、通常の吸光分光法に較べて光路を長くすることがで
きるので感度が高く、さらに応答も速い。従って、いわ
ゆるin-situ 測定が可能である。
As described above, the degree of coloring of the above-mentioned metal oxide thin film depends on the concentration of ethanol which comes into contact with the thin film.
Therefore, the optical waveguide type biosensor of the present invention is constructed by disposing a carrier on which a microorganism such as yeast that synthesizes ethanol from glucose is immobilized on this thin film of metal oxide. In the optical waveguide type biosensor of the present invention, unlike the electrode type biosensor, it is not necessary to install electrodes, so that the electric field does not adversely affect the measurement target or the like. Further, since the optical path can be lengthened as compared with the usual absorption spectroscopy, the sensitivity is high and the response is fast. Therefore, so-called in-situ measurement is possible.

【0010】本発明の光導波路型バイオセンサの光導波
路は、平面光導波路であることが好ましい。具体的に
は、透明誘電体基板の表面に局部的に金属イオンを拡散
させて屈折率を大きくすることで形成される平面光導波
路が使用できる。このように平面光導波路が表面に形成
された透明誘電体基板上に上記のフォトクロミック反応
を示す金属酸化物の薄膜を配置する。上記の平面光導波
路に測定用のレーザ光を誘導するには、一端からレーザ
光が入射される光ファイバを該平面光導波路の端部に接
続してもよいが、該平面光導波路の端部近傍の表面の上
記金属酸化物の薄膜が配置されていない部分にグレーテ
ィングを形成し、このグレーティングから平面光導波路
にレーザ光を導入することが好ましい。また、平面光導
波路から出射するレーザ光も同様にグレーティングを使
用して誘導することができる。上記の構成によれば、光
導波路型バイオセンサの配置の自由度が高く、また、光
ファイバと平面光導波路を接続するという面倒な作業を
省略できる。ただし、光ファイバを使用すると、レーザ
光源から、より安定に測定用レーザ光を平面光導波路に
誘導することができる。
The optical waveguide of the optical waveguide type biosensor of the present invention is preferably a planar optical waveguide. Specifically, a planar optical waveguide formed by locally diffusing metal ions on the surface of the transparent dielectric substrate to increase the refractive index can be used. A thin film of a metal oxide exhibiting the above photochromic reaction is arranged on the transparent dielectric substrate having the planar optical waveguide formed on the surface thereof. In order to guide the laser light for measurement to the above-mentioned planar optical waveguide, an optical fiber into which the laser light is incident may be connected from one end to the end portion of the planar optical waveguide. It is preferable that a grating is formed on a portion of the surface near which the thin film of the metal oxide is not arranged, and the laser light is introduced from the grating to the planar optical waveguide. Further, the laser light emitted from the planar optical waveguide can be similarly guided by using a grating. According to the above configuration, the degree of freedom in arranging the optical waveguide type biosensor is high, and the troublesome work of connecting the optical fiber and the planar optical waveguide can be omitted. However, when an optical fiber is used, the laser light for measurement can be more stably guided from the laser light source to the planar optical waveguide.

【0011】本発明の光導波路型バイオセンサでは、上
記のフォトクロミック反応を示す金属酸化物表面を疏水
性且つ気体透過性のフィルタで被覆する。これは、本発
明の光導波路型バイオセンサが測定対象とする系が水を
伴う系であることが想定され、また、上記の金属酸化物
のフォトクロミック反応による着色が水の影響を受けた
り、上記の金属酸化物が水に溶解することがあるからで
ある。上記のフィルタには、具体的には、ガス透過性の
フッ素樹脂(例えばデュポン社のテフロンの商品名で市
販されている樹脂またはFEP等の樹脂)フィルム、ス
テアリン酸等親水基と疏水基とを有する分子の膜、液膜
の系、LB膜、液晶等が使用できる。
In the optical waveguide type biosensor of the present invention, the surface of the metal oxide exhibiting the above photochromic reaction is covered with a filter having hydrophobicity and gas permeability. It is assumed that the system to be measured by the optical waveguide type biosensor of the present invention is a system involving water, and the coloring due to the photochromic reaction of the metal oxide is affected by water, or This is because the metal oxide of 1 may dissolve in water. Specifically, the above-described filter includes a gas-permeable fluororesin (for example, a resin commercially available under the trade name of Teflon manufactured by DuPont or a resin such as FEP) film, a hydrophilic group such as stearic acid, and a hydrophobic group. A molecule film, a liquid film system, an LB film, a liquid crystal or the like can be used.

【0012】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0013】[0013]

【実施例】図1に、本発明の光導波路型バイオセンサの
一例の断面図を示す。 図1のバイオセンサは、ガラス
基板1と、ガラス基板1の表面にK(カリウム)イオン
およびCs(セシウム)イオンが拡散されて形成された平
面光導波路10と、ガラス基板1の表面の平面光導波路10
の上に蒸着により形成されたWO3 薄膜2とを具備す
る。WO3 薄膜2は、表面にパン酵母が固定された担体
5を備えるテフロンメンブランフィルタ4で被覆されて
いる。本実施例では、ミリポア社製のテフロンメンブラ
ンフィルタを使用した。
EXAMPLE FIG. 1 is a sectional view showing an example of an optical waveguide type biosensor of the present invention. The biosensor of FIG. 1 includes a glass substrate 1, a planar optical waveguide 10 formed by diffusing K (potassium) ions and Cs (cesium) ions on the surface of the glass substrate 1, and a planar optical waveguide on the surface of the glass substrate 1. Waveguide 10
And a WO 3 thin film 2 formed by vapor deposition. The WO 3 thin film 2 is covered with a Teflon membrane filter 4 provided with a carrier 5 having baker's yeast immobilized on the surface. In this example, a Teflon membrane filter manufactured by Millipore was used.

【0014】ガラス基板1表面の平面光導波路10の両端
付近にはグレーティング11および12が形成されており、
レーザ装置20の発するレーザ光21は、グレーティング11
から平面光導波路10に導入され、グレーティング12から
出射して光センサ22に到達する。光センサ22は、平面光
導波路10を透過したレーザ光の強度を測定する。さら
に、ガラス基板1の下方には紫外光源7が配置され、ガ
ラス基板1を通してWO3 薄膜2に紫外光を照射し、W
3 にフォトクロミック反応を起こさせる。WO3 に紫
外光を照射するのは、フォトクロミック反応が効率よく
起こるからであり、多少効率は低下するが可視光を照射
してもよい。具体的には、紫外光源7には、水銀等、キ
セノンランプ等を使用することが好ましい。
Gratings 11 and 12 are formed near both ends of the planar optical waveguide 10 on the surface of the glass substrate 1,
The laser light 21 emitted from the laser device 20 is generated by the grating 11
Is introduced into the planar optical waveguide 10 from, and is emitted from the grating 12 to reach the optical sensor 22. The optical sensor 22 measures the intensity of the laser light transmitted through the planar optical waveguide 10. Further, an ultraviolet light source 7 is arranged below the glass substrate 1, and the WO 3 thin film 2 is irradiated with ultraviolet light through the glass substrate 1,
Causes a photochromic reaction in O 3 . The WO 3 is irradiated with ultraviolet light because the photochromic reaction occurs efficiently, and visible light may be irradiated although the efficiency is somewhat lowered. Specifically, it is preferable to use mercury or a xenon lamp as the ultraviolet light source 7.

【0015】図2に上記本発明の光導波路型バイオセン
サを使用して、グルコースの濃度の測定を行う場合の配
置を示す。図2に示すよう、上記の光導波路型バイオセ
ンサのパン酵母が固定された担体5を備えるテフロンメ
ンブランフィルタ4の部分が底部となるセル8を用意
し、セル8内に濃度を測定するグルコースの水溶液9を
入れ、WO3 薄膜2の着色の程度を平面光導波路10を透
過するレーザ光の吸光度で測定する。
FIG. 2 shows an arrangement when the glucose concentration is measured using the optical waveguide type biosensor of the present invention. As shown in FIG. 2, a cell 8 whose bottom is the Teflon membrane filter 4 provided with the carrier 5 to which the baker's yeast of the above-mentioned optical waveguide type biosensor is fixed is prepared, and glucose in the cell 8 for measuring the concentration is prepared. Aqueous solution 9 is put in, and the degree of coloring of WO 3 thin film 2 is measured by the absorbance of laser light transmitted through flat optical waveguide 10.

