JPH0571603B2 - - Google Patents

Info

Publication number
JPH0571603B2
JPH0571603B2 JP1012976A JP1297689A JPH0571603B2 JP H0571603 B2 JPH0571603 B2 JP H0571603B2 JP 1012976 A JP1012976 A JP 1012976A JP 1297689 A JP1297689 A JP 1297689A JP H0571603 B2 JPH0571603 B2 JP H0571603B2
Authority
JP
Japan
Prior art keywords
group
polymer
fiber
formula
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1012976A
Other languages
Japanese (ja)
Other versions
JPH01279908A (en
Inventor
Kazuo Teramoto
Masanori Sakamoto
Seiji Shimamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1297689A priority Critical patent/JPH01279908A/en
Publication of JPH01279908A publication Critical patent/JPH01279908A/en
Publication of JPH0571603B2 publication Critical patent/JPH0571603B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、芳香族ビニル系重合体に関する。さ
らに詳しくは反応性の活性ハロゲン原子を有し、
塩基性、酸性およびその他の官能基を容易に導入
でき、吸着性、イオン交換性あるいは各種酵素の
固定などに有用な重合体に転換し得る芳香族ビニ
ル系重合体に関する。 従来、高分子に各種の官能基を導入して、この
高分子をイオン交換樹脂や吸着材として利用する
試みは、たとえば特開昭49−11791号公報、特開
昭49−35284号公報及び、特開昭54−110274号公
報等により数多く提案されている。 しかしながら、従来のこれらイオン交換能ある
いは吸着能を示す官能基を導入した高分子は、所
定の性能、たとえばアニオン交換能のみを示す官
能基を導入した高分子は、所定の性能、たとえば
アニオン交換能のみを示す官能基を導入できて
も、カチオン交換能を示す官能基を導入すること
ができなかつたり、さらに吸着性や酵素固定化の
機能を有する高分子には基本的に変性ができない
ことが多く、汎用性のある高分子とはいえなかつ
た。 本発明者らはイオン交換、吸着あるいは酵素固
定など各種の機能を示す官能基に容易に転換でき
る機能性高分子について鋭意研究を進めた結果、
本発明を見出すに到つたものである。 すなわち、本発明の目的とするところは、カチ
オン交換能のみならずアニオン交換能をもつ官能
基を有する高分子のいずれにも転換でき、さらに
同一高分子から吸着性能や酵素固定など他の機能
を有する高分子にも転換できる合成重合体を提供
するにあり、他の目的は上記重合体から誘導され
る酵素や菌体の固定並びに巨大分子の吸・脱着に
特に優れた性能を示す官能基を有する高分子を提
供するにある。 さらに他の目的は、ポリオレフイン、ポリアミ
ドまたはポリエステルなどの繊維形成性重合体を
併用することにより、繊維形態に基づく取扱い性
に優れ、その固定・吸着能をより大きくした機能
性吸着繊維を提供するにある。 本発明は、次の構成を有する。 (1) 下記一般式()で示されるくり返し単位
M1からなる単独重合体、または該くり返し単
位M1と下記一般式()で示されるくり返し
単位M2との共重合体であつて、該M1の存在比
率が少なくとも1モル%であり、分子量が2000
〜3000000であることを特徴とする芳香族ビニ
ル系重合体。
The present invention relates to aromatic vinyl polymers. More specifically, it has a reactive active halogen atom,
The present invention relates to aromatic vinyl polymers into which basic, acidic, and other functional groups can be easily introduced, and which can be converted into polymers useful for adsorption, ion exchange, or immobilization of various enzymes. Conventionally, attempts to introduce various functional groups into polymers and use these polymers as ion exchange resins and adsorbents have been made, for example, in JP-A-49-11791, JP-A-49-35284, and Many proposals have been made, such as in Japanese Patent Application Laid-Open No. 54-110274. However, conventional polymers into which functional groups exhibiting ion-exchange or adsorption abilities have been introduced have a certain performance. Even if it is possible to introduce a functional group that exhibits cation exchange ability, it may not be possible to introduce a functional group that exhibits cation exchange ability, and polymers that have adsorption and enzyme immobilization functions cannot be modified in principle. In many cases, it could not be said to be a versatile polymer. The present inventors have conducted extensive research into functional polymers that can be easily converted into functional groups that exhibit various functions such as ion exchange, adsorption, and enzyme immobilization.
This is what led us to discover the present invention. In other words, the object of the present invention is to be able to convert into any polymer that has a functional group that has not only cation exchange ability but also anion exchange ability, and to obtain other functions such as adsorption performance and enzyme immobilization from the same polymer. Another purpose is to provide a synthetic polymer that can be converted into a polymer having a functional group derived from the above polymer, which exhibits particularly excellent performance in immobilizing enzymes and bacterial cells and adsorbing and desorbing macromolecules. The purpose of the present invention is to provide a polymer having the following properties. Another objective is to provide functional adsorbent fibers that are superior in handling properties based on the fiber morphology and have greater fixation and adsorption capacity by using fiber-forming polymers such as polyolefin, polyamide, or polyester in combination. be. The present invention has the following configuration. (1) Repeating unit represented by the following general formula ()
A homopolymer consisting of M 1 or a copolymer of the repeating unit M 1 and the repeating unit M 2 represented by the following general formula (), in which the abundance ratio of M 1 is at least 1 mol %, Molecular weight is 2000
3,000,000.

【化】[ka]

【化】 上式中R0及びR0′は水素原子、またはメチル
基を示し、Aはベンゼン環、1個または2個の
メチル基を有するベンゼン環、クロル基を有す
るベンゼン環を示す。また、Yは下記一般式
()または()で示される官能基を示す。
In the above formula, R 0 and R 0 ' represent a hydrogen atom or a methyl group, and A represents a benzene ring, a benzene ring having one or two methyl groups, or a benzene ring having a chloro group. Further, Y represents a functional group represented by the following general formula () or ().

【化】[ka]

【化】 上式中、Xはハロゲン原子、R′及びR″は水
素原子、低級アルキル基、アリール基またはア
ラリル基を示し、R′とR″は同一でも異なつて
いてもよい。またR1、R2は、水素原子または
アルキル基を示す。 以下本発明を詳細に説明する。 本発明の芳香族ビニル系重合体の出発原料とし
ては、イオン交換樹脂原料として公知のポリスチ
レン、ポリα−メチルスチレン、ポリp−クロル
スチレン、ポリビニルトルエン、ポリビニルキシ
レンなど側鎖に芳香核を有するビニル系重合体が
用いられるが、特にポリスチレンまたはポリα−
メチルスチレンが好ましい。 本発明の重合体は、芳香核に官能基として一般
式()で示される基、すなわち、ハロアセトア
ミドメチル基を有する点に特徴がある。 この一般式()で示される官能基は、活性ハ
ロゲン原子を有しており、このハロゲン原子を塩
基性基、酸性基あるいはその他の各種官能基に容
易に転換することができる。 このような転換可能な基の具体例を示せば、1
級、2級および3級アミノ化合物との反応による
アミノグリシル基やアンモニウムグリシル基への
転換、フエノラートとの反応によるフエノキシグ
リシル基、亜硫酸ナトリウムとの反応によるスル
ホン酸基の導入など各種の官能基の導入が可能で
ある。 特に前記各種アミノ化合物との反応は、常温乃
至100℃の低温条件で行うことができる。この反
応によりハロアセトアミドメチル基をアミノアセ
トアミドメチル基に転換した重合体は、酵素及び
菌体の固定、巨大分子の吸・脱着に対して優れた
性能を示す。 ここで、一般式()で示されるくり返し単位
M1は、重合体中の全くり返し単位中少なくとも
1モル%以上、好ましくは10〜100モル%の範囲
で含有されているのがよく、1モル%より少ない
と最終目的の各種機能性官能基量が少なく、イオ
ン交換、酵素、菌体の固定あるいは吸着などの実
用性能が満足されない。 本発明の芳香族ビニル系重合体の分子量は、成
型性の点からあまり小さすぎてもあるいは大きす
ぎても好ましくないので、通常2000〜3000000、
とりわけ、50000〜1000000のものが好ましく採用
される。 さらに、本発明の重合体はメチレンまたはメト
キシメチレン結合によつて架橋され、不溶化され
ていることが望ましい。 次に、本発明の重合体をイオン交換、酵素固定
化または吸着などに使用するにあたつては、粉
末、粒子など各種の形状に成型されるが、好まし
くは、ポリオレフイン、ポリアミド、ポリエステ
ルなど公知の繊維形成性重合体と共に混合紡糸、
複合紡糸などの手段を適用して、繊維形状に成形
したものがよい。すなわち、後述するように本発
明の重合体は、前述したように出発原料として未
架橋の溶融性を有する原料高分子を用い、高分子
反応によつて一般式()および()で示され
る官能基を導入するものであるから、この未架橋
の官能基導入前の出発原料を前記繊維形成性重合
体と混合紡糸、複合紡糸などにより繊維化するこ
とができる。これらの中で、本発明者らが先に特
開昭54−15019号公報で提案したポリプロピレン
またはその共重合体を芯成分とし、ポリスチレン
やポリα−メチルスチレンなど本発明の重合体の
出発原料を鞘成分とする多芯海島型複合繊維に高
分子反応により、前記一般式()で示される官
能基を導入したものは、卓越した吸着性能を有
し、その機械的性質により取扱い性に優れ、用途
目的によつて適応した形態に編織成したり、一定
寸法の短繊維などにすることができ、著しく有利
である。 本発明の一般式()及び()で示されるく
り返し単位を有する芳香族ビニル系重合体から得
られる機能性高分子の中で、一般式()で示さ
れる基、すなわち、側鎖にアミノアセトアミドメ
チル基を導入した芳香族ビニル系重合体は、酵素
や菌体の固定並びに巨大分子の吸着材として卓越
した性能を示す。すなわち、一般式()から明
らかなように、この基はポリマ主鎖に直結する側
鎖の中程に親水性のアミド基を有し、アミドカル
ボニル基のα位の炭素原子に活性アミノ基を有し
ている。一般にアミノ基はイオン交換や吸着の際
の活性点として作用する能力を持つが、そのアミ
ノ基が、ポリマ主鎖や堅くて嵩高な側鎖置換基あ
るいは1ないし2個の原子を介して結合している
場合には、立体障害のために中・高分子量物質の
イオン交換や吸着を十分に行うことができない。
また、アミノ基が長くて柔軟な側鎖の先端に結合
している場合でも、その側鎖が疎水性である場合
には、親水性の中・高分子量物質のイオン交換・
吸着において十分な能力を発揮することができな
い。さらに、アミノ基が適当な長さの、親水性の
側鎖の先端に結合している場合でも、親水性基と
アミノ基の位置関係によつて、アミノ基の化学的
および熱安定性が悪いことがある。例えば、側鎖
中において、アミノ基がアミドカルボニル基のβ
位の炭素原子に結合していて、α位の炭素原子に
水素原子が結合していると、アミノ基が脱離しや
すい。このような化学構造の吸着材は、例えば、
滅菌処理を必要とするような用途に使用する場
合、最も安全性が高くて便利な蒸気滅菌法が使用
できない欠点がある。 一方、本発明の重合体においては、アミノ基は
ポリマ主鎖に結合した芳香核に4個の原子からな
る直鎖を介して結合しており、かつ、その直鎖の
中程に親水性基であるアミド基が存在するので、
中・高分子量のイオン交換・吸着および酵素・菌
体の吸着において優れた能力を発揮するものであ
る。また、アミノ基はアミドのカルボニル基に対
してα位に位置する炭素原子上に結合しているの
で、熱的に安定であり、本発明の重合体は、蒸気
滅菌処理が可能である。 本発明の芳香族ビニル系重合体の製造法として
は、スチレン、α−メチルスチレンなどで代表さ
れる芳香族ビニルモノマの単独重合体またはそれ
らを主成分とする共重合体を出発原料として高分
子反応によつて製造される。また、出発原料が重
合体であるから、これらの重合体を高分子反応が
行い易く、かつ最終製品としてそのまま利用でき
るように予め成型したものを用いるのがよい。 以下、前述したように、反応材料並びに製品と
して取扱い性にすぐれ、製品としてそのまま使用
できる繊維に成型した原料重合体を例として、本
発明の重合体の製造法を説明する。 本発明の重合体の製造に用いられる原料として
は、スチレン、α−メチルスチレン、ビニルトル
エンなどで代表される芳香核を有するビニルモノ
マの単独重合体もしくはこれらを主成分とする共
重合体、あるいはこれら重合体とポリオレフイン
の如き補強用ポリマの混合物からなる繊維が好ま
しく用いられる。例えば、ステープル状、フイラ
メント状、パンチフエルト、紙、織物および編物
等の形態で用いられる。繊維の太さには特に制限
はないが、通常、0.01〜500デニール、とりわけ、
0.1〜50デニールが機械的性質および実用特性の
面から好ましく用いられる。 本発明の重合体の製造に用いられるホルムアル
デヒドは、常温で気体であるので、気体として反
応液中に吹込んで溶解させるか、あるいは、パラ
ホルムアルデヒド、トリオキサン、テトラオキサ
ンなどの形で供給しても良く、また、メチラー
ル、メチレンジアセテート等の、酸により容易に
分解して、ホルムアルデヒドを発生する化合物と
して供給してもよい。 ホルムアルデヒドの使用量は、成型品の架橋密
度を決定する最も重要な因子であり、その量が少
なすぎる場合には、ポリマの溶解が起こり、他
方、多すぎる場合には、架橋密度が高くなり過ぎ
て、ハロアセトアミドメチル基が導入されにくく
なる。 ホルムアルデヒドの使用量は、ポリモノビニル
芳香族化合物の種類、成型品の大きさ、あるいは
繊維の太さ、酸触媒、ハロアセトアミドメチル化
剤、溶媒の種類および使用量、さらには製品の目
標性能によつて異なるが、大体0.001〜10モル、
とりわけ0.01〜2倍モル対芳香核が用いられる。 本発明の重合体の製造に用いられるハロアセト
アミノメチル化剤としては、N−メチロールクロ
ルアセトアミド、N−メチロール−α−ブロムプ
ロピオンアミド、N−メチロール−α−ヨードブ
チリルアミドなどで代表されるN−メチロール−
α−ハロカルボン酸アミド類およびこれらのアル
キルエーテル化合物またはエステル化合物および
水酸基のハロゲン置換体などがあげられるが、経
済性および安定性の面から、とりわけN−メチロ
ール−α−ハロカルボン酸アミド類、なかでも、
N−メチロール−α−クロルカルボン酸アミド、
とりわけ、N−メチロール−α−クロルアセトア
ミドが好ましい。 なお、繊維中に導入されたクロル基は、繊維を
ヨウ化カリウム、あるいは、臭化カリウムの溶液
で処理することにより、容易に、ヨウ素基あるい
は臭素基に変換できる。 本発明の重合体の製造に用いられる酸触媒とし
ては、塩化亜鉛、塩化アルミニウム、四塩化ス
ズ、塩化第二鉄の如き、フリーデル・クラフツ触
媒、メタン、ベンゼン、トルエン、各スルホン酸
のごとき有機スルホン酸および硫酸(濃硫酸もし
くは発煙硫酸)などの無機強酸があげられる。と
りわけ、硫酸が反応性、操作性、経済性、安定性
などの点で最適である。 酸触媒の量は、ハロアセトアミドメチル化剤の
1倍モル以上の広い範囲で変えることができる
が、膨潤剤の種類および使用量によつて最適使用
量が変化する。 本発明の重合体の製造に用いられる膨潤剤とし
ては、直鎖もしくは架橋化ポリモノビニル芳香族
化合物に対する膨潤作用を有し、且つ、ハロアセ
トアミドメチル化剤および酸触媒に対する溶解性
を有する不活性溶媒ならば何でも良く、ニトロプ
ロパンなどのニトロアルカン、ニトロベンゼンな
どの芳香族ニトロ化合物、1,2−ジクロルエタ
ンなどの塩素化炭化水素、スルホランなどの非プ
ロトン性極性有機溶剤などがあげられる。これら
は個々別々に、もしくは、互いに混合して、ある
いは、他の不活性溶剤と混合して、用いることが
できる。 本発明における反応は、一般に0〜100℃、副
反応抑制のため、とりわけ0〜30℃の温度範囲で
行われる。 本発明の重合体の製造実施にあたつては、ハロ
アセトアミノメチル化剤、酸触媒、ホルムアルデ
ヒドの種類および量の選択が非常に重要であり、
また、反応液が均一溶液になるような組み合せに
すると、製品の均質性、操作性の面で有利であ
る。その意味で、硫酸とニトロ化合物溶剤と組み
合せると均一溶液になり易く、扱い易い。 また、本発明の一般式()で示されるアミノ
アセトアミドメチル基を導入した芳香族ビニル系
重合体は、前記ハロアセトアミドメチル基を有す
る芳香族ビニル系重合体をアミノ化合物で処理す
ることにより容易に得ることができる。 本発明で用いられるアミノ化合物は、アンモニ
ア、ヒドロキシルアミン、ヒドラジンのほか、第
一級または第二級アミノ基または第三級アミノ基
を有する有機アミノ化合物であり、その具体例と
しては、メチルアミン、エチルアミン、n−ブチ
ルアミン、ジメチルアミン、ジエチルアミン、ヘ
キサメチレンジアミン、ポリエチレンイミン、ト
リメチルアミン、トリエチルアミン、ピリジンな
どがあげられる。 本発明の重合体の製造におけるアミノ化合物と
原料繊維中のハロアセチル基の反応は、ハロゲン
原子が最も反応性の低い塩素原子であつても、室
温付近の反応温度で良く進む反応である。アミノ
化合物の使用量は、繊維中に必要とするアミノ基
と等モル量以上用いられる。この場合、アミノ化
合物が第二級および第三級アミンである場合に
は、繊維中の架橋密度は変化しないが、アミノ化
合物が−NH2基、もしくは複数の第二級アミノ
基を有する場合にはアミノ化合物は複数のハロア
セチル基と反応し、繊維の架橋密度が増大する。
この架橋密度の増加はアミノ化合物の使用量を増
大させると抑制される。 原料繊維とアミノ化合物の反応において使用さ
れる溶媒としては、水およびメタノール、エタノ
ール、n−ブタノールなどで代表される低級アル
コールおよびジオキサン、テトラヒドロフランで
代表されるエーテル類などが好ましく用いられ
る。 また、アミノ化合物が低沸点化合物である場合
には、加圧下で反応させることにより、反応時間
を短縮することができる。 本発明の重合体の成型品例えば繊維は、低分子
アニオンのイオン交換から高分子量物質の吸着・
イオン交換、酵素・菌体の固定化まで幅広い用途
に利用できるものであるが、個々の用途に応じて
最も適した規格のものを選択して使用するのが好
ましい。 繊維の機械的強度の高いことが要求される用途
には、補強用ポリマを含有する繊維が好ましく用
いられる。 補強用繊維ポリマは、本発明の重合体の成型品
の製造過程において物理的および化学的に不活性
であり、且つ、機械的強度を維持できるものなら
なんでも良く、特に限定はない。特に好ましい補
強用ポリマの具体例として、ポリエチレン、ポリ
プロピレン、ポリ(3−メチルブテン−1)、ポ
リ(4−メチルペンテン−1)などで代表される
結晶性ポリα−オレフインがあげられる。 本発明の重合体の成型品である例えば繊維は、
繊維内部における補強用ポリマの配置形式として
は、不活性アミノアセトアミドメチル化ポリモノ
ビニル芳香族化合物(以下基幹ポリマと略称す
る)と補強用ポリマが無秩序に細かく分散した単
純混合繊維形式のもの、および補強用ポリマを芯
部とし、かつ基幹ポリマを外側に配置した芯鞘型
複合繊維形式のもの、さらには基幹ポリマを海成
分とし、かつ補強用ポリマを海成分中に多数分散
した島成分とする多芯海島型複合繊維形式のもの
があり、これらのいずれもが夫々特徴を有して有
効に使用される。 単純混合繊維形式のものは、補強用ポリマがそ
の混合比の割合で外部に露出しているので、吸着
性能はやや劣るが、膨潤収縮が小さい利点があ
り、芯鞘型複合繊維形式のものは吸着能が大きい
利点があるが、膨潤収縮が大きく、膨潤収縮を繰
り返すうちに芯部と鞘部の剥離が起こりやすい欠
点を有する。多芯海島型複合繊維形式のものは、
両者の長所を維持しつつ、両者の短所を改良した
ものであり、吸着能が大きく、耐剥離性が大きい
ので特に優れている。この場合、海成分中に化学
的に安定な補強用ポリマを1〜30%混合すると膨
潤収縮が小さくなり、耐剥離性が更に向上する。 また、島の数は多い程良いが、技術的な制約が
あり、通常5〜50個、とりわけ10〜30個が好まし
い。 以下、本発明の実施例により、さらに具体的に
説明する。 なお、実施例においてハロアセトアミドメチル
基およびこれから誘導される基の同定は次の測定
法により行つた。 (1) 元素分析 炭素、水素および窒素は、熱伝導法による同
時定量法で求め、ハロゲンはフラスコ燃焼法に
より定量した。 (2) 赤外線吸収スペクトル 試料細片をKBr錠剤法により、日立赤外線
分光光度計EPI−G3型を用いて測定した。 以下、実施例について述べる。 実施例 1 ポリプロピレン(三井“ノープレン”J3HG)
40部を島成分とし、ポリスチレン(“スタイロン”
666)50部、ポリプロピレン(住友“ノープレン”
WF−727−F)1.5部の混合物を海成分とする多
芯海島型複合繊維(島数16、単糸繊度26デニー
ル、引張強度2.9g/d、伸度55%、フイラメン
ト数42)10gを、N−メチロールクロルアセトア
ミド10g、ニトロベンゼン80g、98%硫酸80gお
よびパラホルムアルデヒド0.17gからなる溶液
中、20℃で15時間反応させた後、水を加えて反応
を止め、次に繊維を水で洗浄し、繊維に付着した
ニトロベンゼンをメタノールで抽出除去した。繊
維を60℃で乾燥し、14.5gを得た。この繊維の元
素分析の結果は、炭素71.4%、水素8.7%、窒素
4.2%、塩素10.6%であつた。また、赤外線吸収
スペクトルでは3400cm-1、3280cm-1、1655cm-1
よび1520cm-1にアミド基に特有の吸収を示した。
これらの結果および後述する反応性から、この繊
維はクロルアセトアミドメチル基で約92%置換さ
れた芳香核を有する繊維であることが判明した。 この繊維をジメチルアミン10%水溶液に浸し、
70℃で4時間加熱した後、水洗し、次いで1規定
カセイソーダ水溶液で洗つた後、洗液が中性にな
るまで水洗した。この繊維の一部を元素分析に、
一部を交換容量測定に、他の一部を加水分解処理
に供した。元素分析結果は、炭素76.5%、水素
10.2%、窒素8.5%でハロゲンは認められなかつ
た。赤外線吸収スペクトルでは、1670cm-1および
1545cm-1にアミド基に特有の吸収を示し、また、
交換容量は塩酸型繊維1グラム当り2.42ミリ当量
であつた。また、6規定塩酸中15時間環流加熱し
た繊維の交換容量は塩酸塩型繊維1グラム当り
3.32ミリ当量であり、この繊維の赤外線吸収スペ
クトルでは1670cm-1の吸収が消失していたことか
ら、ジメチルアセチル基が無くなつたことが確認
された。 実施例 2 ポリプロピレン(三井“ノープレン”J3HG)
を島成分とし、ポリスチレン(“スタイロン”
666)49.5部、低分子量ポリスチレン(“ハイマ”
ST−120)1.5部、ポリプロピレン7.5部および低
分子量ポリプロピレン(“ビスコール”550P)1.5
部の混合物を海成分として、海島比が海:島=
60:40になるように溶融紡糸した後、4倍に延伸
することによつて、多芯海島型複合繊維(単糸繊
度3.7デニール、引張強度3.4g/d、伸度39%)
を得た。 次に、この繊維(156デニール/42フイラメン
ト)、4インチφ−24ゲージの平編機で筒編を作
つた。 ニトロベンゼン475部と98%硫酸475部との混合
溶液に20℃でパラホルムアルデヒド3部を溶解
し、次にこの溶液を0℃に冷却し、温度を0〜5
℃に保ちながら、N−メチロールクロルアセトア
ミド50部を添加、溶解した。得られた溶液に上記
多芯海島型複合繊維筒編70部を浸漬し、20℃で20
時間反応させた。 得られた筒編を水およびメタノールで十分洗浄
した後、50℃で真空乾燥して、クロルアセトアミ
ドメチル化繊維筒編103部を得た。 次に、第1表の各種アミノ化合物を10%濃度で
含む水またはエタノール溶液20部に、上記で得ら
れたクロルアセトアミドメチル化繊維筒編1部を
浸し、70℃で5時間加熱し、次いで水洗後乾燥し
て表中試料1〜4のアミノアセトアミドメチル化
不溶性ポリスチレン(ポリプロピレン補強)繊維
筒編を得た。また、上記で得たクロルセトアミド
メチル化繊維筒編をヨウ化カリウム10%、エタノ
ール80%および水10%からなる溶液中70℃で6時
間加熱して、クロル基をヨウ素基に変換した後、
この繊維筒編を10%トリメチルアミン水溶液中で
70℃で6時間加熱して、表中試料5のトリメチル
アンモニウムアセトアミドメチル化繊維筒編を得
た。これらの試料について、元素分析、交換容量
測定、含水度およびビリルビン吸着能測定を行つ
た。結果を第1表に示す。 但し、表中の窒素含有率は、試料1〜4では遊
離アミン型、試料5では塩酸塩型での分析値であ
る。表中の交換容量は塩酸塩型での値であるが、
試料1〜4は弱アニオン交換容量を、試料5は中
性塩分解容量を示す。 また、含水度は乾燥試料4g(W0)で水中で
十分膨潤させた後、遠心分離して表面の水分を除
去した後、重量(W)を測定し、次式から算出したも
のである。 含水度=W−W0/W0 ビリルビン吸着量は、乾燥重量(W1)既知の
試料をPH7の中性リン酸緩衝液(1/15モル濃度)
を25%含み、牛血清アルブミンCohn分割第フ
ラクシヨンを560mg/とビリルビンナトリウム
塩をmg/含む水溶液で3時間振蘯吸着させ、吸
着前後の水溶液のビリルビン濃度を450mμの吸
光度から検量線を用いて求め、次式から算出し
た。 ビリルビンの吸着量 =C1−C2/W1×V[mg/g] 但し、式中C1は吸着前の、C2は吸着後のビリ
ルビン濃度を示し、Vは水溶液の使用量を示す。 交換容量は、試料を1規定水酸化ナトリウム水
溶液で再生後、1規定塩酸で処理し、残存する塩
酸の量から消費された塩酸の当量数を求め、その
値を塩酸塩型の試料の乾燥重量のグラム数で割つ
た値である。 実施例 3 ポリプロピレン(三井“ノープレン”J3HG)
を島成分とし、ポリビニルトルエン(メタ60%パ
ラ40%の混合物。125℃で24時間塊状熱重合の後、
ベンゼンに溶かし、メタノールで再沈殿精製した
もので、数平均分子量約20万)50部、ポリプロピ
レン7.5部および低分子量ポリプロピレン(“ビス
コール”550P)1.5部の混合物を海成分として、
海島比が海:島=60:40になるように溶融紡糸し
た後、3.5倍に延伸することによつて、多芯海島
型複合繊維(単糸繊度4.1デニール、引張強度3.0
g/d、伸度35%)を得た。 次に、この繊維(160デニール/42フイラメン
ト)を用いて、4インチφ−24ゲージの平編機で
筒編を作つた。 ニトロベンゼン475部と98%硫酸475部との混合
溶液に20℃でパラホルムアルデヒド3部を溶解
し、次にこの溶液を0℃に冷却し、温度を0〜5
℃に保ちながら、N−メチロールクロルアセトア
ミド50部を添加、溶解した。得られた溶液に上記
多芯海島型複合繊維筒編70部を浸漬し、20℃で20
時間反応させた。 得られた筒編を水およびメタノールで十分洗浄
した後、50℃で真空乾燥して、クロルアセトアミ
ドメチル化繊維筒編95部を得た。 次に、上記で得られたクロルアセトアミドメチ
ル化繊維筒編10部を50%ジメチルアミン水溶液に
浸し、50℃で5時間加熱し、次いで水洗後乾燥し
てジメチルアミノアセトアミドメチル化繊維筒編
を得た。このものを実施例2と同様に評価したと
ころ、交換容量は1.92meq/g、含水度は0.9、ビ
リルビン吸着量は8.3mg/gであつた。
embedded image In the above formula, X represents a halogen atom, R′ and R″ represent a hydrogen atom, a lower alkyl group, an aryl group, or an aralyl group, and R′ and R″ may be the same or different. Moreover, R 1 and R 2 represent a hydrogen atom or an alkyl group. The present invention will be explained in detail below. Starting materials for the aromatic vinyl polymer of the present invention include vinyls having an aromatic nucleus in their side chains, such as polystyrene, polyα-methylstyrene, polyp-chlorostyrene, polyvinyltoluene, and polyvinylxylene, which are known as raw materials for ion exchange resins. Polymers are used, especially polystyrene or polyα-
Methylstyrene is preferred. The polymer of the present invention is characterized in that the aromatic nucleus has a group represented by the general formula (), ie, a haloacetamidomethyl group, as a functional group. The functional group represented by the general formula () has an active halogen atom, and this halogen atom can be easily converted into a basic group, an acidic group, or other various functional groups. Specific examples of such convertible groups include 1
Various functionalities such as conversion to aminoglycyl group or ammonium glycyl group by reaction with primary, secondary, and tertiary amino compounds, phenoxyglycyl group by reaction with phenolate, and introduction of sulfonic acid group by reaction with sodium sulfite. It is possible to introduce groups. In particular, the reaction with the various amino compounds described above can be carried out at a low temperature of room temperature to 100°C. A polymer in which haloacetamidomethyl groups are converted to aminoacetamidomethyl groups through this reaction exhibits excellent performance in immobilizing enzymes and bacterial cells and adsorbing and desorbing macromolecules. Here, the repeating unit shown by the general formula ()
M 1 is preferably contained in an amount of at least 1 mol % or more, preferably in the range of 10 to 100 mol %, based on all the repeating units in the polymer, and if it is less than 1 mol %, various functional groups for the final purpose The amount is small, and practical performance such as ion exchange, enzyme, and bacterial cell immobilization or adsorption is not satisfied. The molecular weight of the aromatic vinyl polymer of the present invention is usually 2,000 to 3,000,000, since it is not preferable to have a molecular weight that is too small or too large from the viewpoint of moldability.
In particular, those with a number of 50,000 to 1,000,000 are preferably employed. Further, the polymer of the present invention is preferably crosslinked with methylene or methoxymethylene bonds to be insolubilized. Next, when the polymer of the present invention is used for ion exchange, enzyme immobilization, adsorption, etc., it is molded into various shapes such as powder and particles, but preferably known polymers such as polyolefin, polyamide, polyester, etc. mixed spinning with a fiber-forming polymer of
It is preferable to use a method such as composite spinning to form a fiber shape. That is, as will be described later, the polymer of the present invention can be produced by using an uncrosslinked, meltable raw material polymer as a starting material, and by a polymer reaction, functionalities represented by the general formulas () and () can be obtained. Since a group is to be introduced therein, this uncrosslinked starting material before introduction of the functional group can be made into fibers by mixed spinning, composite spinning, etc. with the fiber-forming polymer. Among these, polypropylene or its copolymer, which the present inventors previously proposed in JP-A-54-15019, is used as a core component, and starting materials for the polymer of the present invention such as polystyrene and polyα-methylstyrene are used. A multicore sea-island type composite fiber with a sheath component of which has a functional group represented by the general formula () introduced through a polymer reaction has excellent adsorption performance and is easy to handle due to its mechanical properties. It is extremely advantageous because it can be knitted or woven into a form adapted to the purpose of use, or can be made into short fibers of a certain size. Among the functional polymers obtained from aromatic vinyl polymers having repeating units represented by the general formulas () and () of the present invention, groups represented by the general formula (), that is, aminoacetamide in the side chain Aromatic vinyl polymers into which methyl groups have been introduced exhibit excellent performance as adsorbents for immobilizing enzymes and bacterial cells and adsorbing macromolecules. That is, as is clear from the general formula (), this group has a hydrophilic amide group in the middle of the side chain directly connected to the polymer main chain, and an active amino group at the carbon atom at the α position of the amide carbonyl group. have. In general, amino groups have the ability to act as active sites during ion exchange and adsorption; If it is, ion exchange and adsorption of medium- and high-molecular weight substances cannot be performed sufficiently due to steric hindrance.
In addition, even if the amino group is bonded to the tip of a long and flexible side chain, if the side chain is hydrophobic, ion exchange of hydrophilic medium- and high-molecular weight substances
It cannot exhibit sufficient adsorption ability. Furthermore, even when the amino group is attached to the tip of a hydrophilic side chain of appropriate length, the chemical and thermal stability of the amino group is poor due to the positional relationship between the hydrophilic group and the amino group. Sometimes. For example, in the side chain, the amino group is β of the amide carbonyl group.
If a hydrogen atom is bonded to a carbon atom at the α-position and a hydrogen atom is bonded to a carbon atom at the α-position, the amino group is likely to be removed. Adsorbents with such chemical structures are, for example,
When used in applications that require sterilization, there is a drawback that steam sterilization, which is the safest and most convenient method, cannot be used. On the other hand, in the polymer of the present invention, the amino group is bonded to the aromatic nucleus bonded to the polymer main chain via a linear chain consisting of four atoms, and a hydrophilic group is present in the middle of the linear chain. Since there is an amide group,
It exhibits excellent ability in ion exchange and adsorption of medium and high molecular weight substances, as well as adsorption of enzymes and bacterial cells. Furthermore, since the amino group is bonded to the carbon atom located at the α-position with respect to the carbonyl group of the amide, it is thermally stable, and the polymer of the present invention can be subjected to steam sterilization. The method for producing the aromatic vinyl polymer of the present invention involves a polymer reaction using a homopolymer of an aromatic vinyl monomer represented by styrene, α-methylstyrene, etc. or a copolymer containing these as the main component as a starting material. Manufactured by. Furthermore, since the starting materials are polymers, it is preferable to use these polymers that have been molded in advance so that the polymer reaction can be easily carried out and that they can be used as they are as final products. Hereinafter, as mentioned above, the method for producing the polymer of the present invention will be explained using as an example a raw material polymer molded into a fiber that is easy to handle as a reaction material and a product and can be used as a product as it is. The raw materials used in the production of the polymer of the present invention include homopolymers of vinyl monomers having aromatic nuclei such as styrene, α-methylstyrene, vinyltoluene, etc., or copolymers mainly composed of these. Fibers made of a mixture of polymers and reinforcing polymers such as polyolefins are preferably used. For example, it is used in the form of staples, filaments, punched felt, paper, woven fabrics, knitted fabrics, and the like. There is no particular limit to the thickness of the fiber, but it is usually 0.01 to 500 deniers, especially
A denier of 0.1 to 50 deniers is preferably used from the viewpoint of mechanical properties and practical properties. Formaldehyde used in the production of the polymer of the present invention is a gas at room temperature, so it may be blown into the reaction solution as a gas and dissolved, or it may be supplied in the form of paraformaldehyde, trioxane, tetraoxane, etc. Alternatively, it may be supplied as a compound that is easily decomposed by acid to generate formaldehyde, such as methylal or methylene diacetate. The amount of formaldehyde used is the most important factor determining the crosslink density of the molded product; if the amount is too small, the polymer will dissolve, while if it is too large, the crosslink density will become too high. Therefore, it becomes difficult to introduce a haloacetamidomethyl group. The amount of formaldehyde used depends on the type of polymonovinyl aromatic compound, the size of the molded product, the thickness of the fiber, the type and amount of the acid catalyst, haloacetamide methylating agent, solvent, and the target performance of the product. The amount varies, but approximately 0.001 to 10 mol,
In particular, 0.01 to 2 moles per aromatic nucleus are used. The haloacetaminomethylating agent used in the production of the polymer of the present invention is typified by N-methylol chloroacetamide, N-methylol-α-bromopropionamide, N-methylol-α-iodobutyrylamide, etc. N-methylol-
Examples include α-halocarboxylic acid amides, their alkyl ether compounds or ester compounds, and halogen-substituted hydroxyl groups, but from the viewpoint of economy and stability, N-methylol-α-halocarboxylic acid amides, especially ,
N-methylol-α-chlorocarboxylic acid amide,
Particularly preferred is N-methylol-α-chloroacetamide. Note that the chloro groups introduced into the fibers can be easily converted into iodine groups or bromine groups by treating the fibers with a solution of potassium iodide or potassium bromide. Acid catalysts used in the preparation of the polymers of the present invention include zinc chloride, aluminum chloride, tin tetrachloride, ferric chloride, Friedel-Crafts catalysts, organic acids such as methane, benzene, toluene, sulfonic acids, etc. Examples include strong inorganic acids such as sulfonic acid and sulfuric acid (concentrated or fuming sulfuric acid). In particular, sulfuric acid is optimal in terms of reactivity, operability, economy, stability, etc. The amount of the acid catalyst can be varied over a wide range of 1 mole or more of the haloacetamide methylating agent, but the optimum amount used varies depending on the type and amount of the swelling agent used. The swelling agent used in the production of the polymer of the present invention is an inert solvent that has a swelling effect on the linear or crosslinked polymonovinyl aromatic compound and has solubility for the haloacetamide methylating agent and the acid catalyst. Any suitable solvent may be used, including nitroalkanes such as nitropropane, aromatic nitro compounds such as nitrobenzene, chlorinated hydrocarbons such as 1,2-dichloroethane, and aprotic polar organic solvents such as sulfolane. These can be used individually or mixed with each other or with other inert solvents. The reaction in the present invention is generally carried out at a temperature range of 0 to 100°C, particularly 0 to 30°C to suppress side reactions. In carrying out the production of the polymer of the present invention, it is very important to select the type and amount of the haloacetaminomethylating agent, acid catalyst, and formaldehyde.
Furthermore, combining the reaction solutions to form a homogeneous solution is advantageous in terms of product homogeneity and operability. In this sense, when sulfuric acid is combined with a nitro compound solvent, it is easy to form a homogeneous solution and easy to handle. Furthermore, the aromatic vinyl polymer having an aminoacetamidomethyl group represented by the general formula () of the present invention can be easily obtained by treating the aromatic vinyl polymer having the haloacetamidomethyl group with an amino compound. Obtainable. The amino compounds used in the present invention include ammonia, hydroxylamine, and hydrazine, as well as organic amino compounds having a primary or secondary amino group or a tertiary amino group. Specific examples thereof include methylamine, Examples include ethylamine, n-butylamine, dimethylamine, diethylamine, hexamethylenediamine, polyethyleneimine, trimethylamine, triethylamine, and pyridine. The reaction between the amino compound and the haloacetyl group in the raw fiber in the production of the polymer of the present invention is a reaction that proceeds well at a reaction temperature around room temperature even if the halogen atom is the least reactive chlorine atom. The amount of the amino compound to be used is equal to or more than the amount of amino groups required in the fiber. In this case, when the amino compound is a secondary or tertiary amine, the crosslink density in the fiber does not change, but when the amino compound has -NH2 groups or multiple secondary amino groups, The amino compound reacts with multiple haloacetyl groups, increasing the crosslink density of the fiber.
This increase in crosslink density is suppressed by increasing the amount of amino compound used. As the solvent used in the reaction of the raw material fiber and the amino compound, water, lower alcohols such as methanol, ethanol, n-butanol, and ethers such as dioxane and tetrahydrofuran are preferably used. Furthermore, when the amino compound is a low boiling point compound, the reaction time can be shortened by reacting under pressure. Molded products of the polymer of the present invention, such as fibers, can be used for ion exchange of low molecular weight anions, adsorption of high molecular weight substances, etc.
Although it can be used for a wide range of applications, including ion exchange and immobilization of enzymes and microbial cells, it is preferable to select and use the most suitable standard according to the individual application. For applications requiring high mechanical strength of the fibers, fibers containing reinforcing polymers are preferably used. The reinforcing fiber polymer is not particularly limited as long as it is physically and chemically inert during the manufacturing process of the molded product of the polymer of the present invention and can maintain mechanical strength. Specific examples of particularly preferred reinforcing polymers include crystalline polyα-olefins represented by polyethylene, polypropylene, poly(3-methylbutene-1), poly(4-methylpentene-1), and the like. For example, fibers that are molded products of the polymer of the present invention are
The reinforcing polymer is arranged inside the fiber in the form of a simple mixed fiber in which an inert aminoacetamidomethylated polymonovinyl aromatic compound (hereinafter referred to as the "base polymer") and the reinforcing polymer are finely dispersed in a disordered manner; There are core-sheath type composite fibers in which the core polymer is the core and the base polymer is placed on the outside, and there are also core-sheath type composite fibers in which the base polymer is the sea component and the reinforcing polymer is the island component dispersed in large numbers in the sea component. There are core-sea-island composite fiber types, and each of these has its own characteristics and can be used effectively. In the simple mixed fiber format, the reinforcing polymer is exposed to the outside at a proportion of the mixing ratio, so the adsorption performance is slightly inferior, but it has the advantage of low swelling and shrinkage, while the core-sheath composite fiber format Although it has the advantage of high adsorption capacity, it has the disadvantage of large swelling and shrinking, and the core and sheath are likely to separate during repeated swelling and shrinking. The multicore sea-island composite fiber format is
It maintains the advantages of both while improving the disadvantages of both, and is particularly excellent because it has high adsorption capacity and high peeling resistance. In this case, if 1 to 30% of a chemically stable reinforcing polymer is mixed in the sea component, swelling and shrinkage will be reduced and peeling resistance will be further improved. Further, the larger the number of islands, the better, but there are technical constraints, and 5 to 50 islands are usually preferred, and 10 to 30 islands are particularly preferred. Hereinafter, the present invention will be explained more specifically using Examples. In the Examples, the haloacetamidomethyl group and groups derived therefrom were identified by the following measurement method. (1) Elemental analysis Carbon, hydrogen, and nitrogen were determined by simultaneous quantitative determination using the thermal conduction method, and halogen was determined by the flask combustion method. (2) Infrared absorption spectrum A sample strip was measured by the KBr tablet method using a Hitachi infrared spectrophotometer model EPI-G3. Examples will be described below. Example 1 Polypropylene (Mitsui “Noprene” J3HG)
40 parts as an island component, polystyrene (“Styron”)
666) 50 parts, polypropylene (Sumitomo “Noprene”)
WF-727-F) 10g of multicore sea-island type composite fiber (number of islands: 16, single fiber fineness: 26 denier, tensile strength: 2.9 g/d, elongation: 55%, number of filaments: 42), with the sea component being a mixture of 1.5 parts of WF-727-F) , in a solution consisting of 10 g of N-methylolchloroacetamide, 80 g of nitrobenzene, 80 g of 98% sulfuric acid and 0.17 g of paraformaldehyde at 20 °C for 15 hours, the reaction was stopped by adding water, and then the fibers were washed with water. Then, nitrobenzene adhering to the fibers was extracted and removed with methanol. The fibers were dried at 60°C to obtain 14.5g. The results of elemental analysis of this fiber are 71.4% carbon, 8.7% hydrogen, and nitrogen.
4.2%, and chlorine 10.6%. Furthermore, the infrared absorption spectrum showed absorptions characteristic of amide groups at 3400 cm -1 , 3280 cm -1 , 1655 cm -1 and 1520 cm -1 .
From these results and the reactivity described below, it was found that this fiber had an aromatic nucleus substituted with approximately 92% chloroacetamidomethyl groups. Soak this fiber in a 10% dimethylamine aqueous solution,
After heating at 70° C. for 4 hours, it was washed with water, then washed with a 1N aqueous solution of caustic soda, and then washed with water until the washing solution became neutral. A part of this fiber was subjected to elemental analysis.
One part was used for exchange capacity measurement, and the other part was subjected to hydrolysis treatment. Elemental analysis results: 76.5% carbon, hydrogen
10.2%, nitrogen 8.5%, and no halogen was observed. In the infrared absorption spectrum, 1670 cm -1 and
It exhibits an absorption characteristic of amide groups at 1545 cm -1 , and
The exchange capacity was 2.42 milliequivalents per gram of hydrochloric acid type fiber. In addition, the exchange capacity of fibers heated under reflux in 6N hydrochloric acid for 15 hours is per gram of hydrochloride type fibers.
The amount was 3.32 milliequivalents, and the absorption at 1670 cm -1 disappeared in the infrared absorption spectrum of this fiber, confirming that the dimethylacetyl group had disappeared. Example 2 Polypropylene (Mitsui “Noprene” J3HG)
with polystyrene (“Styron”) as the island component.
666) 49.5 parts, low molecular weight polystyrene (“Hima”)
ST-120) 1.5 parts, polypropylene 7.5 parts and low molecular weight polypropylene (“Viscoll” 550P) 1.5 parts
The sea/island ratio is sea:island=
After melt-spinning to a ratio of 60:40 and then drawing 4 times, a multicore sea-island composite fiber (single fineness 3.7 denier, tensile strength 3.4 g/d, elongation 39%) is produced.
I got it. Next, a tube knit was made using this fiber (156 denier/42 filament) using a 4 inch φ-24 gauge flat knitting machine. Dissolve 3 parts of paraformaldehyde in a mixed solution of 475 parts of nitrobenzene and 475 parts of 98% sulfuric acid at 20°C, then cool the solution to 0°C and adjust the temperature from 0 to 5.
While maintaining the temperature at °C, 50 parts of N-methylolchloroacetamide was added and dissolved. 70 parts of the multi-core sea-island type composite fiber tubular knitted fibers were immersed in the resulting solution and heated at 20℃ for 20 minutes.
Allowed time to react. The obtained cylindrical knit was sufficiently washed with water and methanol, and then vacuum dried at 50°C to obtain 103 parts of chloroacetamidomethylated fiber cylindrical knit. Next, 1 part of the chloroacetamidomethylated fiber tube obtained above was immersed in 20 parts of water or ethanol solution containing various amino compounds shown in Table 1 at a concentration of 10%, heated at 70°C for 5 hours, and then After washing with water and drying, aminoacetamidomethylated insoluble polystyrene (polypropylene reinforced) fiber tube knits of Samples 1 to 4 in the table were obtained. In addition, the chlorcetamide methylated fiber tube knit obtained above was heated at 70°C for 6 hours in a solution consisting of 10% potassium iodide, 80% ethanol, and 10% water to convert the chloro groups to iodine groups. ,
This cylindrical knitted fiber was placed in a 10% trimethylamine aqueous solution.
It was heated at 70° C. for 6 hours to obtain a trimethylammonium acetamidomethylated fiber tube knitted sample 5 in the table. Elemental analysis, exchange capacity measurements, water content, and bilirubin adsorption capacity measurements were performed on these samples. The results are shown in Table 1. However, the nitrogen content in the table is the analytical value for samples 1 to 4 in the free amine type, and for sample 5 in the hydrochloride type. The exchange capacity in the table is the value for the hydrochloride type,
Samples 1-4 show weak anion exchange capacity, and sample 5 shows neutral salt decomposition capacity. Moreover, the water content was calculated from the following formula by sufficiently swelling 4 g (W 0 ) of a dry sample in water, centrifuging it to remove surface moisture, and then measuring the weight (W). Water content = W - W 0 / W 0 The amount of bilirubin adsorbed is the dry weight (W 1 ).
The bilirubin concentration in the aqueous solution before and after adsorption was determined using a calibration curve from the absorbance at 450 mμ. , calculated from the following formula. Adsorption amount of bilirubin = C 1 − C 2 /W 1 ×V [mg/g] However, in the formula, C 1 indicates the bilirubin concentration before adsorption, C 2 indicates the bilirubin concentration after adsorption, and V indicates the amount of aqueous solution used. . The exchange capacity is determined by regenerating the sample with a 1N aqueous sodium hydroxide solution, treating it with 1N hydrochloric acid, calculating the number of equivalents of consumed hydrochloric acid from the amount of remaining hydrochloric acid, and calculating the value by calculating the dry weight of the sample in the hydrochloride form. It is the value divided by the number of grams. Example 3 Polypropylene (Mitsui “Noprene” J3HG)
is the island component and polyvinyltoluene (a mixture of 60% meta and 40% para. After bulk thermal polymerization at 125℃ for 24 hours,
A mixture of 50 parts of polypropylene (with a number average molecular weight of approximately 200,000), 7.5 parts of polypropylene, and 1.5 parts of low molecular weight polypropylene ("Viscoll" 550P) as a sea component, dissolved in benzene and purified by reprecipitation with methanol.
After melt-spinning so that the sea-island ratio is 60:40, and then drawing it 3.5 times, a multicore sea-island composite fiber (single fineness 4.1 denier, tensile strength 3.0
g/d, elongation 35%). Next, using this fiber (160 denier/42 filaments), a tube knit was made using a 4 inch φ-24 gauge flat knitting machine. Dissolve 3 parts of paraformaldehyde in a mixed solution of 475 parts of nitrobenzene and 475 parts of 98% sulfuric acid at 20°C, then cool the solution to 0°C and adjust the temperature from 0 to 5.
While maintaining the temperature at °C, 50 parts of N-methylol chloroacetamide was added and dissolved. 70 parts of the multicore sea-island type composite fiber tubular knitted fibers were immersed in the resulting solution and heated at 20℃ for 20 minutes.
Allowed time to react. The obtained cylindrical knit was thoroughly washed with water and methanol, and then vacuum dried at 50°C to obtain 95 parts of chloroacetamidomethylated fiber cylindrical knit. Next, 10 parts of the chloroacetamide methylated fiber tube obtained above were immersed in a 50% dimethylamine aqueous solution, heated at 50°C for 5 hours, and then washed with water and dried to obtain a dimethylaminoacetamide methylated fiber tube. Ta. When this product was evaluated in the same manner as in Example 2, the exchange capacity was 1.92 meq/g, the water content was 0.9, and the bilirubin adsorption amount was 8.3 mg/g.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記一般式()で示されるくり返し単位
M1からなる単独重合体、または該くり返し単位
M1と下記一般式()で示されるくり返し単位
M2との共重合体であつて、該M1の存在比率が少
なくとも1モル%であり、分子量が2000〜
3000000であることを特徴とする芳香族ビニル系
重合体。 【式】 【式】 上式中R0及びR0′は水素原子、またはメチル基
を示し、Aはベンゼン環、1個または2個のメチ
ル基を有するベンゼン環、クロル基を有するベン
ゼン環を示す。 また、Yは下記一般式()または()で示
される官能基を示す。 【化】 【化】 上式中、Xはハロゲン原子、R′及びR″は水素
原子、低級アルキル基、アリール基またはアラリ
ル基を示し、R′とR″は同一でも異なつていても
よい。またR1、R2は、水素原子またはアルキル
基を示す。
[Claims] 1. A repeating unit represented by the following general formula ()
A homopolymer consisting of M 1 or the repeating unit
M 1 and the repeating unit shown by the general formula () below
A copolymer with M 2 in which the abundance ratio of M 1 is at least 1 mol% and the molecular weight is 2000 to 2000.
3,000,000. [Formula] [Formula] In the above formula, R 0 and R 0 ' represent a hydrogen atom or a methyl group, and A represents a benzene ring, a benzene ring having one or two methyl groups, or a benzene ring having a chloro group. show. Moreover, Y represents a functional group represented by the following general formula () or (). [Chemical formula] [Chemical formula] In the above formula, X is a halogen atom, R' and R'' represent a hydrogen atom, a lower alkyl group, an aryl group, or an aralyl group, and R' and R'' may be the same or different. . Moreover, R 1 and R 2 represent a hydrogen atom or an alkyl group.
JP1297689A 1989-01-21 1989-01-21 Aromatic vinyl polymer having new functional group and preparation thereof Granted JPH01279908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297689A JPH01279908A (en) 1989-01-21 1989-01-21 Aromatic vinyl polymer having new functional group and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297689A JPH01279908A (en) 1989-01-21 1989-01-21 Aromatic vinyl polymer having new functional group and preparation thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8656980A Division JPS5712008A (en) 1980-06-27 1980-06-27 Aromatic vinyl polymer having novel functional group and production thereof

Publications (2)

Publication Number Publication Date
JPH01279908A JPH01279908A (en) 1989-11-10
JPH0571603B2 true JPH0571603B2 (en) 1993-10-07

Family

ID=11820258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297689A Granted JPH01279908A (en) 1989-01-21 1989-01-21 Aromatic vinyl polymer having new functional group and preparation thereof

Country Status (1)

Country Link
JP (1) JPH01279908A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023008490A1 (en) 2021-07-29 2023-02-02

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956219A (en) * 1973-02-01 1976-05-11 Eli Lilly And Company Crosslinked polystyrene and substituted polystyrene compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956219A (en) * 1973-02-01 1976-05-11 Eli Lilly And Company Crosslinked polystyrene and substituted polystyrene compositions

Also Published As

Publication number Publication date
JPH01279908A (en) 1989-11-10

Similar Documents

Publication Publication Date Title
Tang et al. Polyphosphazene membranes. III. Solid‐state characterization and properties of sulfonated poly [bis (3‐methylphenoxy) phosphazene]
Ji et al. In-situ crosslinked SPPO/PVA composite membranes for alkali recovery via diffusion dialysis
Shi et al. Spacer‐Engineered Ionic Channels in Covalent Organic Framework Membranes toward Ultrafast Proton Transport
JP2003535998A (en) Activated organic coating on fiber substrate
CN109179379B (en) Carbon material with nano-network structure and carbon nanotube core @ functional amorphous carbon shell unit, and preparation method and application thereof
JP2004079252A (en) High ruggedness solid polyelectrolyte and solid polyelectrolyte (composite) membrane using it
JPH0571603B2 (en)
Shen et al. Preparation and characterization of sulfonated polyetherimide/polyetherimide blend membranes
US3847842A (en) Metal-chelating and solvent-resistant filamentary structure and process for its production
US3927968A (en) Process for producing an ion-exchangeable and solvent-resistant filamentary structure
JPH031324B2 (en)
US5037857A (en) High-surface-area fiber
JP2004055165A (en) Styrene polyelectrolyte and its manufacturing method
JPS6017347B2 (en) Insoluble β-aminopropionamide methylated polymonovinyl aromatic compound molded product and method for producing the same
JPH05214671A (en) Deodorizing plus antifungal fiber
JPH0284545A (en) High surface fiber
US5137926A (en) High-surface-area compositions
US3972840A (en) Ion-exchangeable and solvent-resistant filamentary structure containing sulfone cross-linked aromatic units
Azarudeen et al. Metal sorption studies of a novel terpolymer resin
JPS581205B2 (en) Insoluble acylaminomethylated polymonovinyl aromatic compound fiber and method for producing the same
JPS5923852B2 (en) Adsorption methods for ionic and polar substances
JPH02228332A (en) Ion-exchange fiber and preparation thereof
JPS62184113A (en) Production of functional fiber
Webster et al. Hypercrosslinked rigid‐rod polymers
JP2857169B2 (en) Sulfone group-containing heat-resistant polymer material and method for producing the same