JPH0571537B2 - - Google Patents

Info

Publication number
JPH0571537B2
JPH0571537B2 JP1324890A JP32489089A JPH0571537B2 JP H0571537 B2 JPH0571537 B2 JP H0571537B2 JP 1324890 A JP1324890 A JP 1324890A JP 32489089 A JP32489089 A JP 32489089A JP H0571537 B2 JPH0571537 B2 JP H0571537B2
Authority
JP
Japan
Prior art keywords
weight
parts
temperature
dispersant
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1324890A
Other languages
Japanese (ja)
Other versions
JPH02192452A (en
Inventor
Yoshihiko Imanaka
Hiromi Ogawa
Mineharu Tsukada
Etsuro Udagawa
Kazuaki Kurihara
Hirozo Yokoyama
Nobuo Kamehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1324890A priority Critical patent/JPH02192452A/en
Publication of JPH02192452A publication Critical patent/JPH02192452A/en
Publication of JPH0571537B2 publication Critical patent/JPH0571537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔概要〕 電子部品搭載用基板の製造方法に関し、 非酸化性雰囲気中でグリーンシートを焼成して
も残留炭素が少なく、曲げ強さ、および寸法精度
のばらつきが小さい電子部品搭載用基板の製造方
法を提供することを目的とし、 ガラスセラミツク粉末100重量部に、 バインダ 5〜20重量部 可塑剤 2〜10重量部 分散剤ポリエチレングリコールオレイン酸エス
テル2重量部以下を加えたスラリーから成形した
焼成可能なグリーンシートを積層する工程と、 この積層体を非酸化性雰囲気中、400〜500℃の
第1の温度でバインダ抜きし、次に該第1の温度
より高温の第2の温度で仮焼成し、さらに該第2
の温度より高い第3の温度で本焼成するように構
成する。
[Detailed Description of the Invention] [Summary] Regarding the manufacturing method of a substrate for mounting electronic components, the present invention relates to a method for manufacturing a substrate for mounting electronic components, which produces electronic green sheets with little residual carbon and small variations in bending strength and dimensional accuracy even when the green sheet is fired in a non-oxidizing atmosphere. For the purpose of providing a method for manufacturing a substrate for mounting components, 5 to 20 parts by weight of a binder, 2 to 10 parts by weight of a plasticizer, and 2 parts by weight or less of a polyethylene glycol oleate dispersant were added to 100 parts by weight of glass ceramic powder. a step of laminating sinterable green sheets formed from a slurry; debinding the laminated body in a non-oxidizing atmosphere at a first temperature of 400 to 500°C; Temporarily fired at a temperature of 2, and then
The main firing is performed at a third temperature higher than the temperature.

〔産業上の利用分野〕[Industrial application field]

本発明は特に表面状態が良好なグリーンシート
を焼成して、電子部品搭載用に必要な特性を具備
する基板の製造方法に関する。
The present invention particularly relates to a method for producing a substrate having characteristics necessary for mounting electronic components by firing a green sheet with a good surface condition.

〔従来技術〕[Prior art]

グリーンシート組成物は、非酸化性雰囲気中で
焼成する場合、残留炭素を減少させるために、有
機成分が少ないことが望ましいので、スラリーに
分散剤を添加しないことがある。しかし分散剤を
添加すれば、スラリーの均一性が向上し、グリー
ンシートを焼成して得た基板の機械的強さが向上
し、そのばらつきも低減される。このとき添加す
る分散剤の種類によつては非酸化性雰囲気中で加
熱するときに、飛散しないで残留し、炭素残渣と
なる量が多いものがある。このような分散剤に関
する従来技術として、MIT Indus trial Liaison
Program Report 6−15−84がある、これには
分散剤としてフイツシユオイルおよびグリセロー
ルトリオレイドが記載されている。
When the green sheet composition is fired in a non-oxidizing atmosphere, it is desirable that the organic component be low in order to reduce residual carbon, so a dispersant may not be added to the slurry. However, if a dispersant is added, the uniformity of the slurry will be improved, and the mechanical strength of the substrate obtained by firing the green sheet will be improved and its variations will be reduced. Depending on the type of dispersant added at this time, when heated in a non-oxidizing atmosphere, some may remain without scattering and form a large amount of carbon residue. As conventional technology regarding such dispersants, MIT Indus trial Liaison
Program Report 6-15-84, which describes fish oil and glycerol trioleide as dispersants.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

非酸化性雰囲気中でグリーンシートを焼成して
も残留炭素が少なく、曲げ強さ、および寸法精度
のばらつきが小さい電子部品搭載用基板の製造方
法を提供することである。
It is an object of the present invention to provide a method for manufacturing a substrate for mounting electronic components, which has little residual carbon even when a green sheet is fired in a non-oxidizing atmosphere, and has small variations in bending strength and dimensional accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、ガラスセラミツク粉末100重量
部に、 バインダ 5〜20重量部 可塑剤 2〜10重量部 分散剤ポリエチレングリコールオレイン酸エス
テル2重量部以下を加えたスラリーから成形した
焼成可能なグリーンシートを積層する工程と、 この積層体を非酸化性雰囲気中、400〜500℃の
第1の温度でバインダ抜きし、次に該第1の温度
より高温の第2の温度で仮焼成し、さらに該第2
の温度より高い第3の温度で本焼成して焼成物を
得る工程とを有することを特徴とする電子部品搭
載用基板の製造方法によつて解決することができ
る。
The above problem can be solved by using a sinterable green sheet formed from a slurry of 100 parts by weight of glass ceramic powder, 5 to 20 parts by weight of binder, 2 to 10 parts by weight of plasticizer, and 2 parts by weight or less of polyethylene glycol oleate dispersant. A step of laminating the laminate, removing the binder from the laminate at a first temperature of 400 to 500°C in a non-oxidizing atmosphere, then pre-firing at a second temperature higher than the first temperature, and further Second
This problem can be solved by a method of manufacturing a substrate for mounting electronic components, which comprises a step of performing main firing at a third temperature higher than the temperature of 1 to obtain a fired product.

〔実施例〕〔Example〕

本発明の分散剤ポリエチレングリコール型界面
活性剤添加の影響を調べるために、 アルミナ(平均粒径約3〜4μm) 200g ホウケイ酸ガラス(平均粒径約4〜5μm)
200g 石英ガラス(平均粒径約4〜5mm) 200g のガラスセラミツク粉末混合物600gに対し、 アクリル系バインダ 70g ジブチルフタレート可塑剤 20g ポリエチレングリコールオレイン酸エステル
分散剤(分子量480) 0〜12g を添加し、ボールミルで12時間混練して、スラリ
ーを調製した。
In order to investigate the effect of adding a polyethylene glycol type surfactant to the dispersant of the present invention, 200 g of alumina (average particle size of about 3 to 4 μm) borosilicate glass (average particle size of about 4 to 5 μm)
To 200 g of 200 g of quartz glass (average particle size approximately 4 to 5 mm) and 600 g of glass-ceramic powder mixture, add 70 g of acrylic binder, 20 g of dibutyl phthalate plasticizer, and 0 to 12 g of polyethylene glycol oleate dispersant (molecular weight 480), and mill in a ball mill. A slurry was prepared by kneading for 12 hours.

第1図は分散剤添加量とスラリー粘度との関係
を示す。ガラスセラミツク100重量部に対して0
〜2重量部(ガラスセラミツク600gに対して10
〜12g)において粘度が極小となる。
FIG. 1 shows the relationship between the amount of dispersant added and the viscosity of the slurry. 0 per 100 parts by weight of glass ceramic
~2 parts by weight (10 parts per 600g of glass ceramic)
~12g), the viscosity becomes minimum.

第2図はグリーンシートの表面あらさを接触式
表面あらさ計で測定した最大表面あらさと分散剤
との関係を示す。分散剤添加量0〜2重量部にお
いて最大表面あらさが極小となる。
FIG. 2 shows the relationship between the maximum surface roughness of the green sheet measured using a contact type surface roughness meter and the dispersant. The maximum surface roughness becomes minimal when the dispersant is added in an amount of 0 to 2 parts by weight.

次に、上記グリーンシートを15cm角に切り、こ
れを30枚重ねて30MPaの圧力で積層した。この
積層体を窒素雰囲気中で、まず400℃でバインダ
抜きし、次に840℃、4時間仮焼成し、最後に
1020℃、4時間本焼成して焼成物を得た。第3図
はこの焼成物の曲げ強さの標準偏差と分散剤添加
量の関係を示す。
Next, the green sheets were cut into 15 cm squares, and 30 sheets were stacked together under a pressure of 30 MPa. This laminate was first de-bindered at 400℃ in a nitrogen atmosphere, then pre-sintered at 840℃ for 4 hours, and finally
Main firing was performed at 1020°C for 4 hours to obtain a fired product. FIG. 3 shows the relationship between the standard deviation of the bending strength of the fired product and the amount of dispersant added.

第4図は同一焼成物内の収縮率のばらつきと分
散剤添加量の関係を示す。第3および4図から明
らかなように、焼成物の機械的強さは添加量0〜
2重量部において、ばらつきが約1/2に減少して
いることがわかる。
FIG. 4 shows the relationship between the variation in shrinkage rate and the amount of dispersant added within the same fired product. As is clear from Figures 3 and 4, the mechanical strength of the fired product varies from 0 to
It can be seen that at 2 parts by weight, the variation is reduced to about 1/2.

第5図の曲線Aは分散剤として使用したポリエ
チレングリコールオレイン酸エステルを単独で昇
温速度10℃/minで窒素雰囲気中で加熱したとき
の残渣量を示し、500℃において飛散することが
わかる。曲線Bは従来技術のフイツシユオイル単
独の加熱曲線であつて、1000℃においてもまだ炭
素残渣があることを示す。本発明のポリエチレン
グリコールオレイン酸エステル界面活性剤は窒素
雰囲気中の低温で飛散するので、積層体の焼成に
おいて残留炭素が少なく、電子部品搭載用基板と
しての電気的特性がすぐれている。
Curve A in FIG. 5 shows the amount of residue when polyethylene glycol oleate used as a dispersant is heated alone at a heating rate of 10°C/min in a nitrogen atmosphere, and it can be seen that it scatters at 500°C. Curve B is a heating curve for prior art fish oil alone and shows that even at 1000°C there is still carbon residue. Since the polyethylene glycol oleate surfactant of the present invention scatters at low temperatures in a nitrogen atmosphere, there is little residual carbon during firing of the laminate, and it has excellent electrical properties as a substrate for mounting electronic components.

なお、本発明の電子部品搭載用基板の製造方法
は、特開昭59−995に記載の「熱解重合型樹脂を
含むバインダを使用してガラスセラミツク層を形
成し、この層の上に銅導体層を形成し、多層化し
た未焼結体を、ガラスセラミツクに含まれるガラ
ス成分が加熱による変化を示さない温度におい
て、水蒸気分圧を0.005〜0.3気圧に制御した窒素
雰囲気中で焼成してバインダを飛散させることを
特徴とする、銅導体多層構造体の製造方法。」或
いは、特開昭60−254697に記載の「熱解重合型樹
脂を含むバインダを使用してガラスセラミツク層
を形成し、この層の上に銅導体層を形成し、多層
化した未焼結体を、ガラスセラミツクに含まれる
ガラス成分が加熱による変化を示さない温度にお
いて、水蒸気分圧を0.005〜0.3気圧に制御した不
活性雰囲気中で焼成してバインダを飛散させる多
層セラミツク回路基板の製法であつて、ガラスセ
ラミツク原料として、20重量%以上、50重量%未
満のアルミナと、10重量%以上、60重量%未満の
石英ガラスと、20重量%以上、40重量%未満の、
銅の融点より低い温度で焼成可能なガラスまたは
結晶化ガラスとを混合して使用することを特徴と
する、多層セラミツク回路基板の製法。」等の導
体として銅を用いる多層セラミツク回路基板の製
法に好ましく適用しうるものである。
The method for manufacturing a board for mounting electronic components according to the present invention is described in JP-A-59-995, "A glass ceramic layer is formed using a binder containing a thermally depolymerizable resin, and a copper layer is formed on this layer." The multilayered unsintered body with the conductor layer formed thereon is fired in a nitrogen atmosphere with a water vapor partial pressure controlled at 0.005 to 0.3 atm at a temperature at which the glass components contained in the glass ceramic do not change due to heating. A method for manufacturing a copper conductor multilayer structure characterized by scattering a binder.'' Or, as described in JP-A-60-254697, ``A method for forming a glass-ceramic layer using a binder containing a thermally depolymerizable resin.'' A copper conductor layer was formed on this layer, and the water vapor partial pressure of the multilayered unsintered body was controlled to 0.005 to 0.3 atm at a temperature at which the glass components contained in the glass ceramic did not change due to heating. A method for producing a multilayer ceramic circuit board in which the binder is scattered by firing in an inert atmosphere, and the glass ceramic raw materials include alumina of 20% or more but less than 50% by weight and 10% or more but less than 60% by weight. quartz glass and 20% by weight or more and less than 40% by weight,
A method for manufacturing a multilayer ceramic circuit board characterized by using a mixture of glass or crystallized glass that can be fired at a temperature lower than the melting point of copper. This method can be preferably applied to a method for manufacturing a multilayer ceramic circuit board using copper as a conductor, such as the following.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、グリーンシート中のガラスセ
ラミツク粉末と有機成分の分散性を良好にし、か
つ積層体を窒素雰囲気中で焼成した焼成物は残留
炭素が少なく、かつ収縮率のばらつき、および、
曲げ強さのばらつきを低減する効果がある。
According to the present invention, the fired product obtained by improving the dispersibility of the glass ceramic powder and organic components in the green sheet and firing the laminate in a nitrogen atmosphere has less residual carbon and has less variation in shrinkage rate and
This has the effect of reducing variations in bending strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスラリー粘度と分散剤添加量の関係を
示すグラフであり、第2図はグリーンシート最大
表面あらさと分散剤添加量の関係を示すグラフで
あり、第3図は焼成物曲げ強さの標準偏差と分散
剤添加量の関係を示すグラフであり、第4図は同
一焼成物内の収縮率のばらつきと分散剤添加量の
関係を示すグラフであり、第5図は分散剤残渣量
と加熱温度の関係を示すグラフである。
Figure 1 is a graph showing the relationship between slurry viscosity and the amount of dispersant added, Figure 2 is a graph showing the relationship between the maximum surface roughness of the green sheet and the amount of dispersant added, and Figure 3 is a graph showing the relationship between the maximum surface roughness of the green sheet and the amount of dispersant added. FIG. 4 is a graph showing the relationship between the standard deviation of the dispersant and the amount of dispersant added. FIG. 4 is a graph showing the relationship between the variation in shrinkage rate within the same fired product and the amount of dispersant added. FIG. It is a graph which shows the relationship between and heating temperature.

Claims (1)

【特許請求の範囲】 1 ガラスセラミツク粉末100重量部に、 バインダ 5〜20重量部 可塑剤 2〜10重量部 分散剤ポリエチレングリコールオレイン酸エス
テル2重量部以下を加えたスラリーから成形した
焼成可能なグリーンシートを積層する工程と、 この積層体を非酸化性雰囲気中、400〜500℃の
第1の温度でバインダ抜きし、次に該第1の温度
より高温の第2の温度で仮焼成し、さらに該第2
の温度より高い第3の温度で本焼成して焼成物を
得る工程と を有することを特徴とする電子部品搭載用基板の
製造方法。 2 前記ガラスセラミツク粉末が アルミナ粉末 20〜60重量% ホウケイ酸ガラス粉末 20〜50重量% 石英ガラス粉末 20〜40重量% からなることを特徴とする特許請求の範囲第1項
記載の電子部品搭載用基板の製造方法。
[Claims] 1. A sinterable green molded from a slurry of 100 parts by weight of glass ceramic powder, 5 to 20 parts by weight of binder, 2 to 10 parts by weight of plasticizer, and 2 parts by weight or less of polyethylene glycol oleate dispersant. a step of laminating the sheets, removing the binder from this laminate at a first temperature of 400 to 500°C in a non-oxidizing atmosphere, and then pre-firing at a second temperature higher than the first temperature, Furthermore, the second
A method for manufacturing a board for mounting an electronic component, comprising the step of performing main firing at a third temperature higher than the temperature of 1 to obtain a fired product. 2. For mounting electronic components according to claim 1, wherein the glass ceramic powder is comprised of 20 to 60% by weight of alumina powder, 20 to 50% by weight of borosilicate glass powder, and 20 to 40% by weight of quartz glass powder. Substrate manufacturing method.
JP1324890A 1989-12-16 1989-12-16 Production of board for supporting electronic part Granted JPH02192452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1324890A JPH02192452A (en) 1989-12-16 1989-12-16 Production of board for supporting electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1324890A JPH02192452A (en) 1989-12-16 1989-12-16 Production of board for supporting electronic part

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59274534A Division JPS61155243A (en) 1984-12-28 1984-12-28 Green sheet composition

Publications (2)

Publication Number Publication Date
JPH02192452A JPH02192452A (en) 1990-07-30
JPH0571537B2 true JPH0571537B2 (en) 1993-10-07

Family

ID=18170767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1324890A Granted JPH02192452A (en) 1989-12-16 1989-12-16 Production of board for supporting electronic part

Country Status (1)

Country Link
JP (1) JPH02192452A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291534B1 (en) * 1998-09-07 2001-07-12 박호군 Ceramic Sheet for a Heat Resistant Pattern, and Method and Composition for the Preparation Thereof
JP4748435B2 (en) * 2001-08-21 2011-08-17 日本電気硝子株式会社 Laminated glass ceramic material and laminated glass ceramic sintered body

Also Published As

Publication number Publication date
JPH02192452A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
JPH0240013B2 (en)
US5073180A (en) Method for forming sealed co-fired glass ceramic structures
JPS6036369A (en) Ceramic manufacture
JPH0649594B2 (en) Crystallizable low dielectric constant low dielectric loss composition
JP2002368420A (en) Method for manufacturing glass ceramic multilayer substrate and glass ceramic multilayer substrate
US20110091686A1 (en) Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JPH0571537B2 (en)
JPH08245268A (en) Method for sintering glass ceramic laminate
EP1130003A1 (en) Glass ceramics composition and electronic parts and multilayered lc multiple component using the same
JP2006173456A (en) Difficult-to-sintering constraining green sheet, and manufacturing method of multilayer ceramic substrate
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JP2005203723A (en) Glass ceramic substrate and method for manufacturing the same
JP3216260B2 (en) Low temperature fired ceramic multilayer substrate and method of manufacturing the same
KR101668685B1 (en) Glass free MgO ceramic compounds for low temperature co-fired ceramics and MgO ceramics
JPH06338214A (en) Conductive paste for ceramic wiring board
JPS61287190A (en) Substrate for electronic circuit
JP2699919B2 (en) Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor
JPH06172017A (en) Ceramic substrate and green sheet thereof
JP2739834B2 (en) Method for producing silica sintered body
JP2008037675A (en) Low temperature-sinterable ceramic composition, ceramic substrate, method for manufacturing the same, and electronic component
JPH0564697B2 (en)
Chen et al. Effect of metal oxide precursor on sintering shrinkage, microstructure evolution and electrical properties of silver-based pastes
JP3688919B2 (en) Ceramic multilayer wiring board
JPS59156960A (en) Manufacture of alumina sintered substrate
JPH08148786A (en) Alumina multilayer printed circuit board, manufacturing method thereof and manufacturing method of alumina sintered product

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term