JPH0571807B2 - - Google Patents

Info

Publication number
JPH0571807B2
JPH0571807B2 JP1250466A JP25046689A JPH0571807B2 JP H0571807 B2 JPH0571807 B2 JP H0571807B2 JP 1250466 A JP1250466 A JP 1250466A JP 25046689 A JP25046689 A JP 25046689A JP H0571807 B2 JPH0571807 B2 JP H0571807B2
Authority
JP
Japan
Prior art keywords
bearing
column
spherical
spherical roller
annular portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1250466A
Other languages
Japanese (ja)
Other versions
JPH03144110A (en
Inventor
Nozomi Morinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP1250466A priority Critical patent/JPH03144110A/en
Publication of JPH03144110A publication Critical patent/JPH03144110A/en
Publication of JPH0571807B2 publication Critical patent/JPH0571807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】 この発明は保持器の柱の側面が球面ころと面接
触し、保持器と球面ころとの接触面圧が低い複列
自動調心ころ軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a double-row self-aligning roller bearing in which the side surfaces of the pillars of the cage are in surface contact with the spherical rollers, and the contact surface pressure between the cage and the spherical rollers is low.

従来の複列自動調心ころ軸受は第1図ないし第
3図に示すように、外輪1と内輪2との間に金属
製の一対の保持器3を配設し、この保持器3は軸
受内側の環状部4と軸受外側の環状部5とが柱6
によつて連結されて一体である。前記保持器3の
ポケツト11に球面ころ12を配設し、前記ポケ
ツト11を形成する柱の側面13は、軸受の軸心
と球面ころの軸心14とを含む平面15に対して
直角な平面であつて球面ころの軸心14を含んで
いる平面16より軸受内側に、球面ころの転動面
17に則した曲率の円弧を軸方向および半径方向
に有する凹曲面18を有している。前記柱の側面
13は、軸受の軸心と球面ころの軸心14とを含
む平面15に対して直角な平面であつて球面ころ
の軸心14を含んでいる平面16より軸受外側
に、半円筒状の円筒面19を有している。
As shown in FIGS. 1 to 3, a conventional double-row self-aligning roller bearing has a pair of metal cages 3 disposed between an outer ring 1 and an inner ring 2, and this cage 3 The inner annular portion 4 and the outer annular portion 5 of the bearing form a pillar 6.
They are connected as one body. A spherical roller 12 is disposed in a pocket 11 of the cage 3, and a side surface 13 of a column forming the pocket 11 is a plane perpendicular to a plane 15 including the axis of the bearing and the axis 14 of the spherical roller. A concave curved surface 18 having an arc of curvature in accordance with the rolling surface 17 of the spherical roller in the axial and radial directions is provided inside the bearing from the plane 16 that includes the axis 14 of the spherical roller. The side surface 13 of the pillar is a plane that is perpendicular to a plane 15 that includes the axial center of the bearing and the axial center 14 of the spherical rollers, and is located on the outside of the bearing from a plane 16 that includes the axial center 14 of the spherical rollers. It has a cylindrical surface 19.

従つて、円筒面19は球面ころ12と面接触で
ははく線接触するので球面ころ12にスキユーが
生じやすく、また柱の側面13と球面ころ12と
の接触面積が少なく、柱の側面13と球面ころ1
2との接触面圧が高いので柱6に摩耗が多い。ま
た、柱の外周面21と隣りの柱の外周面21との
間隔Aは球面ころ12の対応する個所の直径より
大きいので柱の外周面21の円周方向の巾寸法が
短かく、柱6の剛性が弱い。さらに、ポケツト1
1内に配設した球面ころ12は軸受の組立時に円
筒面19を通つてポケツト11内から脱落するの
で軸受の組立が困難であり、また軸受の組立の自
動化が困難である。
Therefore, since the cylindrical surface 19 makes surface contact with the spherical roller 12, skew is likely to occur in the spherical roller 12, and the contact area between the side surface 13 of the column and the spherical roller 12 is small, so that the side surface 13 of the column and Spherical roller 1
Since the contact surface pressure with column 2 is high, there is a lot of wear on column 6. Furthermore, since the distance A between the outer circumferential surface 21 of the column and the outer circumferential surface 21 of the adjacent column is larger than the diameter of the corresponding portion of the spherical roller 12, the width dimension in the circumferential direction of the outer circumferential surface 21 of the column is short, and the column 6 The rigidity is weak. In addition, pocket 1
Since the spherical rollers 12 disposed in the bearing 1 fall out of the pocket 11 through the cylindrical surface 19 during bearing assembly, it is difficult to assemble the bearing, and it is also difficult to automate the assembly of the bearing.

また、米国特許第4345800号明細書には複列自
動調心ころ軸受の合成樹脂製の保持器を射出成形
によつて製造することが記載され、この保持器は
軸受内側の環状部と軸受外側の環状部とが複数の
柱によつて連結されて一体である。前記隣り合う
二つの柱の間のポケツト内に位置する半径方向外
方の型とこの半径方向外方の型に隣接する半径方
向内方の型とをそれぞれ軸方向に逆方向に抜いて
ポケツトを成形している。従つて、軸受外側の環
状部と柱の側面との接続個所の半径方向外方端
は、軸受内側の環状部と柱の側面との接続個所の
半径方向内方端よりも半径方向内方に位置する。
Further, U.S. Patent No. 4,345,800 describes that a synthetic resin cage for a double-row self-aligning roller bearing is manufactured by injection molding. The annular part is connected by a plurality of pillars and is integrated. The radially outer mold located in the pocket between the two adjacent pillars and the radially inner mold adjacent to the radially outer mold are removed in opposite directions in the axial direction to form the pocket. It is molded. Therefore, the radially outer end of the connection between the outer annular portion of the bearing and the side surface of the column is located radially inward than the radially inner end of the connection between the inner annular portion of the bearing and the side surface of the column. To position.

従つて、型を用いた製作上の問題から軸受外側
の環状部及び軸受内側の環状部はいずれも半径方
向の幅寸法を長くとることができないので軸受外
側の環状部と軸受内側の環状部とに接続する柱は
半径方向の幅寸法が制限されていた。それゆえ
に、柱の剛性が弱く、また柱の側面と球面ころと
の接触面積が少ないので球面ころのスキユーや柱
の摩耗の問題が存在していた。
Therefore, due to manufacturing problems using molds, it is not possible to increase the radial width of both the annular part on the outer side of the bearing and the annular part on the inner side of the bearing. The columns connected to the radial width were limited. Therefore, the rigidity of the column is low, and the contact area between the side surface of the column and the spherical rollers is small, causing problems such as skew of the spherical rollers and wear of the column.

この発明は球面ころがスキユーしにくく、保持
器の摩耗が少なく、柱の剛性が強く、かつ軸受の
組立が容易な複列自動調心ころ軸受を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a double-row self-aligning roller bearing in which the spherical rollers are less likely to skew, the retainer has less wear, the pillars have strong rigidity, and the bearing is easy to assemble.

次にこの発明の実施例を図面に基いて説明す
る。第4図において、外輪31は球面の外輪軌道
32を有し、また外輪31の内方に配設した内輪
33は内輪軌道34を二列有している。前記外輪
31と内輪33との間に合成樹脂製の一対の保持
器41を配設し、この保持器41は第5図に示す
ように軸受内側の環状部42と軸受外側の環状部
43とが複数の柱44によつて連結されて一体で
ある。前記隣り合う二つの柱44の間のポケツト
45に球面ころ47を配設し、またポケツト45
を形成する柱の側面51は柱の側面51の軸方向
中心に対して軸方向の両側の個所が、第6図に示
すように軸受の軸心と球面ころの軸心52とを含
む平面53に対して直角な平面であつて球面ころ
の軸心52を含んでいる平面54より軸受内側と
軸受外側とに、球面ころの転動面55に則した曲
率の円弧を軸方向および半径方向に有する凹曲面
57,58をそれぞれ有している。即ち、凹曲面
57,58は球面ころの軸心52を含んでいる平
面54による断面が円弧であり、また凹曲面5
7,58は球面ころの軸心52と直角方向の平面
による断面が円弧である。前記柱の側面51と球
面ころ47とは面接触するので柱の側面51と球
面ころ47との接触面積が多く、柱の側面51と
球面ころ47との接触面圧が低いので柱44の摩
耗が少ない。前記保持器41は柱の外周面61と
隣りの柱の外周面61との間隔Bが球面ころ47
の対応する個所の直径より短かい部分と柱の内周
面62と隣りの柱の内周面62との間隔Cが球面
ころ47の対応する個所の直径より短かい部分と
をそれぞれ有する。従つて、柱の外周面61の円
周方向の巾寸法および柱の内周面62の円周方向
の巾寸法はいずれも長いので柱44の剛性が強
い。また、球面ころ47はポケツト45内からの
脱落を防止されているので軸受の組立および軸受
の組立の自動化が容易である。前記軸受外側の環
状部43と柱の側面51との接続個所の半径方向
外方端94は、軸受内側の環状部42と柱の側面
51との接続個所の半径方向外方端95より半径
方向内方に位置すると共に軸受内側の環状部42
と柱の側面51との接続個所の半径方向内方端9
6より半径方向外方に位置する。また、軸受外側
の環状部43と柱の側面51との接続個所の半径
方向内方端97は、軸受内側の環状部42と柱の
側面51との接続個所の半径方向内方端96より
半径方向内方に位置する。従つて、軸受外側の環
状部43と軸受内側の環状部42との少なくとも
一方は半径方向の幅寸法が長いので軸受外側の環
状部43と軸受内側の環状部42とに接続する柱
44は半径方向の幅寸法が長い。それゆえに、柱
44の剛性が強く、また柱の側面51と球面この
47との接触面積が多いので球面ころ47にスキ
ユーが生じにくいと共に柱44の摩耗が少ない。
Next, embodiments of the present invention will be described based on the drawings. In FIG. 4, an outer ring 31 has a spherical outer ring raceway 32, and an inner ring 33 disposed inside the outer ring 31 has two rows of inner ring races 34. A pair of cages 41 made of synthetic resin are disposed between the outer ring 31 and the inner ring 33, and as shown in FIG. are integrally connected by a plurality of pillars 44. A spherical roller 47 is disposed in a pocket 45 between the two adjacent pillars 44, and the pocket 45
The side surface 51 of the column forming the column has a plane 53 on both sides in the axial direction with respect to the axial center of the side surface 51 of the column, which includes the axis of the bearing and the axis 52 of the spherical roller, as shown in FIG. A circular arc with a curvature that conforms to the rolling surface 55 of the spherical roller is formed in the axial and radial directions on the inside and outside of the bearing from a plane 54 that is perpendicular to the plane and includes the axis 52 of the spherical roller. They have concave curved surfaces 57 and 58, respectively. That is, the concave curved surfaces 57 and 58 have a circular arc cross section taken by the plane 54 that includes the axis 52 of the spherical roller, and the concave curved surfaces 5
7 and 58 have circular arc cross sections along planes perpendicular to the axis 52 of the spherical rollers. Since the side surface 51 of the column and the spherical rollers 47 are in surface contact, the contact area between the side surface 51 of the column and the spherical rollers 47 is large, and the contact surface pressure between the side surface 51 of the column and the spherical rollers 47 is low, which reduces the wear of the column 44. Less is. In the retainer 41, the distance B between the outer circumferential surface 61 of a column and the outer circumferential surface 61 of an adjacent column is spherical roller 47.
and a portion where the distance C between the inner peripheral surface 62 of the column and the inner circumferential surface 62 of the adjacent column is shorter than the diameter of the corresponding portion of the spherical roller 47. Therefore, the rigidity of the column 44 is strong because both the width dimension in the circumferential direction of the outer peripheral surface 61 of the column and the width dimension in the circumferential direction of the inner circumferential surface 62 of the column are long. Furthermore, since the spherical rollers 47 are prevented from falling out of the pocket 45, assembly of the bearing and automation of the assembly of the bearing are facilitated. The radially outer end 94 of the connection point between the annular portion 43 on the outside of the bearing and the side surface 51 of the column is radially outward from the radially outer end 95 of the connection point between the annular portion 42 on the inside of the bearing and the side surface 51 of the column. An annular portion 42 located inwardly and inside the bearing
and the radially inner end 9 of the connection point with the side surface 51 of the column.
6 is located radially outward. Further, the radially inner end 97 of the connection point between the annular portion 43 on the outside of the bearing and the side surface 51 of the column is radially inner than the radially inner end 96 of the connection point between the annular portion 42 on the inside of the bearing and the side surface 51 of the column. Located inward. Therefore, since at least one of the annular part 43 on the outside of the bearing and the annular part 42 on the inside of the bearing has a long width in the radial direction, the pillar 44 connecting the annular part 43 on the outside of the bearing and the annular part 42 on the inside of the bearing has a radius. The width dimension in the direction is long. Therefore, the rigidity of the column 44 is strong, and since there is a large contact area between the side surface 51 of the column and the spherical surface 47, the spherical roller 47 is hardly skewed, and the column 44 is less worn.

また、軸受外側の環状部43と軸受内側の環状
部42の少なくとも一方は半径方向の幅寸法が長
いので軸受外側の環状部43と軸受内側の環状部
42との少なくとも一方は球面ころ47の端面と
の接触面積が多く、球面ころ47はこの点でもス
キユーしにくい。前記柱の側面51の軸方向の中
央部には第7図に示すように半径方向のみぞ71
が設けられ、このみぞ71内にはグリース等の潤
滑剤が保持される。前記みぞ71内の潤滑剤はポ
ケツト45内へ流出するので軸受の潤滑性能が向
上する。また、保持器41の加工精度および変形
等により、柱の側面51の曲率半径が球面ころの
転動面55に曲率半径より大きくなつても球面こ
ろ47が柱の側面51の軸方向の二ケ所以上に接
するので柱の側面51は異常摩耗しない。前記軸
受外側の環状部の内周部の軸受内側の側面73は
軸と直角な平面になつており、軸受外側の環状部
の内周部75と球面ころ47との間のすきま76
が軸受外側の環状部の外周部78と球面ころ47
との間のすきま79より大きくなつている。従つ
て、軸受外側の環状部の内周部75が保持器41
の射出成形時に軸受内側へそつても、軸受外側の
環状部の内周部75は軸受の作動時に球面ころ4
7の端面を拘束しない。前記軸受外側の環状部の
内周部75と球面ころ47との間のすきま76に
はグリース等の潤滑剤が保持され、このすきま7
6内の潤滑剤はポケツト45内へ流出するので球
面ころ47の軸受外側の端面と球面ころの転動面
55との境のエツジによる油膜切れ等が防止され
る。前記軸受外側の環状部48の内周面は保持器
の案内面81となつており、この保持器の案内面
81は内輪33の保持器案内面によつて案内され
る。前記保持器41は合成樹脂の射出成形によつ
て製造され、第8図に示すようにポケツト内に位
置する球面ころ形状の金型82をラジアル方向外
方に抜いて製造する。この場合、第6図に示すよ
うに柱の外周面と隣りの柱の外周面との間隔Bは
球面ころ47の対応する個所の直径より短かいの
で柱の外周面と柱の側面との境介部83は幾分弾
性変形する。前記金型82をラジアル方向外方に
引き抜くと、柱の内周面と隣りの柱の内周面との
間隔Cを柱の外周面と隣りの柱の外周面との間隔
Bより小さくできる。なお、球面ころ47をポケ
ツト45内に挿入する時は柱の外周面と柱の側面
との境介部83が幾分弾性変形する。前記二列の
内輪軌道34の間に浮き案内輪86が配設され、
この浮き案内輪86は内輪33に嵌合している。
前記浮き案内輪86は内輪33に案内され、この
浮き案内輪86は球面ころ47の軸受内側の端面
と保持器41とを案内する。
Furthermore, since at least one of the annular portion 43 on the outside of the bearing and the annular portion 42 on the inside of the bearing has a long width in the radial direction, at least one of the annular portion 43 on the outside of the bearing and the annular portion 42 on the inside of the bearing has an end surface of the spherical roller 47. Since there is a large contact area with the spherical roller 47, it is difficult to skew in this respect as well. As shown in FIG. 7, a radial groove 71 is provided in the axial center of the side surface 51 of the column.
A lubricant such as grease is held within the groove 71 . Since the lubricant in the groove 71 flows into the pocket 45, the lubrication performance of the bearing is improved. Furthermore, even if the radius of curvature of the side surface 51 of the column becomes larger than the radius of curvature of the rolling surface 55 of the spherical roller due to the machining accuracy and deformation of the cage 41, the spherical roller 47 may be disposed at two locations in the axial direction of the side surface 51 of the column. Since the pillars are in contact with each other, the side surfaces 51 of the pillars do not wear abnormally. The bearing inner side surface 73 of the inner peripheral part of the bearing outer annular part is a plane perpendicular to the axis, and the clearance 76 between the inner peripheral part 75 of the bearing outer annular part and the spherical roller 47 is
is the outer peripheral part 78 of the annular part on the outside of the bearing and the spherical roller 47
The gap is larger than the gap 79 between the two. Therefore, the inner peripheral part 75 of the annular part on the outer side of the bearing is the retainer 41.
Even if the inner peripheral part 75 of the annular part on the outer side of the bearing is bent to the inside of the bearing during injection molding, the spherical rollers 4
The end face of 7 is not restrained. A lubricant such as grease is held in a gap 76 between the inner circumference 75 of the annular portion on the outside of the bearing and the spherical rollers 47, and this gap 7
Since the lubricant in 6 flows into the pocket 45, the oil film is prevented from running out due to the boundary edge between the bearing outer end surface of the spherical roller 47 and the rolling surface 55 of the spherical roller. The inner peripheral surface of the annular portion 48 on the outer side of the bearing serves as a cage guide surface 81, and this cage guide surface 81 is guided by the cage guide surface of the inner ring 33. The retainer 41 is manufactured by injection molding of synthetic resin, and is manufactured by punching out a spherical roller-shaped mold 82 located inside the pocket in a radial direction as shown in FIG. In this case, as shown in FIG. 6, the distance B between the outer circumferential surface of the column and the outer circumferential surface of the adjacent column is shorter than the diameter of the corresponding portion of the spherical roller 47, so the boundary between the outer circumferential surface of the column and the side surface of the column is The intervening portion 83 is somewhat elastically deformed. When the mold 82 is pulled outward in the radial direction, the distance C between the inner circumferential surface of a column and the inner circumferential surface of an adjacent column can be made smaller than the distance B between the outer circumferential surface of a column and the outer circumferential surface of an adjacent column. Incidentally, when the spherical roller 47 is inserted into the pocket 45, the interface portion 83 between the outer peripheral surface of the column and the side surface of the column is somewhat elastically deformed. A floating guide ring 86 is disposed between the two rows of inner raceway 34,
This floating guide ring 86 is fitted into the inner ring 33.
The floating guide ring 86 is guided by the inner ring 33, and the floating guide ring 86 guides the end surface of the spherical roller 47 inside the bearing and the cage 41.

第9図はこの発明で使用する他の保持器の射出
成形時にポケツト内の金型を抜く時の説明図であ
るが、球面ころ形状の金型82を囲んで合成樹脂
製の保持器41が成形されている。そして、柱の
外周面61と柱の側面51との間には段状になつ
ている凹状のガイド部87が設けられ、このガイ
ド部87にコ字状の押え89を配設している。前
記押え89によつてガイド部87を押えた状態で
金型82をポケツト内からラジアル方向外方へ引
き抜く。この場合、ガイド部と柱の側面との境介
部91は幾分弾性変形するが、押え89によつて
ガイド部87を押えているのでガイド部と柱の側
面との境介部91のダレが少ない。また、ガイド
部87は球面ころ47をポケツト45内へ挿入す
る時に球面ころ47を案内し、球面ころ47はポ
ケツト45にスムーズに挿入される。
FIG. 9 is an explanatory diagram when the mold in the pocket is removed during injection molding of another cage used in the present invention, in which a synthetic resin cage 41 surrounds a spherical roller-shaped mold 82. Molded. A stepped concave guide portion 87 is provided between the outer circumferential surface 61 of the column and the side surface 51 of the column, and a U-shaped presser foot 89 is disposed on this guide portion 87. With the guide portion 87 held down by the presser foot 89, the mold 82 is pulled out from the inside of the pocket in the radial direction outward. In this case, the interface part 91 between the guide part and the side surface of the column will be somewhat elastically deformed, but since the guide part 87 is held down by the presser foot 89, the interface part 91 between the guide part and the side surface of the column will sag. Less is. Further, the guide portion 87 guides the spherical roller 47 when the spherical roller 47 is inserted into the pocket 45, and the spherical roller 47 is smoothly inserted into the pocket 45.

第10図は密封性能を有する他の実施例である
が、軸受外側の環状部の外周面92と外輪31に
設けたシール面93とが接触又は非接触の密封部
を構成する。また、保持器の案内面81と内輪3
3の保持器案内面とは密封部を構成するので軸受
内の潤滑剤は密封され、軸受幅が長くなく、部品
点数が多くなく、またコストアツプが少ない密封
性能を有する軸受となつている。また、軸受外
径、軸受内径および幅を変えない標準タイプの国
際的互換性のある密封型自動調心ころ軸受となつ
ている。
FIG. 10 shows another embodiment having sealing performance, in which the outer circumferential surface 92 of the annular portion on the outside of the bearing and the sealing surface 93 provided on the outer ring 31 constitute a sealing portion that may be in contact or not in contact. In addition, the guide surface 81 of the cage and the inner ring 3
Since the retainer guide surface 3 constitutes a sealed part, the lubricant inside the bearing is sealed, and the bearing has a sealing performance that does not have a long bearing width, does not have a large number of parts, and has a low cost increase. In addition, it is a standard type, internationally compatible sealed spherical roller bearing that does not change the outer diameter, inner diameter, or width of the bearing.

第11図は保持器が外輪に案内される他の実施
例であるが、軸受外側の環状部43の外周面は保
持器の案内面81となつており、この保持器の案
内面81は外輪31の保持器案内面によつて案内
される。また、二列の球面ころ47の間に浮き案
内輪86が配設され、この浮き案内輪86は外輪
31に嵌合している。前記浮き案内輪86は外輪
31に案内され、この浮き案内輪86は球面ころ
47の軸受内側の端面と保持器41とを案内す
る。
FIG. 11 shows another embodiment in which the cage is guided by the outer ring. It is guided by the retainer guide surface 31. Further, a floating guide ring 86 is disposed between the two rows of spherical rollers 47, and this floating guide ring 86 is fitted into the outer ring 31. The floating guide ring 86 is guided by the outer ring 31, and this floating guide ring 86 guides the end surface of the spherical roller 47 inside the bearing and the cage 41.

第12図は保持器が外輪に案内される他の実施
例であるが、軸受内側の環状部42の外周面は保
持器の案内面92となつており、この保持器の案
内面92は外輪31の保持器案内面によつて案内
される。そして、浮き案内輪が省かれている。
FIG. 12 shows another embodiment in which the cage is guided by the outer ring. It is guided by the retainer guide surface 31. And the floating guide ring is omitted.

第13図は軸方向両側の軸受外側の環状部が一
体となつて一つの部材から構成されている他の実
施例であるが、軸受内側の環状部42は軸方向両
側の軸受外側の環状部43と柱44によつてそれ
ぞれ連結されて一体となつている。従つて、外輪
31と内輪33との間には保持器41が一個配設
されている。
FIG. 13 shows another embodiment in which the annular portions on the outer side of the bearing on both sides in the axial direction are integrated and constituted of one member. 43 and pillars 44, respectively, and are integrated into one body. Therefore, one retainer 41 is disposed between the outer ring 31 and the inner ring 33.

第14図は軸方向両側の軸受外側の環状部が一
体となつて一つの部材から構成されている他の実
施例であるが、二列の球面ころ47の間に配設し
た浮き案内輪86は外輪31に嵌合している。前
記浮き案内輪86は外輪31に案内され、この浮
き案内輪86は球面ころ47の軸受内側の端面と
保持器41とを案内する。
FIG. 14 shows another embodiment in which the annular portions on the outer side of the bearing on both sides in the axial direction are integrated into one member, and a floating guide ring 86 disposed between two rows of spherical rollers 47 is shown in FIG. is fitted into the outer ring 31. The floating guide ring 86 is guided by the outer ring 31, and this floating guide ring 86 guides the end surface of the spherical roller 47 inside the bearing and the cage 41.

第15図は軸方向両側の軸受外側の環状部が一
体となつて一つの部材から構成されている他の実
施例であるが、軸受内側の環状部42は内輪道3
3に嵌合している。従つて、内輪33は保持器4
1を案内し、浮き案内輪が省かれている。
FIG. 15 shows another embodiment in which the annular portions on the outer side of the bearing on both sides in the axial direction are integrated and constituted of one member, but the annular portion 42 on the inner side of the bearing is
3 is fitted. Therefore, the inner ring 33 is the retainer 4
1, and the floating guide ring is omitted.

なお、保持器41と内輪33との間の半径方向
すきまLおよび保持器41と外輪31との間の半
径方向すきまMを、いずれも第16図に示す柱の
側面51と球面ころ47との間の半径方向すきま
Nより大きくすると、保持器41は軌道輪31,
33に接しないで球面ころ47に案内され、保持
器41が熱収縮又は熱膨張等によつて軌道輪3
1,33と一体になるロツク現象が防止される。
Note that the radial clearance L between the cage 41 and the inner ring 33 and the radial clearance M between the cage 41 and the outer ring 31 are both determined by the distance between the side surface 51 of the column and the spherical rollers 47 shown in FIG. When the radial clearance N between the cage 41 and the bearing ring 31 is larger than
The retainer 41 is guided by the spherical rollers 47 without contacting the bearing ring 3 through thermal contraction or thermal expansion.
1 and 33 is prevented.

また、図示の実施例では柱の側面51にみぞ7
1を設けたが、みぞ71を設けないで柱の側面5
1の全面を凹曲面57,58としても良く、部分
的に凹曲面57,58としても良い。
Further, in the illustrated embodiment, a groove 7 is formed on the side surface 51 of the column.
1 was provided, but the side surface 5 of the pillar was not provided with the groove 71.
1 may be formed entirely as concave curved surfaces 57, 58, or may be partially formed as concave curved surfaces 57, 58.

この発明の複列自動調心ころ軸受によると、保
持器41は合成樹脂製であり、ポケツト45を形
成する柱の側面51は柱の側面51の軸方向中心
に対して軸方向の両側の個所が、軸受の軸心と球
面ころの軸心52とを含む平面53に対して直角
な平面であつて球面ころの軸心52を含んでいる
平面54より軸受内側と軸受外側とに、球面ころ
の転動面55に則した曲率の円弧を軸方向および
半径方向に有する凹曲面57,58をそれぞれ有
するので球面ころ47はスキユーしにくい。ま
た、柱の側面51は球面ころ47と面接触すると
共に柱の側面51と球面ころ47との接触面積が
多く、接触面圧が小さいので柱44の摩耗が少な
い。また、保持器41は柱の外周面61と隣りの
柱の外周面61との間隔Bが球面ころ47の対応
する個所の直径より短かい部分と柱の内周面62
と隣りの柱の内周面62との隔Cが球面ころ47
の対応する個所の直径より短かい部分とをそれぞ
れ有するので柱の外周面61および柱の内周面6
2はいずれも円周方向の巾寸法が長く、柱44の
剛性が強い。
According to the double-row self-aligning roller bearing of the present invention, the retainer 41 is made of synthetic resin, and the side faces 51 of the pillars forming the pockets 45 are located on both sides in the axial direction with respect to the axial center of the side faces 51 of the pillars. is a plane perpendicular to a plane 53 that includes the axis of the bearing and the axis 52 of the spherical roller, and is located inside the bearing and outside the bearing from the plane 54 that includes the axis 52 of the spherical roller. Since the spherical rollers 47 have concave curved surfaces 57 and 58 having arcs of curvature in the axial and radial directions, respectively, in conformity with the rolling surface 55, the spherical rollers 47 are difficult to skew. Further, the side surface 51 of the column is in surface contact with the spherical roller 47, and the contact area between the side surface 51 of the column and the spherical roller 47 is large, and the contact surface pressure is small, so that the wear of the column 44 is small. In addition, the cage 41 has a portion where the distance B between the outer circumferential surface 61 of the column and the outer circumferential surface 61 of the adjacent column is shorter than the diameter of the corresponding portion of the spherical roller 47, and the inner circumferential surface 62 of the column.
The distance C between the inner circumferential surface 62 of the adjacent column is the spherical roller 47
The outer circumferential surface 61 of the column and the inner circumferential surface 6 of the column are shorter than the corresponding diameters of the column.
Both of No. 2 have a long width in the circumferential direction, and the pillars 44 have strong rigidity.

また、軸受外側の環状部43と柱の側面51と
の接続個所の半径方向外方端94は、軸受内側の
環状部42と柱の側面51との接続個所の半径方
向外方端95より半径方向内方に位置すると共に
軸受内側の環状部42と柱の側面51との接続個
所の半径方向内方端96より半径方向外方に位置
するので、軸受外側の環状部43と軸受内側の環
状部42との少なくとも一方は半径方向の幅寸法
が長いので、軸受外側の環状部43と軸受内側の
環状部42とに接続する柱44は半径方向の幅寸
法が長いので柱44の剛性が強く、また柱の側面
51と球面ころ7との接触面積が多いので球面こ
ろ47にスキユーが生じにくいと共に柱44の摩
耗が少ない。また、軸受外側の環状部43と軸受
内側の環状部42との少なくとも一方は半径方向
の幅寸法が長いので軸受外側の環状部43と軸受
内側の環状部42との少なくとも一方は球面ころ
47の端面との接触面積が多く、球面ころ47は
スキユーしにくい。
Further, the radially outer end 94 of the connection point between the annular portion 43 on the outside of the bearing and the side surface 51 of the column is radially more than the radially outer end 95 of the connection point between the annular portion 42 on the inside of the bearing and the side surface 51 of the column. Since it is located inward in the direction and radially outward from the radially inner end 96 of the connection point between the annular part 42 on the inner side of the bearing and the side surface 51 of the column, the annular part 43 on the outer side of the bearing and the annular part on the inner side of the bearing Since at least one of the parts 42 and 42 has a long width in the radial direction, the pillar 44 that connects the annular part 43 on the outside of the bearing and the annular part 42 inside the bearing has a long width in the radial direction, so the rigidity of the pillar 44 is strong. Furthermore, since there is a large contact area between the side surface 51 of the column and the spherical roller 7, skew is less likely to occur on the spherical roller 47, and wear of the column 44 is reduced. Furthermore, since at least one of the annular portion 43 on the outside of the bearing and the annular portion 42 on the inside of the bearing has a long width in the radial direction, at least one of the annular portion 43 on the outside of the bearing and the annular portion 42 on the inside of the bearing has a long width in the radial direction. Since the contact area with the end face is large, the spherical roller 47 is difficult to skew.

さらに、球面ころ7はポケツト45内からの脱
落を防止されているので軸受の組立および軸受の
組立の自動化が容易であるという効果を有する。
Further, since the spherical rollers 7 are prevented from falling out of the pockets 45, it is possible to easily assemble the bearing and to automate the assembling of the bearing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複列自動調心ころ軸受の断面
図、第2図は第1図に示す保持器の平面図、第3
図は第2図のX−Xの断面拡大図、第4図はこの
発明の一実施例を示す複列自動調心ころ軸受の断
面図、第5図は第4図に示す保持器の平面図、第
6図は第5図のY−Yの断面拡大図、第7図は第
5図のZ−Zの断面拡大図、第8図は第4図に示
す保持器の射出成形時にポケツト内の金型を抜く
時の説明図、第9図はこの発明で使用する他の保
持器の射出成形時にポケツト内の金型を抜く時の
説明図、第10図ないし第15図はこの発明の他
の実施例を示す複列自動調心ころ軸受の断面図、
第16図は柱の側面と球面ころとの間の半径方向
すきまの説明図である。 図中、31は外輪、32は外輪軌道、33は内
輪、34は内輪軌道、41は保持器、42は軸受
内側の環状部、43は軸受外側の環状部、44は
柱、45はポケツト、47は球面ころ、51は柱
の側面、52は球面ころの軸心、53は軸受の軸
心と球面ころの軸心とを含む平面、54は球面こ
ろの軸心を含んでいる平面、55は球面ころの転
動面、57,58は凹曲面、94は軸受外側の環
状部と柱の側面との接続個所の半径方向外方端、
95は軸受内側の環状部と柱の側面との接続個所
の半径方向外方端、96は軸受内側の環状部と柱
の側面との接続個所の半径方向内方端である。
Figure 1 is a sectional view of a conventional double-row self-aligning roller bearing, Figure 2 is a plan view of the cage shown in Figure 1, and Figure 3 is a cross-sectional view of a conventional double-row self-aligning roller bearing.
The figure is an enlarged cross-sectional view taken along line X-X in Figure 2, Figure 4 is a cross-sectional view of a double-row self-aligning roller bearing showing an embodiment of the present invention, and Figure 5 is a plan view of the cage shown in Figure 4. Fig. 6 is an enlarged cross-sectional view taken along Y-Y in Fig. 5, Fig. 7 is an enlarged cross-sectional view taken along Z-Z in Fig. 5, and Fig. 8 shows the pocket during injection molding of the cage shown in Fig. 4. Fig. 9 is an explanatory diagram of removing the mold inside the pocket during injection molding of another cage used in this invention, and Figs. 10 to 15 are illustrations of this invention. A cross-sectional view of a double-row spherical roller bearing showing another embodiment of
FIG. 16 is an explanatory diagram of the radial clearance between the side surface of the column and the spherical roller. In the figure, 31 is an outer ring, 32 is an outer ring raceway, 33 is an inner ring, 34 is an inner ring raceway, 41 is a cage, 42 is an annular part on the inside of the bearing, 43 is an annular part on the outside of the bearing, 44 is a column, 45 is a pocket, 47 is a spherical roller, 51 is a side surface of a column, 52 is an axis of the spherical roller, 53 is a plane containing the axis of the bearing and the axis of the spherical roller, 54 is a plane containing the axis of the spherical roller, 55 are the rolling surfaces of the spherical rollers, 57 and 58 are concave curved surfaces, 94 is the radially outer end of the connection point between the outer annular part of the bearing and the side surface of the column;
95 is the radially outer end of the connection point between the annular portion inside the bearing and the side surface of the column, and 96 is the radially inner end of the connection point between the annular portion inside the bearing and the side surface of the column.

Claims (1)

【特許請求の範囲】 1 外輪31は球面の外輪軌道32を有し、前記
外輪31の内方に配設した内輪33は内輪軌道3
4を二列有し、前記外輪31と内輪33との間に
保持器41を配設し、該保持器41は軸受内側の
環状部42と軸受外側の環状部43とが複数の柱
44によつて連結されて一体であり、該隣り合う
二つの柱44の間のポケツト45に球面ころ47
を配設した複列自動調心ころ軸受において、前記
保持器41は合成樹脂製であり、前記ポケツト4
5に形成する柱の側面51は柱の側面51の軸方
向中心に対して軸方向の両側の個所が、軸受の軸
心と球面ころの軸心52とを含む平面53に対し
て直角な平面であつて球面ころの軸心52を含ん
でいる平面54より軸受内側と軸受外側とに、球
面ころの転動面55に則した曲率の円弧を軸方向
および半径方向に有する凹曲面57,58をそれ
ぞれ有し、前記保持器41は柱の外周面61と隣
りの柱の外周面61との間隔Bが球面ころ47の
対応する箇所の直径より短かい部分と柱の内周面
62と隣りの柱の内周面62との間隔Cが球面こ
ろ47の対応する箇所の直径より短かい部分とを
それぞれ有し、前記軸受外側の環状部43と柱の
側面51との接続個所の半径方向外方端94は、
軸受内側の環状部42と柱の側面51との接続個
所の半径方向外方端95より半径方向内方に位置
すると共に軸受内側の環状部42と柱の側面51
との接続個所の半径方向内方端96より半径方向
外方に位置することを特徴とする複列自動調心こ
ろ軸受。 2 軸受外側の環状部43と柱の側面51との接
続個所の半径方向内方端97は、軸受内側の環状
部42と柱の側面51との接続個所の半径方向内
方端96より半径方向内方に位置する特許請求の
範囲第1項記載の複列自動調心ころ軸受。
[Claims] 1. The outer ring 31 has a spherical outer ring raceway 32, and the inner ring 33 disposed inside the outer ring 31 has a spherical outer ring raceway 32.
4, and a cage 41 is disposed between the outer ring 31 and the inner ring 33, and the cage 41 has an annular portion 42 on the inner side of the bearing and an annular portion 43 on the outer side of the bearing, and a plurality of columns 44. The two adjacent columns 44 have a spherical roller 47 in a pocket 45 between them.
In the double-row self-aligning roller bearing, the retainer 41 is made of synthetic resin, and the pocket 4 is
The side surface 51 of the column formed in No. 5 is a plane in which both sides in the axial direction with respect to the axial center of the side surface 51 of the column are perpendicular to a plane 53 that includes the axis of the bearing and the axis 52 of the spherical roller. Concave curved surfaces 57, 58 having arcs of curvature in accordance with the rolling surface 55 of the spherical roller in the axial and radial directions on the inner side of the bearing and the outer side of the bearing from the plane 54 that includes the axis 52 of the spherical roller. The retainer 41 has a portion where the distance B between the outer circumferential surface 61 of the column and the outer circumferential surface 61 of the adjacent column is shorter than the diameter of the corresponding portion of the spherical roller 47, and a portion adjacent to the inner circumferential surface 62 of the column. and a portion where the distance C from the inner circumferential surface 62 of the column is shorter than the diameter of the corresponding portion of the spherical roller 47, and in the radial direction of the connection point between the annular portion 43 on the outside of the bearing and the side surface 51 of the column. The outer end 94 is
Located radially inward from the radially outer end 95 of the connection point between the annular portion 42 inside the bearing and the side surface 51 of the column, and the annular portion 42 inside the bearing and the side surface 51 of the column
A double-row self-aligning roller bearing characterized in that it is located radially outward from the radially inner end 96 of the connection point with the radially inner end 96. 2. The radially inner end 97 of the connection point between the annular portion 43 on the outside of the bearing and the side surface 51 of the column is radially inner than the radially inner end 96 of the connection point between the annular portion 42 on the inside of the bearing and the side surface 51 of the column. A double-row self-aligning roller bearing according to claim 1 located inwardly.
JP1250466A 1989-09-28 1989-09-28 Double row automatic aligning roller bearing Granted JPH03144110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1250466A JPH03144110A (en) 1989-09-28 1989-09-28 Double row automatic aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1250466A JPH03144110A (en) 1989-09-28 1989-09-28 Double row automatic aligning roller bearing

Publications (2)

Publication Number Publication Date
JPH03144110A JPH03144110A (en) 1991-06-19
JPH0571807B2 true JPH0571807B2 (en) 1993-10-08

Family

ID=17208293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1250466A Granted JPH03144110A (en) 1989-09-28 1989-09-28 Double row automatic aligning roller bearing

Country Status (1)

Country Link
JP (1) JPH03144110A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337482B2 (en) * 2014-01-30 2018-06-06 日本精工株式会社 Spherical roller bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324940A (en) * 1976-08-18 1978-03-08 Skf Kugellagerfabriken Gmbh Plastic device for cylindrical roller bearing
US4345800A (en) * 1979-02-17 1982-08-24 Fag Kugelfischer Georg Schafer & Co. Double-row radially self-aligning roller bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324940A (en) * 1976-08-18 1978-03-08 Skf Kugellagerfabriken Gmbh Plastic device for cylindrical roller bearing
US4345800A (en) * 1979-02-17 1982-08-24 Fag Kugelfischer Georg Schafer & Co. Double-row radially self-aligning roller bearing

Also Published As

Publication number Publication date
JPH03144110A (en) 1991-06-19

Similar Documents

Publication Publication Date Title
US5033878A (en) Cage for spherical roller bearing
JP2691264B2 (en) Double-row spherical roller bearing with sealing device
US4629339A (en) Roller bearing
US4493513A (en) Bearing cage for retaining rolling elements
JPS6249015A (en) Radial roller bearing
JPS6347930B2 (en)
JPH0619176B2 (en) 4-point contact ball bearing synthetic resin cage
JPS6350565B2 (en)
JP6740576B2 (en) Ball bearing
KR20220137079A (en) Tubular retainers and ball bearings for ball bearings
US20210108681A1 (en) Rolling bearing
US4838712A (en) Ball bearing and the retainer thereof
US3624815A (en) Ball retainer and bearing
JPS648208B2 (en)
JPS6154964B2 (en)
JPS6350567B2 (en)
US5702187A (en) Guide ring for roller bearing
JPH0313619Y2 (en)
JPH074439A (en) High speed angular ball bearing
JPH0571807B2 (en)
JPH043128Y2 (en)
JPH0124424Y2 (en)
US4149760A (en) Snap cage of synthetic material
JPS596264Y2 (en) Plastic cage for rolling bearings
US11221044B2 (en) Rolling bearing