【0016】図3に光導波路を使用しないで通常の吸光
度測定で、グルコースの濃度に対するWO3 薄膜のフォ
トクロミック反応による着色の度合を測定した結果を示
す。測定用のレーザには、波長 632nmのHe−Neレーザを
使用し、WO3 には波長300〜400nm の紫外光を照射し
た。図3から明らかなように、WO3 薄膜の着色による
レーザの吸光度はグルコースの濃度に対応している。
FIG. 3 shows the result of measurement of the degree of coloring due to the photochromic reaction of the WO 3 thin film with respect to the concentration of glucose by the ordinary absorbance measurement without using an optical waveguide. A He-Ne laser having a wavelength of 632 nm was used as a laser for measurement, and WO 3 was irradiated with ultraviolet light having a wavelength of 300 to 400 nm. As is clear from FIG. 3, the absorbance of the laser due to the coloring of the WO 3 thin film corresponds to the glucose concentration.

【0017】光導波路を使用すると、測定用レーザ光の
光路が長いので吸光度測定の感度が数百〜千倍に増すこ
とがわかっている。従って、図3の測定結果より外挿す
ると、本発明の光導波路型バイオセンサは1ppm の感度
を有する。本発明の光導波路型バイオセンサは、測定用
のレーザ光の光路が長く、感度が高いのでグルコースの
濃度が変化する系においても、in-situ の測定が可能で
ある。
It has been known that the use of the optical waveguide increases the sensitivity of the absorbance measurement several hundred to 1,000 times because the optical path of the measuring laser beam is long. Therefore, extrapolated from the measurement results of FIG. 3, the optical waveguide type biosensor of the present invention has a sensitivity of 1 ppm. Since the optical waveguide type biosensor of the present invention has a long optical path of laser light for measurement and high sensitivity, it can perform in-situ measurement even in a system in which glucose concentration changes.

【0018】[0018]

【発明の効果】以上のように本発明の光導波路型バイオ
センサは、バイオセンサ固有の特徴である検知物質に対
する選択性が高いだけでなく、感度および精度が高く、
速やかに測定を行うことができる。また、配置の自由度
も高く、電極型バイオセンサと異なり測定対象の系に何
ら影響を与えない。従って、特にin-situ 測定に使用す
ることが効果的である。
INDUSTRIAL APPLICABILITY As described above, the optical waveguide type biosensor of the present invention has high sensitivity and accuracy as well as high selectivity for a sensing substance which is a characteristic of the biosensor.
The measurement can be performed quickly. Further, the degree of freedom of arrangement is high, and unlike the electrode type biosensor, it does not affect the system to be measured at all. Therefore, it is particularly effective to use for in-situ measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光導波路型バイオセンサの一例の断面
図である。
FIG. 1 is a sectional view of an example of an optical waveguide type biosensor of the present invention.

【図2】図1の光導波路型バイオセンサを使用してグル
コースの濃度測定を行う場合の説明図である。
FIG. 2 is an explanatory diagram of a case where glucose concentration is measured using the optical waveguide type biosensor of FIG.

【図3】バイオセンサによるグルコースの濃度測定の結
果を示すグラフである。
FIG. 3 is a graph showing the results of glucose concentration measurement by a biosensor.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 WO3 薄膜 4 テフロンメンブランフィルタ 5 担体 10 平面光導波路 11、12 グレーティング1 Glass Substrate 2 WO 3 Thin Film 4 Teflon Membrane Filter 5 Carrier 10 Planar Optical Waveguide 11, 12 Grating

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12Q 1/54 6807−4B G01J 1/02 K 7381−2G G01N 21/31 Z 7370−2J Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C12Q 1/54 6807-4B G01J 1/02 K 7381-2G G01N 21/31 Z 7370-2J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に光導波路を有する透明誘電体基板
と、該透明誘電体基板の該光導波路の上に配置されたフ
ォトクロミック反応を示す金属酸化物の薄膜と、該金属
酸化物薄膜の表面を被覆する疏水性且つ気体透過性のフ
ィルタと、該フィルタ上に配置されたグルコースの存在
によりエタノールを発生する微生物を固定化した担体
と、前記金属酸化物薄膜に光を照射する光源と、前記光
導波路を進行するレーザ光の光源と、前記光導波路を透
過したレーザ光の強度を測定するセンサとを具備するこ
とを特徴とする光導波路型バイオセンサ。
1. A transparent dielectric substrate having an optical waveguide on its surface, a thin film of a metal oxide showing a photochromic reaction disposed on the optical waveguide of the transparent dielectric substrate, and a surface of the thin film of the metal oxide. A hydrophobic and gas-permeable filter that coats the carrier, a carrier on which microorganisms that generate ethanol due to the presence of glucose are immobilized on the filter, a light source that irradiates the metal oxide thin film with light, and An optical waveguide type biosensor, comprising: a light source of laser light traveling through the optical waveguide; and a sensor for measuring the intensity of the laser light transmitted through the optical waveguide.
JP3265165A 1991-09-17 1991-09-17 Optical waveguide type biosensor Expired - Fee Related JP3016640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265165A JP3016640B2 (en) 1991-09-17 1991-09-17 Optical waveguide type biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265165A JP3016640B2 (en) 1991-09-17 1991-09-17 Optical waveguide type biosensor

Publications (2)

Publication Number Publication Date
JPH0572134A true JPH0572134A (en) 1993-03-23
JP3016640B2 JP3016640B2 (en) 2000-03-06

Family

ID=17413510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265165A Expired - Fee Related JP3016640B2 (en) 1991-09-17 1991-09-17 Optical waveguide type biosensor

Country Status (1)

Country Link
JP (1) JP3016640B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110300A (en) * 1994-10-07 1996-04-30 Agency Of Ind Science & Technol Dew point measuring instrument utilizing slab light waveguide
WO2000045139A1 (en) * 1999-01-26 2000-08-03 Consiglio Nazionale Delle Ricerche Fiber optic sensor with photochromic transducer, and corresponding method
JP2012055257A (en) * 2010-09-10 2012-03-22 Toshiba Corp Test element, test kit, test device, and test method
US20150198479A1 (en) * 2014-01-15 2015-07-16 Samsung Electronics Co., Ltd. Optical sensor and electronic device with the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110300A (en) * 1994-10-07 1996-04-30 Agency Of Ind Science & Technol Dew point measuring instrument utilizing slab light waveguide
WO2000045139A1 (en) * 1999-01-26 2000-08-03 Consiglio Nazionale Delle Ricerche Fiber optic sensor with photochromic transducer, and corresponding method
US6567158B1 (en) 1999-01-26 2003-05-20 Consiglio Nazionale Delle Ricerche Fiber optic sensor with photochromic transducer, and corresponding method
JP2012055257A (en) * 2010-09-10 2012-03-22 Toshiba Corp Test element, test kit, test device, and test method
CN102435600A (en) * 2010-09-10 2012-05-02 株式会社东芝 Test element, test kit, test device, and test method
CN102435600B (en) * 2010-09-10 2015-02-25 株式会社东芝 Test element, test kit, test device, and test method
US20150198479A1 (en) * 2014-01-15 2015-07-16 Samsung Electronics Co., Ltd. Optical sensor and electronic device with the same
US9739657B2 (en) * 2014-01-15 2017-08-22 Samsung Electronics Co., Ltd. Optical sensor and electronic device with the same

Also Published As

Publication number Publication date
JP3016640B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US6710870B1 (en) Method and device for measuring luminescence
Mehrvar et al. Fiber-optic biosensors-trends and advances
US6020207A (en) Optical analysis technique and sensors for use therein
US6903815B2 (en) Optical waveguide sensor, device, system and method for glucose measurement
JP4231051B2 (en) Method for measuring the concentration of a substance to be measured, kit for measuring the concentration of a substance to be measured, and sensor chip
Díaz et al. Sol-gel cholinesterase biosensor for organophosphorus pesticide fluorimetric analysis
JPH06507708A (en) Analysis method
JP5238171B2 (en) Optical waveguide antibody chip
Tao et al. Optical-fiber sensor using tailored porous sol-gel fiber core
Walters et al. Fiber-optic biosensor for ethanol, based on an internal enzyme concept
US20080094624A1 (en) Optical sensor with biologically reactive surface
EP1500930A1 (en) Method of measuring formaldehyde concentration of gas and measuring instrument
EP0645007B1 (en) Sensor for optical assay
Schaffar et al. Chemically mediated fiberoptic biosensors
JPH0772084A (en) Fluorescent indicator that measures activity of alkaline metal ion in sample solution
JP3016640B2 (en) Optical waveguide type biosensor
JP4406702B2 (en) Formaldehyde detection method and detection apparatus
JPH01263537A (en) Fiber-shaped sensor and evaluating device thereof
JP3016641B2 (en) Biosensor system
JP3730652B2 (en) Optical waveguide type glucose sensor
JPH08145879A (en) Determination method and device for hydrogen peroxide
Abdel-Latif et al. Fiber optic-based biosensors utilizing immobilized enzyme systems
JP2003279479A (en) Optical waveguide type glucose sensor and optical waveguide type glucose measurement method
CA2259275A1 (en) Device for measuring the partial pressure of gases dissolved in liquids
JP2838333B2 (en) Glucose concentration measuring device and glucose concentration measuring method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees