JPH0571628B2 - - Google Patents

Info

Publication number
JPH0571628B2
JPH0571628B2 JP7705290A JP7705290A JPH0571628B2 JP H0571628 B2 JPH0571628 B2 JP H0571628B2 JP 7705290 A JP7705290 A JP 7705290A JP 7705290 A JP7705290 A JP 7705290A JP H0571628 B2 JPH0571628 B2 JP H0571628B2
Authority
JP
Japan
Prior art keywords
weight
hygroscopic
parts
moisture absorption
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7705290A
Other languages
Japanese (ja)
Other versions
JPH03277659A (en
Inventor
Katsumi Shigeta
Eiji Isojima
Hisao Mukai
Yoshio Saida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomita Pharmaceutical Co Ltd
Original Assignee
Tomita Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomita Pharmaceutical Co Ltd filed Critical Tomita Pharmaceutical Co Ltd
Priority to JP7705290A priority Critical patent/JPH03277659A/en
Priority to EP90109700A priority patent/EP0400460B1/en
Priority to DE69018312T priority patent/DE69018312T2/en
Priority to US07/526,817 priority patent/US5078909A/en
Publication of JPH03277659A publication Critical patent/JPH03277659A/en
Publication of JPH0571628B2 publication Critical patent/JPH0571628B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、吸湿性を有する組成物及び成型品に
関し、特に吸湿度に応じて変色するインジケータ
ー機能を有する吸湿性組成物及び成型品(以下吸
湿性組成物、吸湿性成型品と称する)に関する。 [従来の技術] 従来、食品、医薬品、電子部品、精密機械、日
用品等のあらゆる分野において、吸湿による酸
化、腐食、液化等により商品の品質劣化が生じて
いた。これを防ぐ目的で、シリカゲル、塩化カル
シウム、生石灰、ゼオライト等の乾燥剤が用いら
れている。これらの乾燥剤は、上記用途において
粒状あるいは粉末の状態で紙、不織布等により包
装されるか、もしくは容器等に封入された状態
で、商品と共に包材へ投入されて用いられてい
る。その為に、乾燥剤が本来有する優れた吸湿効
果及び吸湿速度が低下したり、乾燥剤の包装剤破
損による商品への乾燥剤の付着、混入、あるいは
潮解性乾燥剤の使用による吸湿液化現象等の問題
がしばしば生じている。これらの乾燥剤の吸湿効
果は目で確かめられないことが多いため、吸湿能
力の把握が最も問題であつた。ただシリカゲルに
は、吸湿終点が判明するようにしたものがある
が、樹脂への練り込みによる吸湿効果の減少が大
きく、樹脂成型品として用いることは難しい。ま
た吸湿速度が早いため、吸湿効果の経時的変化が
とらえられず、終点のみがわかるものである。 [問題点を解決するための手段] 本発明の吸湿性組成物及び成型品は、上記問題
点を解決するため、熱可塑性樹脂100重量部に対
し、式MgSO4・nH2O(但し0≦n≦3)で表さ
れる硫酸マグネシウム、酸化アルミニウム、酸化
バリウム、酸化カルシウム及び酸化ケイ素の少な
くとも一種5〜400重量部及び無水塩化コバルト
0.5〜5重量部とを含有するものである。 本発明の最大の特徴は、熱可塑性樹脂を吸湿物
質と吸湿反応変色物質と共に混練して用いること
にあり、それにより得られる吸湿性組成物及び成
型品は、フイルム状、シート状、プレート状、袋
状、ペレツト状、容器状等用途に応じ任意の形状
に容易に加工成型することができる。こうして得
られる成型品は、それ自体、吸湿度に応じて変色
する吸湿物質であり、しかも包材となり得るもの
である。 本発明における熱可塑性樹脂としては、特に限
定されず公知のものを使用できるが、例えば、ポ
リエチレン(PE)、ポリプロピレン(PP)、ポリ
カーボネート、ポリアミド、エチレン−酢酸ビニ
ル共重合体(EVA)、エチレン−メタアクリレー
ト共重合体、ポリ塩化ビニル、ポリスチレン、ポ
リエステル、ポリアクリル酸エステル、ポリ塩化
ビニリデン(PVDC)等が挙げられ、これらのう
ち一種又は二種以上を用いることができる。 熱可塑性樹脂とともに用いる吸湿物質として
は、式MgSO4・nH2O(但し0≦n≦3)で表さ
れる硫酸マグネシウム、酸化アルミニウム、酸化
バリウム、酸化カルシウム及び酸化ケイ素等が挙
げられ、これら吸湿物質の一種又は二種以上を用
いることができ、特に前記樹脂に対して卓越した
分散性を有する硫酸マグネシウムが好ましい。ま
た上記吸湿物質は、使用に際して平均粒子径50μ
m以下程度の粉末とするのが望ましい。必要なら
ば、異なつた粒子径のものを混合して用いてもよ
い。吸湿物質の割合は熱可塑性樹脂100重量部に
対し、5〜400重量部程度の範囲であり、用途に
応じ適宜選択される。吸湿物質の割合が上記の範
囲の場合には、吸湿物質の樹脂中での分散性がよ
く、高い吸湿性及び保水性を有し、しかも成型適
性に優れたものとなる。 さらにインジケーター機能を有する無水塩化コ
バルトは溶媒に溶かして0.5〜5重量部を添加す
る(以下この溶液をインジケーター溶液と称す
る)。溶媒としては例えば、メタノールとグリセ
リンを用いる。添加する無水塩化コバルトの量
は、0.5重量部未満であれば、色変化が視覚的に
とらえにくく、5重量部を越えれば、色が濃くな
りすぎてやはり、色変化が視覚的にとらえにくく
なる。 この場合の溶媒はゲリセリンのみであると水分
が多く揮発性が低いため、吸湿物質と反応を起こ
す割合が多く又グリセリンの残存も多くなるの
で、この点を解消するため水分が低く揮発性が高
いメタノールを混合している。逆にメタノールが
多すぎては揮発が早くなりすぎるので、混合比
は、グリセリン1容に対してメタノール2容が好
ましい。 本発明の吸湿性組成物及び成型品は、上記熱可
塑性樹脂、吸湿物質及びインジケーター溶液のほ
かに、発泡材を原料として加えることもできる。
発泡剤としては、特に限定されず公知のものを広
く使用することができ、例えば、アゾイソブチル
ニトリル、アゾジカルボンアミド、4,4′−オキ
シベンゼンスルホニルヒドラジツド等が挙げら
れ、その使用量は熱可塑性樹脂100重量部に対し、
0.2〜10重量部程度とするのが好ましい。発泡剤
の添加により発泡体として得られる吸湿性組成物
及び成型品は、軽量で、発泡体内部にまで吸湿効
果が及ぶために更に高い吸湿力をもたらすもので
ある。 また、このほか添加剤として公知の可塑剤、安
定剤、滑剤、着色剤等を必要に応じ、本発明の目
的を阻害しない程度に適宜加えてもかまわない。 本発明の吸湿性組成物及び成型品の製造方法と
しては、特に制限はなく、通常次のような方法で
製造することができる。 前記熱可塑性樹脂、吸湿物質、インジケーター
溶液及びその他の添加剤を混合機、および成型機
等を用い約100〜350℃のもと約1〜40分間混練
し、成形すればよい。 また、本発明は、上記のようにして得られる吸
湿性成型品に、積層材の少なくとも一種を積層し
て得られる吸湿性成型品をも含有する。 上記積層材としては、本発明の原料である前記
した熱可塑性樹脂等の樹脂類、紙類、繊維類、金
属類、各種塗料、各種接着剤の他、組成の異なる
本発明吸湿性成型品等が使用できる。積層材の種
類、量(厚み)及び積層数は、本発明の目的を達
する限り限定されず広範に使用することができ、
用途に応じ適宜選択される。 上記積層化の最も一般的な例は、上記積層材で
ラミネートされたフイルム、シートもしくはプレ
ートである。この積層構成の具体例を次に列記す
るが、本発明はこれらに限られることはない。 LDPE(低密度ポリエチレン)/MDPE(中密度ポ
リエチレン) HDPE(高密度ポリエチレン)/LDPE/HDPE HDPE/アイオノマー PA/アイオノマー PP/EVA/PP PP/EVA/LDPE PA/接着性PE/LDPE PA/接着性PE/アイオノマー PA/接着性PE/EVA PA/接着性PE/HDPE PA/接着性PE/LLDPE(直鎖低密度ポリエチレ
ン) PA/接着性LLDPE/LLDPE PA/接着性PP/PP LDPE/PA/EVA EVA/PVDC/EVA EVA/PVDC/アイオノマー LDPE/接着性PE/PA [作用] 本発明の吸湿性組成物及び成型品は熱可塑性樹
脂100重量部に対し、式MgSO4・nH2O(但し0≦
n≦3)で表される硫酸マグネシウム、酸化アル
ミニウム、酸化バリウム、酸化カルシウム及び酸
化ケイ素の少なくとも一種5〜400重量部及び無
水塩化コバルト0.5〜5重量部とを含有するため、
組成物及び成型品そのものが持続しら吸湿効果を
もつ。このように前記吸湿物質が樹脂との混練後
も吸湿効果が低下しないのは、それらが水分との
配位結合による吸湿機構のためである。しかも吸
湿程度が段階を追つて目視的に確認できる。 吸湿度による色変化は以下の通りである。
[Industrial Application Field] The present invention relates to hygroscopic compositions and molded articles, and in particular to hygroscopic compositions and molded articles (hereinafter referred to as hygroscopic compositions, hygroscopic (referred to as molded products). [Prior Art] Conventionally, in all fields of food, medicine, electronic parts, precision machinery, daily necessities, etc., quality deterioration of products has occurred due to oxidation, corrosion, liquefaction, etc. due to moisture absorption. To prevent this, desiccant agents such as silica gel, calcium chloride, quicklime, and zeolite are used. In the above-mentioned applications, these desiccants are used in the form of granules or powder, packaged in paper, nonwoven fabric, etc., or sealed in a container, etc., and added to the packaging material along with the product. As a result, the desiccant's inherent excellent moisture absorption effect and moisture absorption rate may decrease, the desiccant may adhere to or be mixed into the product due to damage to the desiccant's packaging, or moisture absorption and liquefaction may occur due to the use of a deliquescent desiccant. problems often occur. Since the hygroscopic effect of these desiccants is often not visible to the naked eye, the most important problem has been understanding their hygroscopic ability. However, some silica gels have a moisture absorption end point that is known, but the moisture absorption effect decreases significantly when kneaded into resin, making it difficult to use as resin molded products. Furthermore, since the rate of moisture absorption is fast, changes over time in the moisture absorption effect cannot be detected, and only the end point can be determined. [Means for Solving the Problems] In order to solve the above problems, the hygroscopic composition and molded article of the present invention have the formula MgSO 4 .nH 2 O (however, 0≦ 5 to 400 parts by weight of at least one of magnesium sulfate, aluminum oxide, barium oxide, calcium oxide, and silicon oxide represented by n≦3) and anhydrous cobalt chloride
0.5 to 5 parts by weight. The greatest feature of the present invention is that the thermoplastic resin is used by kneading it with a hygroscopic substance and a hygroscopically reactive color-changing substance, and the resulting hygroscopic composition and molded products can be shaped into films, sheets, plates, It can be easily processed and molded into any shape depending on the purpose, such as a bag, pellet, or container. The molded product thus obtained is itself a hygroscopic material that changes color depending on moisture absorption, and can also be used as a packaging material. The thermoplastic resin in the present invention is not particularly limited and any known thermoplastic resin can be used, but examples include polyethylene (PE), polypropylene (PP), polycarbonate, polyamide, ethylene-vinyl acetate copolymer (EVA), and ethylene-vinyl acetate copolymer (EVA). Examples include methacrylate copolymers, polyvinyl chloride, polystyrene, polyesters, polyacrylic esters, polyvinylidene chloride (PVDC), and one or more of these can be used. Examples of hygroscopic substances used with thermoplastic resins include magnesium sulfate, aluminum oxide, barium oxide, calcium oxide, and silicon oxide represented by the formula MgSO 4 .nH 2 O (0≦n≦3). One or more of these substances can be used, and magnesium sulfate is particularly preferred as it has excellent dispersibility in the resin. In addition, when using the above hygroscopic substance, the average particle size is 50 μm.
It is desirable to form a powder with a particle size of about m or less. If necessary, particles of different particle sizes may be mixed and used. The proportion of the hygroscopic substance is in the range of about 5 to 400 parts by weight per 100 parts by weight of the thermoplastic resin, and is appropriately selected depending on the application. When the proportion of the hygroscopic substance is within the above range, the hygroscopic substance has good dispersibility in the resin, has high hygroscopicity and water retention, and has excellent moldability. Further, anhydrous cobalt chloride having an indicator function is dissolved in a solvent and added in an amount of 0.5 to 5 parts by weight (hereinafter, this solution is referred to as an indicator solution). For example, methanol and glycerin are used as the solvent. If the amount of anhydrous cobalt chloride added is less than 0.5 parts by weight, the color change will be difficult to visually detect, and if it exceeds 5 parts by weight, the color will become too dark and the color change will also be difficult to visually detect. . In this case, if gelycerin is the only solvent, it has a high moisture content and low volatility, so it will react with moisture-absorbing substances at a high rate, and a large amount of glycerin will remain. Mixed with methanol. On the other hand, if too much methanol is added, volatilization becomes too rapid, so the mixing ratio is preferably 1 volume of glycerin to 2 volumes of methanol. The hygroscopic composition and molded article of the present invention may contain a foaming material as a raw material in addition to the thermoplastic resin, hygroscopic substance, and indicator solution.
The blowing agent is not particularly limited and a wide variety of known ones can be used, such as azoisobutylnitrile, azodicarbonamide, 4,4'-oxybenzenesulfonyl hydrazide, etc., and the amount used is For 100 parts by weight of thermoplastic resin,
It is preferably about 0.2 to 10 parts by weight. The hygroscopic composition and molded product obtained as a foam by adding a foaming agent are lightweight, and the hygroscopic effect extends to the inside of the foam, resulting in even higher hygroscopicity. In addition, known additives such as plasticizers, stabilizers, lubricants, colorants, etc. may be added as necessary to an extent that does not impede the object of the present invention. There are no particular restrictions on the method for producing the hygroscopic composition and molded article of the present invention, and they can usually be produced by the following method. The thermoplastic resin, hygroscopic substance, indicator solution, and other additives may be kneaded using a mixer, a molding machine, etc. at a temperature of about 100 to 350°C for about 1 to 40 minutes, and then molded. The present invention also includes a hygroscopic molded product obtained by laminating at least one type of laminated material on the hygroscopic molded product obtained as described above. Examples of the above-mentioned laminated materials include resins such as the above-mentioned thermoplastic resins, which are the raw materials of the present invention, papers, fibers, metals, various paints, and various adhesives, as well as the hygroscopic molded products of the present invention having different compositions. can be used. The type, amount (thickness) and number of laminated materials of the laminated material are not limited and can be widely used as long as the purpose of the present invention is achieved.
It is selected as appropriate depending on the purpose. The most common examples of such laminations are films, sheets or plates laminated with the above laminates. Specific examples of this laminated structure are listed below, but the present invention is not limited thereto. LDPE (low density polyethylene) / MDPE (medium density polyethylene) HDPE (high density polyethylene) / LDPE / HDPE HDPE / Ionomer PA / Ionomer PP / EVA / PP PP / EVA / LDPE PA / Adhesive PE / LDPE PA / Adhesive PE/Ionomer PA/Adhesive PE/EVA PA/Adhesive PE/HDPE PA/Adhesive PE/LLDPE (Linear Low Density Polyethylene) PA/Adhesive LLDPE/LLDPE PA/Adhesive PP/PP LDPE/PA/EVA EVA/PVDC/EVA EVA/PVDC/Ionomer LDPE/Adhesive PE/PA [Function] The hygroscopic composition and molded article of the present invention have the formula MgSO 4 .nH 2 O (however, 0 ≦
n≦3) containing 5 to 400 parts by weight of at least one of magnesium sulfate, aluminum oxide, barium oxide, calcium oxide, and silicon oxide and 0.5 to 5 parts by weight of anhydrous cobalt chloride,
The composition and the molded product itself have a sustained moisture absorption effect. The reason why the hygroscopic effect of the hygroscopic substance does not decrease even after kneading with the resin is that the hygroscopic substance has a hygroscopic mechanism based on coordination bonds with water. Moreover, the degree of moisture absorption can be visually confirmed step by step. The color change due to moisture absorption is as follows.

【表】 塩化コバルトをポリアミド樹脂へ混練した場合
に文献色と異なるのは樹脂そのものの色によるも
のと思われる。なおポリアミド以外の樹脂への塩
化コバルトの混練においては、ほぼ文献色どおり
となる。 また本発明は前記吸湿性組成物を少なくとも1
種の積層材と積層させたため、種々の機能を有す
る積層材との積層が可能となり、多くの用途に使
用可能な成型加工品が得られる。 さらに前記吸湿性組成物を使用しての靴の中敷
きシートは靴の中の湿気を数ケ月にわたり吸収
し、吸収度に応じて変化するため、中敷きシート
の取り替える時が一目で分かる。また効果持続期
間が長いため需要者の経済的要求にも答えること
ができる。 [実施例] 実施例 1 高重合度(分子量16000)ポリアミド(ナイロ
ン6)100重量部、平均粒径4.59μmの無水硫酸マ
グネシウム50重量部及びインジケーター溶液3.14
重量部(無水塩化コバルト1.50重量部、メチルア
ルコール0.92重量部、グリセリン0.73重量部)
を、樹脂温度163℃、スクリユー回転130rpmで混
練押出成形機(池貝鉄工株式会社製 PCM45 2
軸押出成形機)で混練した後ストランドカツトを
して、ペレツトを作製した。これを試料として温
度25℃、湿度75%の条件下での吸湿率と色相の関
係を試験した。その結果を第1図に示す。 実施例 2 実施例1と同様にして得たペレツトを射出成形
機(日精樹脂工業株式会社製 PS40E5ASE機)
を使用して射出成形し、プレート(85×54×1.5
mm)を作製した。これを試料として温度25℃、湿
度75%の条件下での吸湿率と色相の関係を試験し
た。その結果を第2図に示す。 実施例 3 低密度ポリエチレン(LDPE:密度0.921g/
cm3)100重量部、平均粒径4.59μmの無水硫酸マグ
ネシウム50重量部及びインジケーター溶液12.56
重量部(無水塩化コバルト3.00重量部、メチルア
ルコール3.68重量部、グリセリン2.92重量部)を
混練押出成形機でホツトカツトによりペレツトを
作製し、インフレーシヨン成形機により外層を高
密度ポリエチレン(HDPE:密度0.950g/cm3)、
内層をLDPEとして共押出三層フイルム
(HDPE50μm/50μm/LDPE10μm)を作製し
た。 これを試料として温度25℃、湿度75%の条件下
での吸湿率と色相の関係を試験した。その結果を
第3図に示す。 実施例 4 実施例3と同様にして得たペレツトを射出成形
機(東芝機械株式会社製)により、密閉容器の中
蓋(89mm〓、厚さ1.5mm)を作製した。 これを試料として温度25℃、湿度75%の条件下
での吸湿率と色相の関係を試験した。その結果を
第4図に示す。 実施例 5 エチレン−メチルアクリレート共重合体
(EMA:密度0.942g/cm3)100重量部平均粒径
4.59μmの無水硫酸マグネシウム50重量部及びイ
ンジケーター溶液4.80重量部(無水塩化コバルト
1.50重量部、メチルアルコール1.84重量部、グリ
セリン1.46重量部)を混練押出成形機でホツトカ
ツトによりペレツトを作製し、同混練押出成形機
でTダイ(T−die)法より靴の中敷きとしての
押出しシートを作製した。 これを試料として温度25℃、湿度75%の条件下
での吸湿率と色相の関係を試験した。その結果を
第5図に示す。 実施例 6 ポリ塩化ビニル(ペースト状、平均分子量
1650)100重量部、平均粒子径10μmの無水硫酸
マグネシウム25重量部、可塑剤としてジオクチル
フタレート80重量部及び安定剤としてステアリン
酸亜鉛2重量部を混合し、実験用ミキシングロー
ルにて130℃で15分間加熱混練して吸湿性組成物
を得、厚さ0.1mmのフイルムを作製し、これを試
料として吸水試験を行つた。 比較例 実施例6における無水硫酸マグネシウムの変わ
りにゼオライト(平均粒子径8μm)25重量部を
用いて以下同様にフイルムを作製し、これを試料
として吸水試験を行つた。 [吸湿試験] 温度25℃、湿度90℃の条件下での20日間の吸湿
率の測定した。 吸湿率は、試験前の試料自重に対する試験後の
試料重量の増加量を百分率で計算したものであ
る。 上記吸湿試験の結果得られた、実施例6の吸湿
率と比較例の吸湿率との比較を第1表に示し、こ
れを曲線図にしたのが第6図である。
[Table] The difference in color from the literature when cobalt chloride is kneaded into polyamide resin is thought to be due to the color of the resin itself. It should be noted that the kneading of cobalt chloride into resins other than polyamide is almost as described in the literature. Further, the present invention provides that the hygroscopic composition contains at least one
Since it is laminated with other laminated materials, lamination with laminated materials having various functions is possible, and molded products that can be used for many purposes can be obtained. Furthermore, the shoe insole sheet using the hygroscopic composition absorbs the moisture inside the shoe for several months and changes depending on the degree of absorption, so it can be seen at a glance when the insole sheet should be replaced. Furthermore, since the effect lasts for a long time, it can meet the economic demands of consumers. [Example] Example 1 100 parts by weight of high polymerization degree (molecular weight 16000) polyamide (nylon 6), 50 parts by weight of anhydrous magnesium sulfate with an average particle size of 4.59 μm, and 3.14 parts by weight of indicator solution.
Parts by weight (1.50 parts by weight of anhydrous cobalt chloride, 0.92 parts by weight of methyl alcohol, 0.73 parts by weight of glycerin)
were mixed using an extrusion molding machine (PCM45 2 manufactured by Ikegai Iron Works Co., Ltd.) at a resin temperature of 163°C and a screw rotation of 130 rpm.
After kneading with a axial extruder), the mixture was cut into strands to produce pellets. This was used as a sample to test the relationship between moisture absorption rate and hue under conditions of a temperature of 25°C and a humidity of 75%. The results are shown in FIG. Example 2 Pellets obtained in the same manner as in Example 1 were molded using an injection molding machine (PS40E5ASE machine manufactured by Nissei Jushi Kogyo Co., Ltd.).
Injection molded using plate (85 x 54 x 1.5
mm) was prepared. This was used as a sample to test the relationship between moisture absorption rate and hue under conditions of a temperature of 25°C and a humidity of 75%. The results are shown in FIG. Example 3 Low density polyethylene (LDPE: density 0.921g/
cm 3 ) 100 parts by weight, 50 parts by weight of anhydrous magnesium sulfate with an average particle size of 4.59 μm and 12.56 parts by weight of indicator solution.
Parts by weight (3.00 parts by weight of anhydrous cobalt chloride, 3.68 parts by weight of methyl alcohol, 2.92 parts by weight of glycerin) are kneaded and hot cut into pellets using an extrusion molding machine, and the outer layer is made of high-density polyethylene (HDPE: density 0.950) using an inflation molding machine. g/ cm3 ),
A coextruded three-layer film (HDPE 50 μm/50 μm/LDPE 10 μm) was prepared using LDPE as the inner layer. This was used as a sample to test the relationship between moisture absorption rate and hue under conditions of a temperature of 25°C and a humidity of 75%. The results are shown in FIG. Example 4 The pellets obtained in the same manner as in Example 3 were used to make an inner lid (89 mm, thickness 1.5 mm) of an airtight container using an injection molding machine (manufactured by Toshiba Machinery Co., Ltd.). This was used as a sample to test the relationship between moisture absorption rate and hue under conditions of a temperature of 25°C and a humidity of 75%. The results are shown in FIG. Example 5 Ethylene-methyl acrylate copolymer (EMA: density 0.942 g/cm 3 ) 100 parts by weight Average particle diameter
50 parts by weight of anhydrous magnesium sulfate of 4.59 μm and 4.80 parts by weight of indicator solution (anhydrous cobalt chloride)
1.50 parts by weight of methyl alcohol, 1.84 parts by weight of methyl alcohol, and 1.46 parts by weight of glycerin) were kneaded and hot cut into pellets using a kneading extrusion molding machine, and then extruded into a sheet as an insole for shoes using the T-die method using the same kneading extrusion molding machine. was created. This was used as a sample to test the relationship between moisture absorption rate and hue under conditions of a temperature of 25°C and a humidity of 75%. The results are shown in FIG. Example 6 Polyvinyl chloride (paste, average molecular weight
1650) 100 parts by weight, 25 parts by weight of anhydrous magnesium sulfate with an average particle size of 10 μm, 80 parts by weight of dioctyl phthalate as a plasticizer, and 2 parts by weight of zinc stearate as a stabilizer, and mixed at 130°C with an experimental mixing roll for 15 minutes. A hygroscopic composition was obtained by heating and kneading for a minute, and a film having a thickness of 0.1 mm was prepared, and a water absorption test was conducted using this as a sample. Comparative Example A film was prepared in the same manner using 25 parts by weight of zeolite (average particle size: 8 μm) instead of anhydrous magnesium sulfate in Example 6, and a water absorption test was conducted using this as a sample. [Moisture Absorption Test] The moisture absorption rate was measured for 20 days at a temperature of 25°C and a humidity of 90°C. The moisture absorption rate is calculated as a percentage of the increase in the weight of the sample after the test relative to the weight of the sample before the test. Table 1 shows a comparison between the moisture absorption rate of Example 6 and the moisture absorption rate of Comparative Example obtained as a result of the moisture absorption test, and FIG. 6 is a curve diagram of this.

【表】 この結果から、樹脂にゼオライトを練り込んだ
比較例に比べて、本発明は吸湿効果にすぐれ、し
かも吸湿効果が持続することがわかる。 また第1図〜第5図に示すように、ペレツト
状、プレート状、フイルム状、容器の内蓋、シー
ト状のいずれのものも長期間にわたり、次第に水
和度を高め、すなわち前記したような色変化をた
どり吸湿飽和状態(六水和物)となる。 [発明の効果] 本発明の吸湿性組成物は、加工が容易で、任意
の形状に成型できる。またどのような成型をおこ
なつても吸湿性が衰えず及び吸湿度に応じた色の
変化を視覚的に捕らえることができる。 本発明の吸湿性組成物の成型品は以下の特性を
有するものである。 (1) 高い保湿力、保水力を有し、しかも腐食性、
飛散性、吸湿液化現象による液体漏洩もしくは
水滴の発生などを生じないために吸湿物質とし
ての使用上の安全性、安定性に優れている。 (2) 使用時に、従来の吸湿物質のように包装する
必要がなく、また袋状、容器状などの包材とし
て成型されたものは、包材自体が吸湿物質とし
て働き、極めて合理的なものである。 (3) 色の変化により、吸湿程度が把握できるため
成型品の取換え時期が一目でわかり、使用上便
利である。 (4) 吸湿効果が長時間持続する。 (5) 靴の中敷きに用いた場合、靴の中の湿気を長
期間にわたつて吸収し、しかも取換え時期が一
目でわかる。 (6) 製造及び加工が容易であり、加工成型により
吸湿効果が減少せず、優れた工業生産性を有す
る。 以上のように本発明の吸湿性組成物及び成型品
は、食品、医薬品、化粧品、嗜好品、精密機械、
機械部品等の品質保護のための吸湿剤又は吸湿性
包材等として広範な用途を有するものである。
[Table] From the results, it can be seen that compared to the comparative example in which zeolite was kneaded into the resin, the present invention has an excellent moisture absorption effect, and moreover, the moisture absorption effect lasts for a long time. In addition, as shown in Figures 1 to 5, the degree of hydration of pellets, plates, films, inner lids of containers, and sheets gradually increases over a long period of time. It follows a color change and reaches a hygroscopically saturated state (hexahydrate). [Effects of the Invention] The hygroscopic composition of the present invention is easy to process and can be molded into any shape. Moreover, no matter what kind of molding is performed, the hygroscopicity does not decrease, and the color change depending on the moisture absorption can be visually detected. The molded product of the hygroscopic composition of the present invention has the following characteristics. (1) It has high moisturizing and water-holding ability, and is also corrosive.
It has excellent safety and stability in use as a hygroscopic material because it does not cause scattering, liquid leakage or water droplet generation due to moisture absorption and liquefaction phenomenon. (2) When used, it does not need to be packaged like conventional hygroscopic materials, and when it is molded into a bag-like, container-like packaging material, the packaging material itself acts as a hygroscopic material, making it extremely rational. It is. (3) The degree of moisture absorption can be determined by the change in color, making it convenient to use as it is possible to know at a glance when it is time to replace the molded product. (4) Moisture absorption effect lasts for a long time. (5) When used in shoe insoles, it absorbs moisture from inside shoes over a long period of time, and also allows you to know at a glance when it is time to replace shoes. (6) It is easy to manufacture and process, the moisture absorption effect does not decrease due to processing and molding, and it has excellent industrial productivity. As described above, the hygroscopic composition and molded product of the present invention can be used in foods, pharmaceuticals, cosmetics, luxury goods, precision machinery,
It has a wide range of uses as a hygroscopic agent or hygroscopic packaging material for protecting the quality of mechanical parts, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1におけるペレツトの吸湿率と
色相の関係を示したグラフである。第2図は実施
例2におけるプレートの吸湿率と色相の関係を示
したグラフである。第3図は実施例3における三
層フイルムの吸湿率と色相の関係を示したグラフ
である。第4図は実施例4における密閉容器の中
蓋の吸湿率と色相の関係を示したグラフである。
第5図は実施例5における靴の中敷きとしての押
出しシートの吸湿率と色相の関係を示したグラフ
である。第6図は実施例6と比較例1の吸水試験
における結果を示す、経過日数と吸湿率の関係の
グラフである。
FIG. 1 is a graph showing the relationship between the moisture absorption rate and hue of pellets in Example 1. FIG. 2 is a graph showing the relationship between the moisture absorption rate and hue of the plate in Example 2. FIG. 3 is a graph showing the relationship between the moisture absorption rate and hue of the three-layer film in Example 3. FIG. 4 is a graph showing the relationship between the moisture absorption rate and hue of the inner lid of the closed container in Example 4.
FIG. 5 is a graph showing the relationship between the moisture absorption rate and hue of the extruded sheet used as an insole for shoes in Example 5. FIG. 6 is a graph showing the relationship between the number of days elapsed and the moisture absorption rate, showing the results of the water absorption test of Example 6 and Comparative Example 1.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂100重量部に対し、式MgSO4
nH2O(但し0≦n≦3)で表される硫酸マグネ
シウム、酸化アルミニウム、酸化バリウム、酸化
カルシウム及び酸化ケイ素の少なくとも一種5〜
400重量部及び無水塩化コバルト0.5〜5重量部と
を含有するインジケーター機能を有する吸湿性組
成物。 2 請求項1記載の吸湿性組成物を有するインジ
ケーター機能を有する吸湿性成形品。 3 積層材の少なくとも一種を積層した請求項2
記載のインジケーター機能を有する吸湿性成型
品。 4 請求項1記載のインジケーター機能を有する
吸湿性組成物よりなる靴の中敷きシート。
[Claims] 1. For 100 parts by weight of thermoplastic resin, the formula MgSO 4 .
At least one of magnesium sulfate, aluminum oxide, barium oxide, calcium oxide, and silicon oxide represented by nH 2 O (0≦n≦3) 5 to
A hygroscopic composition having an indicator function, containing 400 parts by weight and 0.5 to 5 parts by weight of anhydrous cobalt chloride. 2. A hygroscopic molded article having an indicator function and comprising the hygroscopic composition according to claim 1. 3 Claim 2 in which at least one type of laminated material is laminated.
Hygroscopic molded product with the indicator function described. 4. A shoe insole sheet comprising the hygroscopic composition having an indicator function according to claim 1.
JP7705290A 1989-05-23 1990-03-28 Moisture-absorbing composition having function of indicator and molded article thereof Granted JPH03277659A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7705290A JPH03277659A (en) 1990-03-28 1990-03-28 Moisture-absorbing composition having function of indicator and molded article thereof
EP90109700A EP0400460B1 (en) 1989-05-23 1990-05-22 Moisture-absorbent compositions
DE69018312T DE69018312T2 (en) 1989-05-23 1990-05-22 Moisture absorbent compositions.
US07/526,817 US5078909A (en) 1989-05-23 1990-05-22 Moisture-absorbent compositions and molded items

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7705290A JPH03277659A (en) 1990-03-28 1990-03-28 Moisture-absorbing composition having function of indicator and molded article thereof

Publications (2)

Publication Number Publication Date
JPH03277659A JPH03277659A (en) 1991-12-09
JPH0571628B2 true JPH0571628B2 (en) 1993-10-07

Family

ID=13623016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7705290A Granted JPH03277659A (en) 1989-05-23 1990-03-28 Moisture-absorbing composition having function of indicator and molded article thereof

Country Status (1)

Country Link
JP (1) JPH03277659A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474295B2 (en) * 1995-02-15 2003-12-08 富士写真フイルム株式会社 Humidity control / gas absorbing molded product
TW571601B (en) * 2000-05-17 2004-01-11 Dynic Corp Hygroscopic molded material
JP5098230B2 (en) * 2006-06-21 2012-12-12 凸版印刷株式会社 Package
JP2022105383A (en) * 2021-01-04 2022-07-14 キヤノン電子管デバイス株式会社 Radiation detector

Also Published As

Publication number Publication date
JPH03277659A (en) 1991-12-09

Similar Documents

Publication Publication Date Title
EP0400460B1 (en) Moisture-absorbent compositions
JPH0753222B2 (en) Desiccant composition
KR20210042839A (en) High performance desiccant with excellent durability and stability
KR940006399B1 (en) Desiccant
JPH0571628B2 (en)
JPS6232214B2 (en)
CN107405899A (en) Heat-sealing layered product
JPS626508B2 (en)
JP2005007837A (en) Moisture absorbent-containing pellet, its production method, and method for manufacturing hygroscopic molded article
JP3949956B2 (en) Desiccant-kneaded resin composition, resin molded product and molding method thereof
JP4583780B2 (en) Hygroscopic packing material
JP4893978B2 (en) Oxygen absorber
JPS61238836A (en) Rancidity-inhibiting resin composition and packaging material comprising same
JPS60163949A (en) Polypropylene composition
JPS63194946A (en) Multilayer resin molded form
JP4464167B2 (en) Hygroscopic resin composition for extrusion molding
JP2941213B2 (en) Garlic packaging film
JPS636038A (en) Polyethylene resin composition
JPH03239741A (en) Extruded film of ethylene copolymer resin
JP3449424B2 (en) Heat sealing film
JP6956499B2 (en) Non-adsorbent oxygen absorbing film
JPH03106950A (en) Moisture-permeable film
JPH0195044A (en) Oxygen absorbing composite film or sheet
JPH0131386B2 (en)
JPH1160875A (en) Resin composition and multilayered structure using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071007

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20081007

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees