JPH0571624B2 - - Google Patents

Info

Publication number
JPH0571624B2
JPH0571624B2 JP57151687A JP15168782A JPH0571624B2 JP H0571624 B2 JPH0571624 B2 JP H0571624B2 JP 57151687 A JP57151687 A JP 57151687A JP 15168782 A JP15168782 A JP 15168782A JP H0571624 B2 JPH0571624 B2 JP H0571624B2
Authority
JP
Japan
Prior art keywords
parts
weight
rubber
thermoplastic polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57151687A
Other languages
Japanese (ja)
Other versions
JPS5943041A (en
Inventor
Shinji Yamamoto
Kohei Umijiri
Koichi Nagakura
Denichi Oda
Yasuo Matsumori
Kimio Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP57151687A priority Critical patent/JPS5943041A/en
Priority to EP82305837A priority patent/EP0079718B1/en
Priority to CA000414745A priority patent/CA1213995A/en
Priority to DE8282305837T priority patent/DE3277206D1/en
Priority to AU18558/83A priority patent/AU575538B2/en
Priority to KR1019830004135A priority patent/KR900006525B1/en
Publication of JPS5943041A publication Critical patent/JPS5943041A/en
Priority to US06/788,524 priority patent/US4703086A/en
Priority to US07/045,536 priority patent/US5043388A/en
Priority to US07/717,572 priority patent/US5283289A/en
Publication of JPH0571624B2 publication Critical patent/JPH0571624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、生産性、加工性が優れ、しかも加
硫物の強度およびモジユラスが優れた新規な強化
ゴム組成物およびその製造法に関するものであ
る。 従来、タイヤの各部材の使用される強化ゴム組
成物は、加硫可能なゴムにナイロン、ポリエステ
ル、ビニロンなどの短繊維を配合することによつ
て製造されている。しかし、こうして得られる強
化ゴム組成物は、繊維径が大きく、繊維とゴムと
の結合を有さず、このため加硫物の強度およびモ
ジユラス、特に高伸長時でのモジユラスおよび強
度が充分ではなく、より一層モジユラスおよび強
度の優れた加硫物を与える強化ゴム組成物の開発
が望まれている。 そこで、繊維形成能を有するポリマーとゴムと
を混練し、その後混練物を押出すエラストマー強
化方法および強化エラストマー組成物が提案され
た(特開昭53−8682号公報)。しかし、この方法
によつても、太い繊維とフイルムが生成し、繊維
界面でのゴムとポリマー(繊維)との結合がない
ため、加硫物の引張強さ、高伸長時でのモジユラ
スおよび他種基材との接着力を示す剥離強度が小
さく、タイヤ部材として使用可能な強化ゴム組成
物を得ることができないのである。 特公昭55−41652号公報には、加硫可能なゴム
と粉末1,2−ポリブタジエンとを混練し、混練
物を押し出し、ついでロールで圧延して強化ゴム
組成物を製造する方法が記載されている。この方
法によつて得られる強化ゴム組成物は、加硫物が
高弾性、高伸度、高強度および高剥離強度を示す
が、1,2−ポリブタジエンから形成される繊維
の強度が小さいため、ガム加工中、特にカーボン
ブラツク混練中に繊維が切断し、繊維長が短かく
なり、加硫物の低伸長時での応力が小さいという
欠点を有している。 そこで、従来公知の強化ゴム組成物の有する欠
点を改良するために、この発明者らは、液状ジエ
ン系ゴムとナイロンとのブロツク共重合体を加硫
可能なゴムに配合した組成物を溶融押出してナイ
ロンを繊維化するとともに、加硫可能なゴムと液
状ジエン系ゴムとをクラフトさせる強化ゴム組成
物の製造法を提案した(特願昭56−117044号)、
しかし、この製造法は、ブロツク重合の再現性が
余り良くなく、コストが高くなるため実用上問題
があつた。 この発明者らは、上述の欠点を有しない強化ゴ
ム組成物およびその製造法を提供することを目的
として鋭意研究した結果、この発明を完成した。 すなわち、この発明は、加硫可能なゴム100重
量部にポリマー分子中に
The present invention relates to a novel reinforced rubber composition with excellent productivity and processability, as well as excellent strength and modulus of the vulcanizate, and a method for producing the same. Conventionally, reinforcing rubber compositions used in various parts of tires have been manufactured by blending short fibers such as nylon, polyester, vinylon, etc. with vulcanizable rubber. However, the reinforced rubber composition obtained in this way has a large fiber diameter and does not have a bond between the fibers and the rubber, and therefore the strength and modulus of the vulcanizate, especially the modulus and strength at high elongation, are insufficient. There is a desire to develop a reinforced rubber composition that provides a vulcanizate with even greater modulus and strength. Therefore, an elastomer strengthening method and a reinforced elastomer composition have been proposed in which a polymer having fiber-forming ability and rubber are kneaded and then the kneaded product is extruded (Japanese Patent Application Laid-Open No. 8682/1982). However, even with this method, thick fibers and films are produced, and because there is no bond between rubber and polymer (fibers) at the fiber interface, the tensile strength of the vulcanizate, the modulus at high elongation, etc. The peel strength, which indicates the adhesive force with the seed base material, is low, making it impossible to obtain a reinforced rubber composition that can be used as a tire member. Japanese Patent Publication No. 55-41652 describes a method for producing a reinforced rubber composition by kneading vulcanizable rubber and powdered 1,2-polybutadiene, extruding the kneaded product, and then rolling it with rolls. There is. In the reinforced rubber composition obtained by this method, the vulcanizate exhibits high elasticity, high elongation, high strength, and high peel strength, but the strength of the fibers formed from 1,2-polybutadiene is low. Fibers are cut during gum processing, particularly during carbon black kneading, resulting in short fiber lengths and have the disadvantage that stress is small when the vulcanizate is at low elongation. Therefore, in order to improve the drawbacks of the conventionally known reinforced rubber compositions, the present inventors melt-extruded a composition in which a block copolymer of liquid diene rubber and nylon was blended into vulcanizable rubber. proposed a method for manufacturing a reinforced rubber composition by making nylon into fibers and crafting vulcanizable rubber and liquid diene rubber (Japanese Patent Application No. 117044/1983).
However, this production method has problems in practice because the reproducibility of block polymerization is not very good and the cost is high. The inventors completed this invention as a result of intensive research aimed at providing a reinforced rubber composition and a method for producing the same that do not have the above-mentioned drawbacks. That is, in this invention, 100 parts by weight of vulcanizable rubber contains

【式】基を有し、 融点が190〜235℃の熱可塑性ポリマーの微細な短
繊維1〜100重量部が埋封されており、かつ該繊
維の界面において前記ポリマーと加硫可能なゴム
とがノボラツク型フエノールホルムアルデヒド系
樹脂の初期縮合物を介してグラフトしている強化
ゴム組成物、および、加硫可能なゴムと、分子量
200000未満のポリマー分子中に
1 to 100 parts by weight of fine short fibers of a thermoplastic polymer having a [formula] group and a melting point of 190 to 235°C are embedded, and the polymer and vulcanizable rubber are bonded at the interface of the fibers. is grafted via an initial condensate of a novolak type phenol formaldehyde resin, a vulcanizable rubber, and a molecular weight
in less than 200,000 polymer molecules

【式】基を 有し、融点が190〜235℃の熱可塑性ポリマーと、
これらゴムと熱可塑性ポリマーとの合計量100重
量部当り0.2〜5重量部のノボラツク型フエノー
ルホルムアルデヒド系樹脂の初期縮合物(以下単
にノボラツクということもある。)と、加熱時に
ホルムアルデヒドを発生しうる化合物とを熱可塑
性ポリマーの融点以上でかつ270℃以下の温度で
混練し、得られた混練物を、混練物中のゴムと熱
可塑性ポリマーとの割合がゴム100重量部当り熱
可塑性ポリマーが1〜100重量部であるときはそ
のまま、混練物中のゴムと熱可塑性ポリマーとの
割合がゴム100重量部当り熱可塑性ポリマーが1
重量部より多くなるときは追加の加硫可能なゴム
を、全部のゴム100重量部当り熱可塑性ポリマー
が1〜100重量部となるように混練物に添加して、
さらに熱可塑性ポリマーの融点以上でかつ270℃
以下の温度で混練した後、熱可塑性ポリマーの融
点以上でかつ270℃以下の温度で押出し、押出物
を熱可塑性ポリマーの融点より低い温度で延伸す
ることを特徴とする強化ゴム組成物の製造法に関
するものである。 この発明の強化ゴム組成物は、生産性、加工性
が優れており、低伸長時および高伸長時のモジユ
ラス、引張強度、接着性の優れた加硫物を与える
ことができる。 また、この発明の方法によれば、加硫可能なゴ
ム、分子量200000未満のポリマー分子中に
[Formula] A thermoplastic polymer having a group and having a melting point of 190 to 235°C,
0.2 to 5 parts by weight of an initial condensate of novolac-type phenol formaldehyde resin (hereinafter also simply referred to as novolak) per 100 parts by weight of the total amount of these rubbers and thermoplastic polymers, and a compound that can generate formaldehyde when heated. are kneaded at a temperature above the melting point of the thermoplastic polymer and below 270°C, and the resulting kneaded product is mixed so that the ratio of rubber and thermoplastic polymer in the kneaded product is 1 to 100 parts by weight of thermoplastic polymer per 100 parts by weight of rubber. When the amount is 100 parts by weight, the ratio of rubber and thermoplastic polymer in the kneaded material is 1 part by weight per 100 parts by weight of rubber.
When the amount exceeds 1 part by weight, additional vulcanizable rubber is added to the kneaded mixture so that the thermoplastic polymer is 1 to 100 parts by weight per 100 parts by weight of the total rubber.
Furthermore, the temperature must be above the melting point of the thermoplastic polymer and 270℃.
A method for producing a reinforced rubber composition, which comprises kneading at the following temperature, extruding at a temperature above the melting point of the thermoplastic polymer and below 270°C, and stretching the extrudate at a temperature below the melting point of the thermoplastic polymer. It is related to. The reinforced rubber composition of the present invention has excellent productivity and processability, and can provide a vulcanizate with excellent modulus, tensile strength, and adhesion at low and high elongations. Further, according to the method of the present invention, in the vulcanizable rubber, polymer molecules having a molecular weight of less than 200,000

【式】基を有し、融点が190〜235℃の熱可 塑性ポリマー、ノボラツク型フエノールホルムア
ルデヒド系樹脂の初期縮合物(ノボラツク)およ
び加熱時にホルムアルデヒドを発生しうる化合物
から、優れた物性を有する加硫物を与える強化ゴ
ム組成物を簡単な操作で再現性よく製造すること
ができる。 この発明における加硫可能なゴムとしては、加
硫することによつてゴム弾性体を与えるすべての
ゴムを使用することができ、例えば、天然ゴム、
シス−1,4−ポリブタジエン、ポリイソプレ
ン、ポリクロロプレン、スチレン−ブタジエン共
重合体ゴム、イソプレン−イソブチレン共重合
体、エチレン−プロピレン−非共役ジエン三元共
重合体、これらの混合物を挙げることができる。
これらのゴムの中でも加硫可能なゴムと分子中に
[Formula] A thermoplastic polymer with a melting point of 190 to 235°C, an initial condensate of novolak-type phenol formaldehyde resin (novolak), and a compound that can generate formaldehyde when heated. Vulcanized with excellent physical properties. A reinforced rubber composition that provides a product can be produced with good reproducibility through simple operations. As the vulcanizable rubber in this invention, all rubbers that give a rubber elastic body by vulcanization can be used, such as natural rubber,
Examples include cis-1,4-polybutadiene, polyisoprene, polychloroprene, styrene-butadiene copolymer rubber, isoprene-isobutylene copolymer, ethylene-propylene-nonconjugated diene terpolymer, and mixtures thereof. .
Among these rubbers, vulcanizable rubber and molecules

【式】基を有し、融点が190〜235℃の熱可 塑性ポリマーとノボラツクと加熱時にホルムアル
デヒドを発生しうる化合物との混合物を混練し、
ついで混練物を押出すさいにゲル化することのほ
とんどない天然ゴムが好ましい。 この発明の強化ゴム組成物は、前記の加硫可能
なゴム100重量部にポリマー分子中に
[Formula] group and a mixture of a thermoplastic polymer with a melting point of 190 to 235°C, novolak, and a compound that can generate formaldehyde when heated,
Natural rubber is preferred because it hardly gels when the kneaded product is extruded. The reinforced rubber composition of the present invention includes 100 parts by weight of the above-mentioned vulcanizable rubber and

【式】基を有し、融点が190〜235℃の熱可 塑性ポリマーの微細な短繊維1〜100重量部、好
ましくは1〜70重量部、特に好ましくは30〜70重
量部が埋封されており、かつ該繊維の界面におい
て前記ポリマーと加硫可能なゴムとがノボラツク
を介してグラフト(結合)しているものである。 前記の熱可塑性ポリマーの微細な短繊維は、融
点が190〜235℃、好ましくは190〜225℃、特に好
ましくは200〜220℃の、ナイロン6、ナイロン
610、ナイロン12、ナイロン611、ナイロン612な
どのナイロン、ポリヘプタメチレン尿素、ポリウ
ンデカメチレン尿素などのポリ尿素やポリウレタ
ンなどのポリマー分子中に
1 to 100 parts by weight, preferably 1 to 70 parts by weight, particularly preferably 30 to 70 parts by weight of fine short fibers of a thermoplastic polymer having a [formula] group and having a melting point of 190 to 235°C are embedded. The polymer and the vulcanizable rubber are grafted (bonded) via a novolac at the interface of the fiber. The fine short fibers of the thermoplastic polymer are nylon 6, nylon, having a melting point of 190-235°C, preferably 190-225°C, particularly preferably 200-220°C.
In polymer molecules such as nylon such as 610, nylon 12, nylon 611, and nylon 612, polyurea such as polyheptamethylene urea, polyundecamethylene urea, and polyurethane.

【式】基を有す る熱可塑性ポリマー、好ましくはナイロンから形
成されており、平均径が0.05〜0.8μであり、円形
断面の、最短繊維長が好ましくは1μ以上で、繊
維軸方向に分子が配列された微細な短繊維の形態
で加硫可能なゴム中に埋封されている。 しかも、前記の繊維の界面において、ポリマー
分子中に
[Formula] It is formed from a thermoplastic polymer having a group, preferably nylon, and has an average diameter of 0.05 to 0.8 μ, a circular cross section, the shortest fiber length is preferably 1 μ or more, and molecules are arranged in the fiber axis direction. It is embedded in vulcanizable rubber in the form of fine short fibers. Moreover, at the interface of the fibers, there is a

【式】基を有する熱可塑性ポリマ ーと加硫可能なゴムとがノボラツクを介してグラ
フトしている。 前記のノボラツクとは、それ自体公知の触媒、
例えば硫酸、塩酸、リン酸、シユウ酸などの酸を
触媒として、フエノール、ビスフエノール類など
のフエノール類とホルムアルデヒド(パラホルム
アルデヒドでもよい)とを縮合反応させることに
よつて得られる可溶可融の樹脂およびその変形物
(変性物)である。ノボラツクとして、例えば、
ノボラツク型フエノールホルムアルデヒド初期縮
合物、ノボラツク型ラクタム−ビスフエノールF
−ホルムアルデヒド初期縮合物、ノボラツク型ス
チレン化フエノール−フエノール−ホルムアルデ
ヒド初期縮合物などを好適に使用できる。 この発明の強化ゴム組成物においては、加硫可
能なゴムに埋封されているポリマー分子中に
A thermoplastic polymer having the formula [formula] and a vulcanizable rubber are grafted via a novolak. The above-mentioned novolacs are catalysts known per se,
For example, soluble and fusible substances obtained by condensing phenols such as phenol and bisphenols with formaldehyde (or paraformaldehyde) using an acid such as sulfuric acid, hydrochloric acid, phosphoric acid, or oxalic acid as a catalyst. These are resins and their modified products. As a novolac, for example,
Novolak type phenol formaldehyde initial condensate, novolak type lactam-bisphenol F
-Formaldehyde initial condensates, novolak-type styrenated phenol-phenol-formaldehyde initial condensates, etc. can be suitably used. In the reinforced rubber composition of this invention, in the polymer molecules embedded in the vulcanizable rubber,

【式】基を有する熱可塑性ポリマーの微細 な短繊維の強度が大きく、しかも該繊維の界面に
おいて前記熱可塑性ポリマーと加硫可能なゴムと
がノボラツクを介してグラフト結合しているた
め、低伸長時および高伸長時のモジユラスおよび
引張強度が優れ、しかも天然ゴム加硫物のような
ゴム加硫物やスチールなどの部材に対する接着性
が優れた加硫物を与える強化ゴム組成物を得るこ
とができるのである。 また、前記のグラフト結合は、加硫可能なゴ
ム、ポリマー分子中に
[Formula] The strength of the fine short fibers of the thermoplastic polymer having the group is high, and since the thermoplastic polymer and the vulcanizable rubber are graft-bonded via novolac at the interface of the fibers, the elongation is low. It is possible to obtain a reinforced rubber composition that provides a vulcanizate that has excellent modulus and tensile strength at high elongation and high elongation, and also has excellent adhesion to rubber vulcanizates such as natural rubber vulcanizates and to members such as steel. It can be done. In addition, the above-mentioned graft bond can be applied to vulcanizable rubber or polymer molecules.

【式】基を有する熱 可塑性ポリマー、ノボラツクおよびホルムアルデ
ヒド供与体である加熱時にホルムアルデヒドを発
生しうる化合物の反応様式については断定的には
云えないが、ノボラツクにホルムアルデヒド供与
体から発生したホルムアルデヒドが先ず作用して
ノボラツクに少なくとも2個のメチロール基が生
成され、この複数のメチロール基のうちの1つの
水酸基と加硫可能なゴムのポリマー分子中のメチ
レン基の水素原子との脱水反応、および熱可塑性
ポリマー分子中の
[Formula] It is not possible to say conclusively about the reaction mode of the thermoplastic polymer having the group, novolak, and a compound that can generate formaldehyde when heated, which is a formaldehyde donor, but formaldehyde generated from the formaldehyde donor acts on the novolak first. At least two methylol groups are generated in the novolac, and a dehydration reaction between one hydroxyl group of the plurality of methylol groups and a hydrogen atom of a methylene group in a polymer molecule of the vulcanizable rubber, and a thermoplastic polymer. in the molecule

【式】基の水素原子と加 硫可能なゴムと結合しているノボラツクの残りの
メチロール基の水酸基との脱水反応によつて生成
するものと考えられる。 この発明の強化ガム組成物において、加硫可能
なゴムに埋封されているポリマー分子中に
It is thought to be produced by a dehydration reaction between the hydrogen atom of the [Formula] group and the hydroxyl group of the remaining methylol group of the novolak bonded to the vulcanizable rubber. In the reinforced gum compositions of this invention, in the polymer molecules embedded in the vulcanizable rubber,

【式】基を有する熱可塑性ポリマーの微細 な短繊維の割合は、加硫可能なゴム100重量部当
り該繊維が1〜100重量部、好ましくは1〜70重
量部、特に好ましくは30〜70重量部である。加硫
可能なゴムに埋封されている繊維の割合が前記下
限より少ないと、加硫物の強度およびモジユラス
が改善されず、加硫可能なゴムに埋封されている
繊維の割合が前記上限より多いと、加硫物の接着
性が低下する。 また、この発明の強化ゴム組成物において、加
硫可能なゴムに埋封されている熱可塑性ポリマー
の微細な短繊維の重量に対する該繊維の界面にお
いてノボラツクを介して熱可塑性ポリマーにグラ
フト結合している加硫可能なゴムの重量の割合
(加硫可能なゴム/熱可塑性ポリマーの微細な短
繊維)で示されるグラフト率が3〜25重量%、特
に5〜20重量%となるように繊維を形成する熱可
塑性ポリマーと加硫可能なゴムとがノボラツクを
介してグラフト結合していることが好ましい。 上述のような特徴を有するこの発明の強化ゴム
組成物は、例えば、加硫可能なゴムと、分子量
200000未満のポリマー分子中に
The proportion of fine short fibers of the thermoplastic polymer having the group [Formula] is 1 to 100 parts by weight, preferably 1 to 70 parts by weight, particularly preferably 30 to 70 parts by weight, per 100 parts by weight of vulcanizable rubber. Parts by weight. If the proportion of fibers embedded in vulcanizable rubber is less than the above-mentioned lower limit, the strength and modulus of the vulcanizate will not be improved, and the proportion of fibers embedded in vulcanizable rubber will be lower than the above-mentioned upper limit. When the amount is larger than this, the adhesiveness of the vulcanizate decreases. Furthermore, in the reinforced rubber composition of the present invention, the weight of the fine short fibers of the thermoplastic polymer embedded in the vulcanizable rubber may be grafted to the thermoplastic polymer via a novolac at the interface of the fibers. The fibers are used in such a way that the grafting rate, expressed as a proportion of the weight of vulcanizable rubber (vulcanizable rubber/fine short fibers of thermoplastic polymer), is 3 to 25% by weight, especially 5 to 20% by weight. Preferably, the thermoplastic polymer to be formed and the vulcanizable rubber are graft-bonded via a novolak. The reinforced rubber composition of the present invention having the above-mentioned characteristics includes, for example, vulcanizable rubber and molecular weight
in less than 200,000 polymer molecules

【式】基を 有する熱可塑性ポリマーと、これらゴムと熱可塑
性ポリマーとの合計量100重量部当り0.2〜5重量
部のノボラツク型フエノールホルムアルデヒド系
樹脂の初期縮合物とホルムアルデヒド供与体とを
熱可塑性ポリマーの融点以上でかつ270℃以下の
温度で混練し、得られた混練物を、混練物中のゴ
ムと熱可塑性ポリマーとの割合がゴム100重量部
当り熱可塑性ポリマーが1〜100重量部であると
きはそのまま、混練物中のゴムと熱可塑性ポリマ
ーとの割合がゴム100重量部当り熱可塑性ポリマ
ーが1重量部より多くなるときは追加の加硫可能
なゴムを、全部のゴム100重量部当り熱可塑性ポ
リマーが1〜100重量部となるように混練物に添
加して、さらに熱可塑性ポリマーの融点以上でか
つ270℃以下の温度で混練した後、熱可塑性ポリ
マーの融点以上でかつ270℃以下の温度で押出し、
押出物を熱可塑性ポリマーの融点より低い温度で
延伸することによつて製造することができる。 この発明の方法においては、先ず前述の加硫可
能なゴムと分子量(数平均分子量)200000未満、
好ましくは10000〜100000の前述のポリマー分子
中に
[Formula] A thermoplastic polymer having a group, an initial condensate of a novolak type phenol formaldehyde resin of 0.2 to 5 parts by weight per 100 parts by weight of the total amount of these rubbers and the thermoplastic polymer, and a formaldehyde donor are combined into a thermoplastic polymer. The resulting kneaded product is kneaded at a temperature above the melting point of If the ratio of rubber and thermoplastic polymer in the kneaded material is more than 1 part by weight of thermoplastic polymer per 100 parts by weight of rubber, add additional vulcanizable rubber per 100 parts by weight of total rubber. The thermoplastic polymer is added to the kneaded material in an amount of 1 to 100 parts by weight, and then kneaded at a temperature above the melting point of the thermoplastic polymer and below 270°C, and then at a temperature above the melting point of the thermoplastic polymer and below 270°C. extruded at a temperature of
It can be made by stretching the extrudate at a temperature below the melting point of the thermoplastic polymer. In the method of this invention, first, the above-mentioned vulcanizable rubber and a molecular weight (number average molecular weight) of less than 200,000,
Preferably in 10,000 to 100,000 of the aforementioned polymer molecules

【式】基を有する熱可塑性ポリマー と、これらゴムと熱可塑性ポリマーとの合計量
100重量部当り0.2〜5重量部、好ましくはゴム
100重量部当り0.5〜5重量部、特に好ましくは
0.5〜3重量部の前述のノボラツクと、好ましく
はゴム100重量部当り0.02〜1重量部のホルムア
ルデヒド供与体とを、前記の熱可塑性ポリマーの
融点以上でかつ270℃以下の温度で混練する。 前記のホルムアルデヒド供与体としては、加熱
によりホルムアルデヒドを発生する化合物が使用
される。例えば、ホルムアルデヒド供与体とし
て、ヘキサメチレンテトラミン、アセトアルデヒ
ドアンモニア:
[Formula] Thermoplastic polymer having a group, total amount of these rubbers and thermoplastic polymer
0.2 to 5 parts by weight per 100 parts by weight, preferably rubber
0.5 to 5 parts by weight per 100 parts by weight, particularly preferably
0.5 to 3 parts by weight of the aforementioned novolak and preferably 0.02 to 1 part by weight of formaldehyde donor per 100 parts by weight of rubber are kneaded at a temperature above the melting point of the thermoplastic polymer and below 270°C. As the formaldehyde donor, a compound that generates formaldehyde upon heating is used. For example, as a formaldehyde donor, hexamethylenetetramine, acetaldehyde ammonia:

【式】パラホル ムアルデヒド、α−ポリオキシメチレン、多価メ
チロールメラミン誘導体、オキサゾリジン誘導
体、多価メチロール価アセチレン尿素などが挙げ
られる。 前記の加硫可能なゴムとポリマー分子中に
[Formula] Examples include paraformaldehyde, α-polyoxymethylene, polyvalent methylol melamine derivatives, oxazolidine derivatives, polyvalent methylol acetylene urea, and the like. In the vulcanizable rubber and polymer molecules mentioned above.

【式】基を有する熱可塑性ポリマーとの割 合は、特に制限はないが通常加硫可能なゴム100
重量部当り熱可塑性ポリマーが1〜2000重量部、
好ましくは1〜100重量部、特に好ましくは1〜
70重量部である。 加硫可能なゴムとポリマー分子中に
[Formula] The ratio of the thermoplastic polymer having the group is not particularly limited, but it is usually vulcanizable rubber 100%
1 to 2000 parts by weight of thermoplastic polymer per part by weight,
Preferably 1 to 100 parts by weight, particularly preferably 1 to 100 parts by weight
It is 70 parts by weight. in vulcanizable rubber and polymer molecules

【式】基を有する熱可塑性ポリマーとノボ ラツクとホルムアルデヒド供与体との混練は前記
熱可塑性ポリマーの融点以上でかつ270℃以下の
温度、好ましくは熱可塑性ポリマーの融点より5
℃以上高くかつ260℃以下の温度で、加硫可能な
ゴムと熱可塑性ポリマーとノボラツクとホルムア
ルデヒド供与体との混合物が一種の溶融状態で行
われる。前記各成分の混練は、ブラベンダ−プラ
ストグラフ、バンバリーミキサー、ロール、押出
機などを用いて好ましくは1〜15分間行われる、
また、前記各成分をブラベンダープラストグラフ
などの混練装置に添加混練する方法には特に制限
はないが、混練装置に先ず加硫可能なゴムと必要
ならば老化防止剤を投入して素練し、ついでポリ
マー分子中に
[Formula] The thermoplastic polymer having the group, the novolac, and the formaldehyde donor are kneaded at a temperature above the melting point of the thermoplastic polymer and below 270°C, preferably 5°C below the melting point of the thermoplastic polymer.
At temperatures above 260°C and above 260°C, the mixture of vulcanizable rubber, thermoplastic polymer, novolac and formaldehyde donor is carried out in a kind of molten state. The above-mentioned components are preferably kneaded for 1 to 15 minutes using a Brabender Plastograph, Banbury mixer, roll, extruder, etc.
There are no particular restrictions on the method of adding and kneading each of the above components into a kneading device such as a Brabender Plastograph, but first, vulcanizable rubber and, if necessary, an anti-aging agent are added to the kneading device and masticated. , then into the polymer molecule

【式】基を有する熱可塑性ポ リマーを投入して混練し、熱可塑性ポリマーを溶
融させ、ゴム中に熱可塑性ポリマーを分散させ、
ついでノボラツクを投入してさらに混練後、最後
にホルムアルデヒド供与体を投入して1〜15分間
混練して各成分を混練する方法が好適に採用され
る。 この発明の方法においては上記のノボラツクお
よびホルムアルデヒド供与体を使用し、加硫可能
なゴムとポリマー分子中に
[Formula] A thermoplastic polymer having a group is added and kneaded, the thermoplastic polymer is melted, and the thermoplastic polymer is dispersed in the rubber.
A method preferably employed is to then add novolak and knead, and finally add the formaldehyde donor and knead for 1 to 15 minutes to knead each component. The method of this invention utilizes the novolac and formaldehyde donor described above to form vulcanizable rubbers and polymers in vulcanizable rubber and polymer molecules.

【式】基を有す る熱可塑性ポリマーとノボラツクとホルムアルデ
ヒド供与体とを前述のように混練することによつ
て、加硫可能なゴムと前記熱可塑性ポリマーとを
ノボラツクを介してグラフト結合させるととも
に、加硫可能なゴム中に前記熱可塑性ポリマーを
微細(分散した熱可塑性ポリマーの粒径は通常1
〜2μである。)に均一に分散させることができ
る。 前記のノボラツクの量が前記下限より少ない
と、ノボラツクを介しての加硫可能なゴムと前記
熱可塑性ポリマーとのグラフト反応が起りにく
く、このため熱可塑性ポリマーの太い繊維やフイ
ルムが生成し、また繊維界面での熱可塑性ポリマ
ーとゴムとの結合が弱いため、この強化ゴム組成
物を加硫して得られる加硫物の強度、接着性およ
び疲労特性などが低下する。また、ノボラツクの
量が前記上限より多いと、ノボラツクによる熱可
塑性ポリマーのゲル化が生じ、熱可塑性ポリマー
の繊維形成が低下するため、この強化ゴム組成物
を加硫して得られる加硫物の強度、モジユラスが
低下する。 この発明の方法においては繊維を形成するポリ
マーとして、ポリマー分子中に
[Formula] By kneading the thermoplastic polymer having the group, the novolac, and the formaldehyde donor as described above, the vulcanizable rubber and the thermoplastic polymer are graft-bonded via the novolac, and The thermoplastic polymer is finely dispersed in the sulfurable rubber (the particle size of the dispersed thermoplastic polymer is usually 1
~2μ. ) can be uniformly dispersed. If the amount of the novolac is less than the lower limit, the graft reaction between the vulcanizable rubber and the thermoplastic polymer through the novolac will be difficult to occur, resulting in the formation of thick fibers or films of the thermoplastic polymer, and Since the bond between the thermoplastic polymer and the rubber at the fiber interface is weak, the strength, adhesiveness, fatigue properties, etc. of the vulcanizate obtained by vulcanizing this reinforced rubber composition are reduced. Furthermore, if the amount of novolak is greater than the above upper limit, gelation of the thermoplastic polymer due to the novolak will occur, and fiber formation of the thermoplastic polymer will be reduced. Strength and modulus decrease. In the method of this invention, in the polymer molecule, as the polymer forming the fiber,

【式】基を 有する熱可塑性ポリマーを使用することが必要で
あり、これによつてモジユラス、引張強度、接着
性および疲労特性(特に耐熱性)の優れた加硫物
を与える強化ゴム組成物を得ることができるので
あり、繊維形成の可能なポリマーであつてもポリ
マー分子中に
It is necessary to use thermoplastic polymers having the formula Even with polymers that can form fibers, there are

【式】基を有さない熱可塑性 ポリマーでは、ゴム中に分散した熱可塑性ポリマ
ーの粒径が大きくなり太い繊維やフイルムが生成
し、繊維界面での熱可塑性ポリマーとゴムとのグ
ラフト結合が起らないので、この発明の方法に使
用することができないのである。 この発明の方法においては、各成分の混練およ
び押出しの際に加硫可能なゴムのゲル化防止の目
的で、加硫可能なゴムに老化防止剤、例えばN−
(3−メタクリロイルオキシ−2−ヒドロキシプ
ロピル)−N′−フエニル−p−フエニルレンジア
ミン、フエニル−α−ナフチルアミン、フエニル
−β−ナフチルアミン、N,N′−ジフエニル−
p−フエニレンジアミン、N−イソプロピル−
N′−フエニル−p−フエニレンジアミン、N−
シクロヘキシル−N′−フエニル−p−フエニレ
ンジアミン、2,6−ジ第三ブチル−4−メチル
フエノール、2,6−ジ第三ブチル−α−ジメチ
ルアミノ−p−クレゾール、2,2′−ジヒドロキ
シ−3,3′−ビス(α−メチルシクロヘキシル)
−5,5′−ジメチル・ジフエニルメタンなどの低
揮発性の老化防止剤を配合することが好ましい。 この発明の方法においては、前述のようにして
各成分を混練して得られた混練物を、混練物中の
ゴムとポリマー分子中に
[Formula] In thermoplastic polymers that do not have groups, the particle size of the thermoplastic polymer dispersed in the rubber becomes large, forming thick fibers or films, and graft bonding between the thermoplastic polymer and the rubber occurs at the fiber interface. Therefore, it cannot be used in the method of this invention. In the method of this invention, an anti-aging agent, for example N-
(3-methacryloyloxy-2-hydroxypropyl)-N'-phenyl-p-phenyldiamine, phenyl-α-naphthylamine, phenyl-β-naphthylamine, N,N'-diphenyl-
p-phenylenediamine, N-isopropyl-
N'-phenyl-p-phenylenediamine, N-
Cyclohexyl-N'-phenyl-p-phenylenediamine, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-α-dimethylamino-p-cresol, 2,2'- Dihydroxy-3,3'-bis(α-methylcyclohexyl)
It is preferable to incorporate a low volatility anti-aging agent such as -5,5'-dimethyl diphenylmethane. In the method of this invention, the kneaded product obtained by kneading each component as described above is added to the rubber and polymer molecules in the kneaded product.

【式】基を有する 熱可塑性ポリマーとの割合がゴム100重量部当り
前記熱可塑性ポリマーが1〜100重量部、好まし
くは1〜70重量部、特に好ましくは30〜70重量部
であるときはそのまま押出し、混練分中のゴムと
前記熱可塑性ポリマーとの割合がゴム100重量部
当り前記熱可塑性ポリマーが1重量部より多くな
るときは前述した加硫可能なゴムの中から選ばれ
る追加の加硫可能なゴムを、全部のゴム100重量
部当り熱可塑性ポリマーが1〜100重量部、好ま
しくは1〜70重量部、特に好ましくは30〜70重量
部となるように混練物に添加してさらに前記熱可
塑性ポリマーの融点以上でかつ270℃以下の温度、
好ましくは前記熱可塑性ポリマーの融点より5℃
以上高くかつ260℃以下の温度で混練した後押戻
す。 混練物を押出す際の混練物中の前記熱可塑性ポ
リマーの割合が前記下限より少ないと、強度およ
びモジユラスの優れた加硫物を与える強化ゴム組
成物を得ることができず、混練物を押出す際の混
練物中のナイロンの割合が前記上限より多いと、
接着性の優れた加硫物を与える強化ゴム組成物を
得ることが困難になる。 混練物は、吐出口の形状が円形または矩形のダ
イ、たとえば円形ダイ、矩形ダイを通して紐状
(またはシート状)に押出すことができる。円形
ダイを使用する場合は、その吐出口の内径が0.1
〜5mm、吐出口の長さと吐出口の内径の比(L/
D)が1〜20であることが好ましく、矩形ダイを
使用する場合は、そのスリツト間隙が0.1〜5mm、
巾が0.2〜200mm、ダイランドの長さが10〜20mmで
あることが好ましい。 上記の各種のダイの中でも円形ダイを使用する
ことが好ましい。円形ダイとしては、1つの吐出
口を有するものや、多数の吐出口を有するもの
(マルチホールドタイプ)が使用できる。 混練物の押出しに当つては公知の押出し機、た
とえばスクリユー式押出し機を用い、スクリユー
先端部の温度を前記熱可塑性ポリマーの融点以上
でかつ270℃以下の温度に、ダイの温度を前記熱
可塑性ポリマーの融点以上でかつ270℃以下、特
に前記熱可塑性ポリマーの融点より5℃以上高く
かつ260℃以下の温度に設定して混練物を押出す
ことが好ましい。 この発明の方法においては上述のようにして混
練物を押出すことによつて、得られる押出物の加
硫可能なゴム中の熱可塑性ポリマーは繊維状の形
態となり、しかも繊維状熱可塑ポリマー界面では
熱可塑性ポリマーと加硫可能なゴムとがノボラツ
クを介してグラフト結合されている。 この発明の強化ゴム組成物は、上記の押出物
を、好ましくは連続して緊張をかけつつ、空冷、
水冷、冷却したメタノールのようなゴムおよび熱
可塑性ポリマーに対する不活性な有機溶剤による
冷却、あるいはダイから引き取り機(巻き取り機
ともいう)までの距離を長くする方法などによつ
て熱可塑性ポリマーの融点より低い温度に冷却
し、それ自体公知の方法によつて、ボビンあるい
は巻き取りロールなどの巻き取り機に1〜100
m/分、好ましくは20〜40m/分の巻取速度で巻
き取つた後、一対の圧延ロールを用いて圧延した
り、延伸ロールを用いて一軸延伸して延伸するこ
とによつて得ることができる。押出物を引き取る
ときの巻き取り機の温度は0〜100℃が好ましい。
押出物を冷却しないで巻き取ると繊維状熱可塑性
ポリマーの一部が偏平状(極端な場合にはフイル
ム状)となり、良好な結果が得られない場合があ
る。前記の圧延ロールによる圧延の温度は0〜
100℃が好ましい。また、延伸ロールによる延伸
は、延伸倍率が1.1〜10になるように行なうこと
が好ましい。 この発明の方法においては上述のようにして押
出物を延伸することによつて、得られる強化ゴム
組成物の加硫可能なゴム中の熱可塑性ポリマーは
繊維が分子配向して繊維構造に変換して強度の大
きな微細な短繊維となるのである。 この発明の方法によつて得られる強化ゴム組成
物は、加硫可能なゴム100重量部当り1〜100重量
部のポリマー分子中に
[Formula] When the ratio of the thermoplastic polymer to the group-containing thermoplastic polymer is 1 to 100 parts by weight, preferably 1 to 70 parts by weight, particularly preferably 30 to 70 parts by weight, per 100 parts by weight of rubber, it is left as is. When the ratio of the thermoplastic polymer to the rubber in the extruded and kneaded portion is more than 1 part by weight of the thermoplastic polymer per 100 parts by weight of rubber, additional vulcanization selected from the above-mentioned vulcanizable rubbers is added. Add the available rubber to the kneaded product in an amount of 1 to 100 parts by weight, preferably 1 to 70 parts by weight, particularly preferably 30 to 70 parts by weight of thermoplastic polymer per 100 parts by weight of the total rubber, and further a temperature above the melting point of the thermoplastic polymer and below 270°C;
Preferably 5°C below the melting point of the thermoplastic polymer.
After kneading at a temperature higher than 260°C and lower than 260°C, the mixture is pushed back. If the proportion of the thermoplastic polymer in the kneaded product when extruding the kneaded product is less than the lower limit, it will not be possible to obtain a reinforced rubber composition that provides a vulcanizate with excellent strength and modulus, and the kneaded product will not be extruded. If the proportion of nylon in the kneaded material at the time of discharge is higher than the above upper limit,
It becomes difficult to obtain a reinforced rubber composition that provides a vulcanizate with excellent adhesion. The kneaded material can be extruded into a string (or sheet) through a die having a circular or rectangular discharge opening, such as a circular die or a rectangular die. When using a circular die, the inner diameter of its discharge port should be 0.1
~5mm, the ratio of the length of the outlet to the inner diameter of the outlet (L/
D) is preferably 1 to 20, and when using a rectangular die, the slit gap is 0.1 to 5 mm,
It is preferable that the width is 0.2 to 200 mm and the length of the die land is 10 to 20 mm. Among the various dies described above, it is preferable to use circular dies. As the circular die, one having one discharge port or one having multiple discharge ports (multi-hold type) can be used. For extrusion of the kneaded material, a known extruder such as a screw type extruder is used, and the temperature of the screw tip is set to a temperature above the melting point of the thermoplastic polymer and below 270°C, and the temperature of the die is set to a temperature above the melting point of the thermoplastic polymer and below 270°C. It is preferable to extrude the kneaded material at a temperature that is higher than the melting point of the polymer and lower than 270°C, particularly higher than the melting point of the thermoplastic polymer by 5°C or higher and lower than 260°C. In the method of this invention, by extruding the kneaded material as described above, the thermoplastic polymer in the vulcanizable rubber of the extrudate obtained is in a fibrous form, and the fibrous thermoplastic polymer interface In this case, a thermoplastic polymer and a vulcanizable rubber are grafted together via a novolak. In the reinforced rubber composition of the present invention, the above extrudate is air-cooled, preferably under continuous tension.
The melting point of thermoplastic polymers is reduced by water cooling, cooling with inert organic solvents for rubber and thermoplastic polymers such as chilled methanol, or by increasing the distance from the die to the take-up (also called winder). Cooled to a lower temperature and placed on a winding machine, such as a bobbin or a winding roll, in a manner known per se.
It can be obtained by winding at a winding speed of m/min, preferably 20 to 40 m/min, and then rolling using a pair of rolling rolls or uniaxially stretching using a stretching roll. can. The temperature of the winder when taking off the extrudate is preferably 0 to 100°C.
If the extrudate is wound up without being cooled, a portion of the fibrous thermoplastic polymer will become flat (in extreme cases, film-like), and good results may not be obtained. The temperature of rolling with the above-mentioned rolling rolls is 0~
100°C is preferred. Further, it is preferable that the stretching using the stretching rolls be carried out at a stretching ratio of 1.1 to 10. In the method of the present invention, by stretching the extrudate as described above, the thermoplastic polymer in the vulcanizable rubber of the resulting reinforced rubber composition is converted into a fibrous structure through molecular orientation of the fibers. This results in fine short fibers with high strength. The reinforced rubber composition obtained by the method of this invention contains 1 to 100 parts by weight of polymer molecules per 100 parts by weight of vulcanizable rubber.

【式】基を有する熱 可塑性ポリマーが含有され、該熱可塑性ポリマー
が微細な短繊維であり、しかも該繊維の界面にお
いて熱可塑性ポリマーと加硫可能なゴムとがノボ
ラツクを介してグラフト結合しているものであ
り、単独であるいは加硫可能なゴムとブレンドし
て使用して、低伸長時および高伸長時のモジユラ
ス、引張強度、各種部材との接着性および疲労特
性の優れた加硫物を与えることができる。 この発明の強化ゴム組成物は、その優れた特性
を利用して、ベルト、カーカス、ビードなどのタ
イヤ内部部材、トレツド、サイドウオールなどの
タイヤ外部部材、ベルト、ホースなどの工業用
品、はき物素材などの用途に使用することができ
る。 つぎに実施例、比較例および参考例を示す。 実施例、比較例および参考例において得られた
(強化)ゴム組成物を評価するために行なつた加
硫物の物性試験は、JISK6301に従つて測定した。 実施例において用いたノボラツクの製造例等を
以下に示す。 以下の記載において、部は重量部を示す。 A ノボラツク型フエノール−ホルムアルデヒド
初期縮合物(以下単にノボラツクAということ
もある) 蓚酸を触媒として使用し、フエノールとパラ
ホルムアルデヒドとを縮合させて得た軟化点
106℃、水分含量0.12重量%、フリーフエノー
ル含量0.13重量%の粉末結晶であるノボラツク
型フエノール−ホルムアルデヒド初期縮合物
(明和化成(株)製、商品名550PL) B ノボラツク型ラクタム−ビスフエノールF−
ホルムアルデヒド初期縮合物(以下単にノボラ
ツクBということもある) ε−カプロラクタム141部と純度81%のパラ
ホルムアルデヒド55.6部とを120℃で5時間反
応させて、ε−カプロラクタムとホルムアルデ
ヒドとの付加反応物を含む付加反応液を得た。
この付加反応液全量を、ビスフエノールF315
部と水32部と濃度35%の塩酸1.6部との混合液
に、徐々に滴下し、ε−カプロラクタム−ホル
ムアルデヒド付加物とビスフエノールFとを縮
合反応させた後、反応混合液から減圧蒸留
(180℃、10mmHg)して、ノボラツク型ラクタ
ム−ビスフエノールF−ホルムアルデヒド初期
縮合物469部を得た。 C ノボラツク型スチレン化フエノール−フエノ
ール−ホルムアルデヒド初期縮合物(以下単に
ノボラツクCということもある) フエノール1412部と濃度35%の塩酸40.3部と
の混合液に、スチレン1041部を徐々に滴下し、
130℃で2時間混合してフエノールをスチレン
化し、反応混合物から減圧蒸留(180℃、40mm
Hg)してスチレン化フエノールを得た。この
スチレン化フエノールの全量に、ホルマリン
1426部と40%濃度の水酸化ナトリウム87部を加
え、80℃で5時間混合しスチレン化フエノール
にホルムアルデヒドを付加(メチロール化)さ
せた。この付加反応物全量に、フエノール1653
部とシユウ酸123部とを加え、100℃で2時間メ
チロール化されたスチレン化フエノールとフエ
ノールとを縮合反応させた。反応混合物から減
圧蒸留(100→180℃、40mmHg)して、軟化点
73℃(環球法)のスチレン化フエノール−フエ
ノール−ホルムアルデヒド初期縮合物2959部を
得た。 実施例 1 220℃、50rpmにセツトしたブラベンダ−プラ
ストグラフ中に粘度が1×106ポイズの天然ゴム
(NR)100部、およびN−(3−メタクリロイル
オキシ−2−ヒドロキシプロピル)−N′−フエニ
ル−p−フエニレンジアミン〔ノツクラツクG−
1、大内新興化学工業(株)製〕1.0部を投入し、30
秒間素練後、6−ナイロン(商品名:1030B.宇
部興産(株)製、融点221℃、分子量30000)50部を投
入し、4.5分間混練、次いでノボラツクA2.25部を
投入し、3分間混練後、ヘキサメチレンテトラミ
ン0.225部を投入し、3.5分間混練(この間ブラベ
ンダー内の温度は230℃まで上昇)し、混練物を
得た。得られた混練物をノズルの内径2mm、長さ
と内径との比(L/D)が2の円形ダイを有する
20mmφ押出機(Hoake社製)を用いてダイ設定
温度235℃で紐状に押出し、押出物をノズルから
垂直下の位置に設けたロート(ロート内にはポン
プおよび管によつて0℃の冷却水が供給され、供
給された冷却水はロート内を通つて流れ、ロート
の垂直下の位置に設けた冷却水貯蔵容器中に流下
し、そこから冷却水はポンプおよび管によつてロ
ート内に返送される。)内を通過させ、ついでガ
イドロールを経て、ボビンにドラフト比9で35
m/分の速度で巻取つた。この巻取物を一昼夜室
温で真空乾燥し付着水を除いた後、この巻取物約
500本を束ねてシート状(厚さ約2mm、巾約150
mm)とし、このシート状物をロール間隙0.2mm、
温度60℃の一対の圧延ロールで約10倍にロール圧
延して、強化ゴム組成物(マスターバツチ)を得
た。 分別、グラフト率測定 実施例1で得られた強化ゴム組成物2gをベン
ゼン200mlに室温で添加し、強化ゴム組成物中の
ゴム分を溶解させ、得られたスラリーを室温で遠
心分離して溶液部分と沈殿部分とに分けた。沈殿
部分について前記の操作を7回繰りかえし行なつ
た後、沈殿部分を乾燥してナイロン繊維を得た。
このナイロン繊維をフエノールとオルソンジクロ
ルベンゼンの1:3(重量比)の混合溶媒に溶解
させて、1Hの核磁気共鳴スペクル(NMR)で分
析(内部標準テトラメチルシラン)し、NMRチ
ヤートから天然ゴムに起因するメチル基およびメ
チレン基、6−ナイロンに起因するCO基に隣接
したメチレン基、NH基に隣接したメチレン基お
よび他の3個のメチレン基の各々のピークについ
て、切り取り面積法により6−ナイロンと天然ゴ
ムとのモル比を求めて、グラフト率を算出した。
また、前記のナイロン繊維の形状を、繊維約200
本について10000倍の倍率で走査型顕微鏡を用い
て測定した。繊維は断面円形の極めて細い短繊維
であつた。結果をまとめて第1表に示す。 評価試験 実施例1で得られた強化ゴム組成物を第2表に
示した配合により、150℃で40分間加硫し、物性
を測定した。結果を第2表に示す。 実施例 2 6−ナイロンを30部、ノボラツクAを1.93部、
およびヘキサメチレンテトラミンを0.193部使用
した他は実施例1と同様に実施した。結果をまと
めて第1表および第2表に示す。 実施例 3 6−ナイロンを40部、ノボラツクAを2.10部、
およびヘキサメチレンテトラミンを0.21部使用し
た他は実施例1と同様に実施した。結果をまとめ
て第1表および第2表に示す。 実施例 4 6−ナイロンを70部、ノボラツクAを2.55部、
およびヘキサメチレンテトラミンを0.255部使用
した他は実施例1と同様に実施した。結果をまと
めて第1表および第2表に示す。 実施例 5 ノボラツクAを0.75部、およびヘキサメチレン
テトラミンを0.075部使用した他は実施例1と同
様に実施した。結果をまとめて第1表および第2
表に示す。 実施例 6 ノボラツクAを1.88部、およびヘキサメチレン
テトラミンを0.188部使用した他は実施例1と同
様に実施した。結果をまとめて第1表および第2
表に示す。 比較例 1 ノボラツクAおよびヘキサメチレンテトラミン
を添加しなかつた他は実施例1と同様に実施し
た。結果をまとめて第1表および第2表に示す。 実施例 7 ノボラツクAに代えてノボラツクBを使用した
他は実施例1と同様に実施した。結果をまとめて
第1表および第2表に示す。 実施例 8 ノボラツクAに代えてノボラツクCを使用した
他は実施例1と同様に実施例した。結果をまとめ
て第1表および第2表に示す。 実施例 9 ヘキサメチレンテトラミンに代えてα−ポリオ
キシメチレン(n>100、片山化学工業(株)製)を
0.225部使用した他は実施例1と同様に実施した。
他をまとめて第1表および第2表に示す。 実施例 10 220℃、50rpmにセツトしたブラベンダープラ
ストグラフ中にNR100部、ノツクラツクG−1
を1部投入し、30秒間素練後、6−ナイロン
(1030B)50部を投入し、4分間混練後、ノボラ
ツクA0.75部投入し、1分間混練後、ヘキサメチ
レンテトラミン0.075部を投入し、2分間混練
(この間ブラベンダー内の温度は230℃まで上昇)
し、さらにノボラツクAを0.75部投入し、1分間
混練後、ヘキサメチレンテトラミン0.075部を投
入し、2分間混練(この間のブラベンダー内の温
度は230℃)した後、ノボラツクAを0.75部投入
し、1分間混練後、ヘキサメチレンテトラミン
0.075部を投入し、2分間混練し(この間のブラ
ベンダー内の温度は230℃)。得られた混練物か
ら、実施例1と同様に押出し、巻き取り、および
圧延を行なつて、強化ゴム組成物を得た。結果を
まとめて第1表および第2表に示す。 実施例 11 150℃、150rpmにセツトしたバンバリーミキサ
ー(南千住製)にNR100部、ノツクラツクG−
1を1部投入し、1分間素練後、6−ナイロン
(1030B)50部を投入し、4分間混練した。この
間のミキサー内の温度は230℃まで上昇し、6−
ナイロンは溶融した。次いでノボラツクA2.25部
を投入し、7分間混練後、ヘキサメチレンテトラ
ミン0.225部を投入し、2.5分間混練した(この間
のバンバリー内の温度は230℃)。得られた混練物
から、実施例1と同様に押出し、巻き取り、およ
び圧延を行なつて、強化ゴム組成物を得た。結果
をまとめて第1表および第2表に示す。 なお、6時間の連続押出し、巻き取り中におい
て、押出物の切断は1回も起らなかつた。 各実施例で得られた強化ゴム組成物中に埋封さ
れているナイロン繊維の繊維長はいずれも約
200μ以下(計算値による)であつた。
[Formula] contains a thermoplastic polymer having a group, the thermoplastic polymer is fine short fibers, and the thermoplastic polymer and vulcanizable rubber are graft-bonded via novolac at the interface of the fibers. It can be used alone or blended with vulcanizable rubber to produce vulcanizates with excellent modulus at low and high elongations, tensile strength, adhesion to various materials, and fatigue properties. can give. By utilizing its excellent properties, the reinforced rubber composition of the present invention can be applied to tire internal parts such as belts, carcass, and beads, tire external parts such as treads and sidewalls, industrial products such as belts and hoses, and footwear materials. It can be used for the following purposes. Next, examples, comparative examples, and reference examples will be shown. Physical property tests of vulcanizates conducted to evaluate the (reinforced) rubber compositions obtained in Examples, Comparative Examples, and Reference Examples were measured in accordance with JISK6301. Examples of the production of novolak used in Examples are shown below. In the following description, parts indicate parts by weight. A Novolac-type phenol-formaldehyde initial condensate (hereinafter sometimes simply referred to as Novolac A) Softening point obtained by condensing phenol and paraformaldehyde using oxalic acid as a catalyst
Novolac-type phenol-formaldehyde initial condensate (manufactured by Meiwa Kasei Co., Ltd., trade name 550PL), which is a powder crystal with a moisture content of 0.12% by weight and a free phenol content of 0.13% by weight at 106°C.B Novolac-type lactam-bisphenol F-
Formaldehyde initial condensate (hereinafter sometimes simply referred to as Novolac B) 141 parts of ε-caprolactam and 55.6 parts of paraformaldehyde with a purity of 81% were reacted at 120°C for 5 hours to form an addition reaction product of ε-caprolactam and formaldehyde. An addition reaction solution was obtained.
The entire amount of this addition reaction solution was added to bisphenol F315.
32 parts of water and 1.6 parts of 35% hydrochloric acid were gradually added dropwise to cause a condensation reaction between the ε-caprolactam-formaldehyde adduct and bisphenol F, and then the reaction mixture was distilled under reduced pressure ( 180° C., 10 mmHg) to obtain 469 parts of a novolac-type lactam-bisphenol F-formaldehyde initial condensate. C Novolac type styrenated phenol-phenol-formaldehyde initial condensate (hereinafter sometimes simply referred to as Novolac C) 1041 parts of styrene was gradually dropped into a mixed solution of 1412 parts of phenol and 40.3 parts of hydrochloric acid with a concentration of 35%,
The phenol was styrenated by mixing at 130℃ for 2 hours, and the reaction mixture was distilled under reduced pressure (180℃, 40mm
Hg) to obtain styrenated phenol. Formalin is added to the total amount of this styrenated phenol.
1426 parts and 87 parts of 40% sodium hydroxide were added and mixed at 80°C for 5 hours to add formaldehyde (methylolation) to the styrenated phenol. Phenol 1653 is added to the total amount of this addition reaction product.
1 part and 123 parts of oxalic acid were added, and the methylolated styrenated phenol and phenol were subjected to a condensation reaction at 100°C for 2 hours. The reaction mixture was distilled under reduced pressure (100→180℃, 40mmHg) to determine the softening point.
2959 parts of a styrenated phenol-phenol-formaldehyde initial condensate at 73°C (ring and ball method) was obtained. Example 1 100 parts of natural rubber (NR) having a viscosity of 1 x 106 poise and N-(3-methacryloyloxy-2-hydroxypropyl)-N'- were placed in a Brabender Plastograph set at 220°C and 50 rpm. Phenyl-p-phenylenediamine
1. Add 1.0 part of Ouchi Shinko Kagaku Kogyo Co., Ltd., and add 30
After mastication for seconds, 50 parts of 6-nylon (trade name: 1030B, manufactured by Ube Industries, Ltd., melting point 221°C, molecular weight 30000) was added and kneaded for 4.5 minutes, then 2.25 parts of Novolak A was added and kneaded for 3 minutes. After kneading, 0.225 parts of hexamethylenetetramine was added and kneaded for 3.5 minutes (during which time the temperature in the Brabender rose to 230°C) to obtain a kneaded product. The obtained kneaded material was passed through a circular die with a nozzle inner diameter of 2 mm and a length to inner diameter ratio (L/D) of 2.
Using a 20mmφ extruder (manufactured by Hoake), the extrudate was extruded into a string at a die setting temperature of 235°C, and the extrudate was placed in a funnel located vertically below the nozzle. Water is supplied and the supplied cooling water flows through the funnel and down into a cooling water storage vessel located vertically below the funnel, from where the cooling water is pumped and piped into the funnel. 35 with a draft ratio of 9 to the bobbin after passing through the guide roll.
It was wound up at a speed of m/min. After vacuum-drying this roll for a day and night at room temperature to remove adhering water, approximately
Bundle 500 pieces into a sheet (thickness: approx. 2 mm, width: approx. 150 mm)
mm), and roll this sheet material with a roll gap of 0.2 mm.
A reinforced rubber composition (masterbatch) was obtained by rolling the material about 10 times with a pair of rolling rolls at a temperature of 60°C. Fractionation and graft ratio measurement 2 g of the reinforced rubber composition obtained in Example 1 was added to 200 ml of benzene at room temperature to dissolve the rubber content in the reinforced rubber composition, and the resulting slurry was centrifuged at room temperature to dissolve the divided into a precipitated portion and a precipitated portion. After repeating the above operation seven times for the precipitated portion, the precipitated portion was dried to obtain nylon fibers.
This nylon fiber was dissolved in a mixed solvent of phenol and orthone dichlorobenzene at a ratio of 1:3 (weight ratio), analyzed by 1 H nuclear magnetic resonance spectroscopy (NMR) (internal standard: tetramethylsilane), and analyzed from an NMR chart. The peaks of the methyl group and methylene group originating from natural rubber, the methylene group adjacent to the CO group originating from 6-nylon, the methylene group adjacent to the NH group, and the other three methylene groups were determined by the cut area method. The graft ratio was calculated by determining the molar ratio of 6-nylon and natural rubber.
In addition, the shape of the nylon fiber was changed to about 200
The book was measured using a scanning microscope at a magnification of 10,000 times. The fibers were extremely thin short fibers with a circular cross section. The results are summarized in Table 1. Evaluation Test The reinforced rubber composition obtained in Example 1 was vulcanized at 150° C. for 40 minutes according to the formulation shown in Table 2, and its physical properties were measured. The results are shown in Table 2. Example 2 30 parts of 6-nylon, 1.93 parts of Novolak A,
The same procedure as in Example 1 was conducted except that 0.193 parts of hexamethylenetetramine and hexamethylenetetramine were used. The results are summarized in Tables 1 and 2. Example 3 40 parts of 6-nylon, 2.10 parts of Novolak A,
The same procedure as in Example 1 was conducted except that 0.21 parts of hexamethylenetetramine and hexamethylenetetramine were used. The results are summarized in Tables 1 and 2. Example 4 70 parts of 6-nylon, 2.55 parts of Novolak A,
The same procedure as in Example 1 was conducted except that 0.255 parts of hexamethylenetetramine and hexamethylenetetramine were used. The results are summarized in Tables 1 and 2. Example 5 The same procedure as in Example 1 was carried out except that 0.75 part of Novolak A and 0.075 part of hexamethylenetetramine were used. The results are summarized in Tables 1 and 2.
Shown in the table. Example 6 The same procedure as in Example 1 was carried out except that 1.88 parts of Novolak A and 0.188 parts of hexamethylenetetramine were used. The results are summarized in Tables 1 and 2.
Shown in the table. Comparative Example 1 The same procedure as Example 1 was carried out except that Novolak A and hexamethylenetetramine were not added. The results are summarized in Tables 1 and 2. Example 7 The same procedure as in Example 1 was carried out except that Novolac B was used in place of Novolac A. The results are summarized in Tables 1 and 2. Example 8 An example was carried out in the same manner as in Example 1, except that Novolac C was used in place of Novolac A. The results are summarized in Tables 1 and 2. Example 9 α-polyoxymethylene (n>100, manufactured by Katayama Chemical Industry Co., Ltd.) was used instead of hexamethylenetetramine.
The same procedure as in Example 1 was carried out except that 0.225 part was used.
Others are summarized in Tables 1 and 2. Example 10 100 parts of NR in a Brabender plastograph set at 220°C and 50 rpm.
After masticating for 30 seconds, 50 parts of 6-nylon (1030B) was added, and after kneading for 4 minutes, 0.75 parts of Novolak A was added. After kneading for 1 minute, 0.075 parts of hexamethylenetetramine was added. , kneading for 2 minutes (during this time, the temperature inside the Brabender rose to 230℃)
Then, 0.75 part of Novolak A was added, and after kneading for 1 minute, 0.075 part of hexamethylenetetramine was added, and after kneading for 2 minutes (the temperature in the Brabender during this time was 230°C), 0.75 part of Novolak A was added. , after kneading for 1 minute, hexamethylenetetramine
0.075 part was added and kneaded for 2 minutes (the temperature inside the Brabender during this time was 230°C). The obtained kneaded product was extruded, wound and rolled in the same manner as in Example 1 to obtain a reinforced rubber composition. The results are summarized in Tables 1 and 2. Example 11 100 parts of NR and Notsukrak G- were placed in a Banbury mixer (manufactured by Minamisenju) set at 150°C and 150 rpm.
After masticating for 1 minute, 50 parts of 6-nylon (1030B) was added and kneaded for 4 minutes. During this time, the temperature inside the mixer rose to 230℃, and 6-
The nylon was melted. Next, 2.25 parts of Novolak A was added and kneaded for 7 minutes, and then 0.225 parts of hexamethylenetetramine was added and kneaded for 2.5 minutes (during which time the temperature inside Banbury was 230°C). The obtained kneaded product was extruded, wound and rolled in the same manner as in Example 1 to obtain a reinforced rubber composition. The results are summarized in Tables 1 and 2. Note that during 6 hours of continuous extrusion and winding, the extrudate did not break even once. The fiber length of the nylon fibers embedded in the reinforced rubber compositions obtained in each example was approximately
It was less than 200μ (according to calculated values).

【表】【table】

【表】【table】

【表】 実施例1〜11の各強化ゴム組成物から得られた
加硫物の応力−歪曲線はなめらかな「逆S字型」
であつた。これに対し、比較例1の強化ゴム組成
物から得られた加硫物の応力−歪曲線には歪が50
%付近から波状の乱れが生じた。 また、実施例1、実施例7、実施例8、および
比較例1の各強化ゴム組成物から得られた加硫物
について、物性を測定した。ピコ摩耗試験は
ASTM D2228に従い、疲労試験は空気中100℃
で定荷重引張疲労試験装置を用いて行ない、定荷
重3Kg/cm2にて1×104回引張つた後の50%モジ
ユラス保持率および引張破断強度保持率〔(疲労
試験後の値/疲労試験前の値)×100、%〕、定荷
重50Kg/cm2にて引張破断してしまうまでの引張回
数(疲労寿命)を求めた。結果を第4表に示す。
[Table] The stress-strain curve of the vulcanizates obtained from each of the reinforced rubber compositions of Examples 1 to 11 has a smooth "inverted S-shape"
It was hot. In contrast, the stress-strain curve of the vulcanizate obtained from the reinforced rubber composition of Comparative Example 1 shows a strain of 50
Wave-like disturbances occurred from around %. Further, the physical properties of the vulcanizates obtained from the reinforced rubber compositions of Example 1, Example 7, Example 8, and Comparative Example 1 were measured. Pico wear test
Fatigue test in air at 100°C according to ASTM D2228
50% modulus retention and tensile rupture strength retention after being stretched 1×10 4 times at a constant load of 3 kg/cm 2 [(value after fatigue test/fatigue test)] (previous value) x 100, %], and the number of times it was pulled until tensile breakage (fatigue life) was determined at a constant load of 50 kg/cm 2 . The results are shown in Table 4.

【表】 (イ):組成物の加硫時間40分 (ロ):組成物の加硫時間30分 第3表に示した結果は、この発明の強化ゴム組
成物が高温、高応力下において極めて優れた性質
を有する加硫物を与えることを示す。
[Table] (A): Vulcanization time of the composition: 40 minutes (B): Vulcanization time of the composition: 30 minutes The results shown in Table 3 show that the reinforced rubber composition of the present invention was This shows that a vulcanizate with extremely excellent properties can be obtained.

Claims (1)

【特許請求の範囲】 1 (a) 加硫可能なゴム100重量部に、 (b) ポリマー分子中に−CONH−基を有し、融
点が190〜235℃である熱可塑性ポリマーの繊維
長さ3μm以上、平均繊維径が0.05〜0.8μmであ
る微細繊維1〜100重量部が埋包されており、
且つ、 (c) 該繊維の界面において前記ポリマーと加硫可
能なゴムとがノボラツク型フエノールホルムア
ルデヒド系樹脂の初期縮合物を介してグラフト
しており、そのグラフト率が3%以上である 強化ゴム組成物。 2 (a) 加硫可能なゴムと、 (b) 分子量200000未満のポリマー分子中に−
CONH−基を有し、融点が190〜235℃の熱
可塑性ポリマーと、 (c) これらゴム熱可塑性ポリマーとの合計量
100重量部当り0.2〜5重量部のノボラツク型
フエノールホルムアルデヒド系樹脂の初期縮
合物と、 (d) 加熱時にホルムアルデヒドを発生しうる化
合物とを、 熱可塑性ポリマーの融点以上でかつ270℃
以下の温度で混練し、 得られた混練物を、 (a) 混練物中のゴムと熱可塑性ポリマーとの割
合がゴム100重量部当り熱可塑性ポリマーが
1〜100重量部であるときはそのまま、 (b) 混練物中のゴムと熱可塑性ポリマーとの割
合がゴム100重量部当り熱可塑性ポリマーが
1重量部より多くなるときは追加の加硫可能
なゴムを、全部のゴム100重量部当り熱可塑
性ポリマーが1〜100重量部となるように混
練物を添加して、 (c) さらに熱可塑性ポリマーの融点以上でかつ
270℃以下の温度で押出し、 押出物を熱可塑性ポリマーの融点より低い温
度で延伸することを特徴とする、 強化ゴム組成物の製造法。
[Scope of Claims] 1 (a) 100 parts by weight of vulcanizable rubber; (b) fiber length of a thermoplastic polymer having -CONH- groups in the polymer molecule and having a melting point of 190 to 235°C; 1 to 100 parts by weight of fine fibers having an average fiber diameter of 3 μm or more and 0.05 to 0.8 μm are embedded,
and (c) a reinforced rubber composition in which the polymer and vulcanizable rubber are grafted at the interface of the fibers via an initial condensate of a novolac type phenol formaldehyde resin, and the grafting ratio is 3% or more. thing. 2 (a) in a vulcanizable rubber; (b) in a polymer molecule with a molecular weight of less than 200,000 -
Total amount of a thermoplastic polymer having a CONH- group and a melting point of 190 to 235°C, and (c) these rubber thermoplastic polymers.
0.2 to 5 parts by weight per 100 parts by weight of an initial condensate of a novolak type phenol formaldehyde resin, and (d) a compound capable of generating formaldehyde when heated, at a temperature equal to or higher than the melting point of the thermoplastic polymer and at 270°C.
(a) When the ratio of rubber and thermoplastic polymer in the kneaded product is 1 to 100 parts by weight of thermoplastic polymer per 100 parts by weight of rubber, (b) If the proportion of rubber and thermoplastic polymer in the kneaded mixture is more than 1 part by weight of thermoplastic polymer per 100 parts by weight of rubber, add additional vulcanizable rubber to the heat per 100 parts by weight of total rubber. Add the kneaded material so that the plastic polymer is 1 to 100 parts by weight,
A method for producing a reinforced rubber composition, characterized by extruding at a temperature of 270° C. or lower, and stretching the extrudate at a temperature lower than the melting point of the thermoplastic polymer.
JP57151687A 1981-11-05 1982-09-02 Reinforced rubber composition and production thereof Granted JPS5943041A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP57151687A JPS5943041A (en) 1982-09-02 1982-09-02 Reinforced rubber composition and production thereof
EP82305837A EP0079718B1 (en) 1981-11-05 1982-11-03 Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
CA000414745A CA1213995A (en) 1981-11-05 1982-11-03 Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
DE8282305837T DE3277206D1 (en) 1981-11-05 1982-11-03 Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
AU18558/83A AU575538B2 (en) 1982-09-02 1983-08-30 Polyamide fibre reinforced rubber composition
KR1019830004135A KR900006525B1 (en) 1982-09-02 1983-09-02 Reinforced rubber composition and production thereof
US06/788,524 US4703086A (en) 1981-11-05 1985-10-21 Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
US07/045,536 US5043388A (en) 1981-11-05 1987-05-04 Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
US07/717,572 US5283289A (en) 1981-11-05 1991-06-19 Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151687A JPS5943041A (en) 1982-09-02 1982-09-02 Reinforced rubber composition and production thereof

Publications (2)

Publication Number Publication Date
JPS5943041A JPS5943041A (en) 1984-03-09
JPH0571624B2 true JPH0571624B2 (en) 1993-10-07

Family

ID=15524060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151687A Granted JPS5943041A (en) 1981-11-05 1982-09-02 Reinforced rubber composition and production thereof

Country Status (3)

Country Link
JP (1) JPS5943041A (en)
KR (1) KR900006525B1 (en)
AU (1) AU575538B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949955A (en) * 1982-09-14 1984-03-22 Ube Ind Ltd Manufacture of reinforced elastic substance
JPS60186550A (en) * 1984-03-06 1985-09-24 Ube Ind Ltd Reinforced rubber composition
JPS6124605A (en) * 1984-07-16 1986-02-03 Bridgestone Corp High performance pneumatic tire
JPH0683730B2 (en) * 1984-09-20 1994-10-26 株式会社ブリヂストン Thread wound golf ball
JPS6264378A (en) * 1985-09-12 1987-03-23 住友ゴム工業株式会社 Cover composition for golf ball
JPS63179946A (en) * 1987-01-21 1988-07-23 Ube Ind Ltd Rubber composition
EP0265070B1 (en) * 1986-09-26 1991-10-09 Ube Industries, Ltd. Fiber-reinforced rubber composition and production process and use thereof
JPH0216138A (en) * 1988-07-05 1990-01-19 Ube Ind Ltd Rubber composition for hose
CA2157260A1 (en) 1995-08-30 1997-03-01 Shinji Yamamoto Fine fiber-reinforced thermoplastic elastomer composition and process for producing same
US6391971B1 (en) 1998-11-13 2002-05-21 Bridgestone Corporation Short fiber-reinforced rubber composition and pneumatic radial tire using the same
KR20010095931A (en) * 2000-04-12 2001-11-07 성훈용 The method for producing a V-PACKING of Mixed molding Consist of Synthetic rubber and phenol formaldehyd resins.
DE102011054561A1 (en) 2011-10-18 2013-04-18 Phoenix Conveyor Belt Systems Gmbh Steel cable conveyor belt with a conductor loop installed by means of electromagnetic induction and method for installing the conductor loop

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833261A (en) * 1971-08-30 1973-05-08
JPS538682A (en) * 1976-07-09 1978-01-26 Dunlop Co Ltd Method of reinforcing elastomer and reinforced elastomer composition
JPS58189244A (en) * 1982-04-30 1983-11-04 Sumitomo Rubber Ind Ltd Hard rubber composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3211917A1 (en) * 1982-03-31 1983-10-13 Hoechst Ag, 6230 Frankfurt RUBBER VOLCANISES WITH A RELATIVELY LOW HARDNESS AND METHOD FOR REDUCING THE DURAMIC DEFORMED CONVERSION OF THE VOLCANISATE'S ENERGY CONTRACT
GB2147589B (en) * 1983-10-06 1987-07-01 Polysar Financial Services Sa Preparing fibre-reinforced rubbery polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833261A (en) * 1971-08-30 1973-05-08
JPS538682A (en) * 1976-07-09 1978-01-26 Dunlop Co Ltd Method of reinforcing elastomer and reinforced elastomer composition
JPS58189244A (en) * 1982-04-30 1983-11-04 Sumitomo Rubber Ind Ltd Hard rubber composition

Also Published As

Publication number Publication date
JPS5943041A (en) 1984-03-09
KR840006359A (en) 1984-11-29
AU575538B2 (en) 1988-08-04
KR900006525B1 (en) 1990-09-07
AU1855883A (en) 1984-03-08

Similar Documents

Publication Publication Date Title
US4703086A (en) Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
JPH0321572B2 (en)
JPH0571624B2 (en)
EP0265070A1 (en) Fiber-reinforced rubber composition and production process and use thereof
US5098941A (en) Process for producing phenolic resin composition and rubber composition containing the composition
US4535119A (en) Rubber composition for coating tire cord
JPS59204635A (en) Rubber composition for bead filler
JPH0117494B2 (en)
US5283289A (en) Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
JPS58136638A (en) Production of reinforced elastomer
JPS59199732A (en) Rubber composition for belt cushion
JPS5819342A (en) Production of reinforced rubber composition
JPS61110607A (en) Pneumatic tire
JPS59204640A (en) Slightly scorching rubber composition
JPS5949955A (en) Manufacture of reinforced elastic substance
JPWO2003103988A1 (en) Pneumatic tire manufacturing method
JPS61119407A (en) Pneumatic tire
JPS59204638A (en) Rubber composition for side wall
JPS59204636A (en) Composition for rubber chafer
JPS6381137A (en) Reinforced rubber composition and production thereof
JPS60177042A (en) Rubber belt
JPS59204639A (en) Novel rubber composition
JPS62227939A (en) Continuous preparation of reinforced rubber composition
JPS61119411A (en) Pneumatic tire with durability improved
JPS6176177A (en) Yarn wound golf ball