JPH0571057A - Production of polypropylene based conjugate staple fiber and nonwoven fabric - Google Patents

Production of polypropylene based conjugate staple fiber and nonwoven fabric

Info

Publication number
JPH0571057A
JPH0571057A JP24481891A JP24481891A JPH0571057A JP H0571057 A JPH0571057 A JP H0571057A JP 24481891 A JP24481891 A JP 24481891A JP 24481891 A JP24481891 A JP 24481891A JP H0571057 A JPH0571057 A JP H0571057A
Authority
JP
Japan
Prior art keywords
weight
less
composite
fiber
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24481891A
Other languages
Japanese (ja)
Other versions
JP2788140B2 (en
Inventor
Fumio Matsuoka
文夫 松岡
Koichi Nagaoka
孝一 長岡
Yoshinari Yoshioka
良成 吉岡
Yoshimoto Miyahara
芳基 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP24481891A priority Critical patent/JP2788140B2/en
Publication of JPH0571057A publication Critical patent/JPH0571057A/en
Application granted granted Critical
Publication of JP2788140B2 publication Critical patent/JP2788140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title conjugate staple fiber having excellent stretchability, bulkiness and flexibility by subjecting two kinds of polypropylene based copolymers to melt conjugate spinning and then thermally stretching the spun yarn under specific conditions and further applying crimping treatment and finishing lubricant thereto. CONSTITUTION:(A) a propylene based copolymer component obtained by subjecting 92-97wt.% propylene to random copolymerization with 3-8wt.% ethylene and (B) a polypropylene based copolymer component obtained by copolymerizing 97-100wt.% propylene with 0-3% ethylene are used are conjugating components and these components are subjected to melt conjugate spinning under conditions of 15g to 45g/min melt flow value, 1/1 to 6/1 melt flow value ratio and 2-10m/min discharged liner rate. Then the obtained undrawn conjugate fiber is drawn while heating at >=50 deg.C and temperature not to melt fibers each other and the drawn conjugate fiber is further subjected to crimping treatment and a finishing lubricant is applied thereto and the conjugate fiber is dried and cut into prescribed length to efficiently obtain the objective staple fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,伸縮性,嵩高性及び柔
軟性に優れた不織布を得るに好適なポリプロピレン系複
合短繊維と不織布の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polypropylene-based composite staple fiber suitable for obtaining a nonwoven fabric excellent in stretchability, bulkiness and flexibility and a method for producing the nonwoven fabric.

【0002】[0002]

【従来の技術】従来から,熱可塑性合成複合繊維からな
る不織布として,融点の異なる複数の重合体成分を並列
型あるいは芯鞘型等に配置した複合繊維からなる不織布
が広範に用いられている。この複合繊維からなる不織布
は,異成分複合繊維の特徴である潜在捲縮性を利用し,
不織布加工時に捲縮を発現させることにより伸縮性を付
与したもので,主としてサポータ,パツプ材あるいはお
むつ等の医療衛生材用素材として用いられている。例え
ば,特公昭55−26203号公報には,ブテン−1を
含有した三次元共重合体からなる複合繊維が,また,特
開平2−127553号公報には,ブテン−1を含有し
た共重合体からなる複合繊維から構成された不織布が提
案されている。しかしながら,この不織布では,ブテン
−1を含有した三次元共重合体からなるため熱接着性は
向上するものの,伸縮性や嵩高性が劣るのみならず風合
いが硬くなるという問題があった。また,特公昭52−
37097号公報には,ポリプロピレン重合体とポリエ
チレン重合体とからなる複合繊維が提案されているが,
この複合繊維からなる不織布には,不織布作成時の両成
分間の剥離により不織布面上に毛羽が生じ,製品の品位
が低下するという問題があった。さらに,特開平2−1
91720号公報公報には,ポリプロピレン重合体とエ
チレン−プロピレンランダム共重合体とからなる複合繊
維及びその製造方法が提案されている。この複合繊維
は,ポリプロピレン重合体のQ値(重量平均分子量/数
平均分子量)を小さくして螺旋状の捲縮を発現させるこ
とにより伸縮性が付与されたものである。しかしなが
ら,この複合繊維には,ポリプロピレン重合体のQ値が
小さいため,捲縮発現処理時の熱処理温度領域が制限さ
れて工程管理が困難であるという問題が,また,この複
合繊維からなる不織布には,その品位が低下するという
問題があった。
2. Description of the Related Art Conventionally, as a nonwoven fabric made of a thermoplastic synthetic composite fiber, a nonwoven fabric made of a composite fiber in which a plurality of polymer components having different melting points are arranged in parallel type or core-sheath type has been widely used. The non-woven fabric composed of this composite fiber utilizes the latent crimp property which is the characteristic of the heterogeneous composite fiber,
Stretchability is imparted by developing crimps during the processing of non-woven fabrics, and it is mainly used as a material for medical and hygiene materials such as supporters, pad materials and diapers. For example, Japanese Examined Patent Publication (Kokoku) No. 55-26203 discloses a composite fiber composed of a three-dimensional copolymer containing butene-1, and Japanese Laid-Open Patent Publication No. 1227553/1990 discloses a copolymer containing butene-1. A non-woven fabric composed of a composite fiber composed of is proposed. However, this non-woven fabric is not only poor in stretchability and bulkiness but also hard in texture although it is improved in thermal adhesiveness because it is made of a three-dimensional copolymer containing butene-1. Also, Japanese Patent Publication Sho 52-
Japanese Patent No. 37097 proposes a composite fiber composed of a polypropylene polymer and a polyethylene polymer.
The non-woven fabric made of this composite fiber has a problem that fluff is generated on the non-woven fabric surface due to peeling between the two components at the time of producing the non-woven fabric, and the quality of the product is deteriorated. Furthermore, Japanese Patent Laid-Open No. 2-1
Japanese Patent Publication No. 91720 proposes a composite fiber composed of a polypropylene polymer and an ethylene-propylene random copolymer, and a method for producing the same. This composite fiber is stretched by reducing the Q value (weight average molecular weight / number average molecular weight) of the polypropylene polymer to develop a spiral crimp. However, since the polypropylene polymer has a small Q value in this conjugate fiber, the heat treatment temperature range during crimping treatment is limited and process control is difficult. Had a problem that its quality deteriorated.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,伸縮性,嵩高性及び柔軟性に優れ,特に医療衛
生材用素材に適した不織布を得るに好適なポリプロピレ
ン系複合短繊維と不織布を効率よく製造することができ
る方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and is excellent in stretchability, bulkiness and flexibility, and is suitable for obtaining a non-woven fabric suitable for medical hygiene materials. And a method capable of efficiently producing a nonwoven fabric.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は, 1)92重量%以上97重量%以下のプロピレンと3重
量%以上8重量%以下のエチレンがランダム共重合され
たポリプロピレン系共重合体成分Aと,97重量%以上
100重量%以下のプロピレンと0重量%以上3重量%
以下のエチレンが共重合されたポリプロピレン系共重合
体成分Bとを複合成分とし,複合短繊維としたときのメ
ルトフローレート値が15g/10分以上45g/10
分以下となるようにし,重合体成分Aと重合体成分Bの
溶融後のメルトフローレート値比(B/A)を1/1〜
6/1とし,かつ重合体成分Aと重合体成分Bの吐出線
速度を2〜10m/分として溶融複合紡糸し,得られた
未延伸複合繊維を50℃以上かつ繊維相互が融着しない
温度で熱延伸し,次いで得られた延伸複合繊維に捲縮付
与処理を施し,仕上げ油剤を付与した後乾燥し,所定長
さに切断して短繊維とすることを特徴とするポリプロピ
レン系短繊維の製造方法,
The present inventors have arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention includes 1) a polypropylene-based copolymer component A in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized, and 97% by weight or more and 100% by weight. % Propylene and 0% to 3% by weight
A melt flow rate value of a composite short fiber of 15 g / 10 min or more and 45 g / 10 when the following polypropylene-based copolymer component B copolymerized with ethylene is used as a composite component
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is set to 1/1 to
6/1 and the melt linear component of polymer component A and polymer component B are set to 2-10 m / min for the discharge linear velocity, and the resulting unstretched composite fiber is 50 ° C. or more and the temperature at which the fibers do not fuse to each other. Of the polypropylene-based short fiber, which is characterized in that it is heat-stretched at Production method,

【0005】2)92重量%以上97重量%以下のプロ
ピレンと3重量%以上8重量%以下のエチレンがランダ
ム共重合され,かつQ値(重量平均分子量/数平均分子
量)が8以下のポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合され,かつQ値
(重量平均分子量/数平均分子量)が5以上8以下のポ
リプロピレン系共重合体成分Bとを複合成分とし,複合
短繊維としたときのメルトフローレート値が15g/1
0分以上45g/10分以下となるようにし,重合体成
分Aと重合体成分Bの溶融後のメルトフローレート値比
(B/A)を1/1〜6/1とし,かつ重合体成分Aと
重合体成分Bの吐出線速度を2〜10m/分として溶融
複合紡糸し,得られた未延伸複合繊維を50℃以上かつ
繊維相互が融着しない温度で熱延伸し,次いで得られた
延伸複合繊維に捲縮付与処理を施し,仕上げ油剤を付与
した後乾燥し,所定長さに切断して短繊維とすることを
特徴とするポリプロピレン系短繊維の製造方法,
2) A polypropylene system in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized, and the Q value (weight average molecular weight / number average molecular weight) is 8 or less. Copolymer component A, 9
7 wt% to 100 wt% propylene and 0 wt%
When a polypropylene-based copolymer component B having a Q value (weight average molecular weight / number average molecular weight) of 5 or more and 8 or less is copolymerized with ethylene of 3% by weight or less and 3% by weight or less, and a composite short fiber is obtained. Melt flow rate value is 15g / 1
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is 1/1 to 6/1 and is 0 to 45 g / 10 min. Melt composite spinning was performed at a discharge linear velocity of A and the polymer component B of 2 to 10 m / min, and the obtained undrawn composite fiber was heat drawn at a temperature of 50 ° C. or higher and at a temperature at which the fibers were not fused to each other, and then obtained. A method for producing a polypropylene-based short fiber, which comprises subjecting a stretched composite fiber to crimping treatment, applying a finishing oil agent, drying the cut composite fiber, and cutting the composite fiber into short fibers,

【0006】3)92重量%以上97重量%以下のプロ
ピレンと3重量%以上8重量%以下のエチレンがランダ
ム共重合され,かつQ値(重量平均分子量/数平均分子
量)が8以下のポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合され,かつQ値
(重量平均分子量/数平均分子量)が5以上8以下のポ
リプロピレン系共重合体成分Bとを複合成分とし,複合
短繊維としたときのメルトフローレート値が15g/1
0分以上45g/10分以下となるようにし,重合体成
分Aと重合体成分Bの溶融後のメルトフローレート値比
(B/A)を1/1〜6/1とし,かつ重合体成分Aと
重合体成分Bの吐出線速度を2〜10m/分として溶融
複合紡糸し,得られた未延伸複合繊維を50℃以上かつ
繊維相互が融着しない温度で熱延伸して下記条件(1)
〜(3)を満足する複合繊維とし,次いで得られた延伸
複合繊維に捲縮付与処理を施し,仕上げ油剤を付与した
後乾燥し,所定長さに切断して短繊維とすることを特徴
とするポリプロピレン系短繊維の製造方法, (1)熱処理前の複合短繊維の共重合体成分A部分の複
屈折と共重合体成分B部分の複屈折が共に0.02以上
であること, (2)広角X線回折法により測定される熱処理前の複合
短繊維の結晶体積が100000Å3 以下であること, (3)小角X線散乱法により測定される熱処理前の複合
短繊維の長周期が130Å未満であること,
3) A polypropylene system in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized, and the Q value (weight average molecular weight / number average molecular weight) is 8 or less. Copolymer component A, 9
7 wt% to 100 wt% propylene and 0 wt%
When a polypropylene-based copolymer component B having a Q value (weight average molecular weight / number average molecular weight) of 5 or more and 8 or less is copolymerized with ethylene of 3% by weight or less and 3% by weight or less, and a composite short fiber is obtained. Melt flow rate value is 15g / 1
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is 1/1 to 6/1 and is 0 to 45 g / 10 min. Melt composite spinning was performed at a discharge linear velocity of 2 to 10 m / min of A and the polymer component B, and the resulting undrawn composite fiber was hot-drawn at a temperature of 50 ° C. or higher and at a temperature at which the fibers were not fused to each other. )
To (3), the drawn composite fiber is then subjected to a crimping treatment, a finishing oil agent is applied thereto, dried, and cut into a predetermined length to obtain a short fiber. (1) The birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the composite short fiber before heat treatment are both 0.02 or more, (2) ) The crystal volume of the composite short fibers before heat treatment measured by the wide-angle X-ray diffraction method is 100,000Å 3 or less, (3) the long period of the composite short fibers before heat treatment measured by the small-angle X-ray scattering method is 130Å Be less than,

【0007】4)92重量%以上97重量%以下のプロ
ピレンと3重量%以上8重量%以下のエチレンがランダ
ム共重合されたポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合されたポリプロピ
レン系共重合体成分Bとを複合成分とし,複合短繊維と
したときのメルトフローレート値が15g/10分以上
45g/10分以下となるようにし,重合体成分Aと重
合体成分Bの溶融後のメルトフローレート値比(B/
A)を1/1〜6/1とし,かつ重合体成分Aと重合体
成分Bの吐出線速度を2〜10m/分として溶融複合紡
糸し,得られた未延伸複合繊維を50℃以上かつ繊維相
互が融着しない温度で熱延伸し,次いで得られた延伸複
合繊維に捲縮付与処理を施し,仕上げ油剤を付与した後
乾燥し,所定長さに切断して短繊維とし,次いで得られ
た複合短繊維50重量%以上を用いてカードウエブを作
成し,このカードウエブを多孔性支持部材上に載置し,
圧力が30kg/cm2 未満の流体噴流により前記ウエ
ブに流体絡合処理を施した後,圧力が50kg/cm2
以上の流体噴流により前記ウエブに流体絡合処理を施し
てウエブを構成する前記複合短繊維相互を三次元的に絡
合させ,引き続きウエブに乾熱処理を施して水分を除去
するとともに複合短繊維に捲縮を発現させることを特徴
とする不織布の製造方法,
4) A polypropylene copolymer component A in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized, and 9
7 wt% to 100 wt% propylene and 0 wt%
The melt flow rate value is 15 g / 10 min or more and 45 g / 10 min or less when a composite short fiber is formed by using a polypropylene-based copolymer component B in which 3% by weight or less of ethylene is copolymerized as a composite component. The melt flow rate value ratio (B / B) of the polymer component A and the polymer component B after melting
A) is 1/1 to 6/1, and the melt linear spinning is performed at a discharge linear velocity of the polymer component A and the polymer component B of 2 to 10 m / min. The drawn composite fiber is heat-stretched at a temperature at which the fibers do not fuse with each other, and then the resulting stretched composite fiber is subjected to a crimping treatment, a finishing oil agent is applied, and the product is dried and cut into predetermined lengths to obtain short fibers. A card web was prepared using 50% by weight or more of the composite short fibers, and the card web was placed on a porous support member.
After the web is subjected to a fluid entanglement treatment with a fluid jet having a pressure of less than 30 kg / cm 2 , the pressure is 50 kg / cm 2.
The web is subjected to a fluid entanglement treatment by the above fluid jet to three-dimensionally entangle the composite short fibers constituting the web, and then the web is subjected to a dry heat treatment to remove water and form a composite short fiber. A method for producing a non-woven fabric, characterized by expressing crimps,

【0008】5)92重量%以上97重量%以下のプロ
ピレンと3重量%以上8重量%以下のエチレンがランダ
ム共重合され,かつQ値(重量平均分子量/数平均分子
量)が8以下のポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合され,かつQ値
(重量平均分子量/数平均分子量)が5以上8以下のポ
リプロピレン系共重合体成分Bとを複合成分とし,複合
短繊維としたときのメルトフローレート値が15g/1
0分以上45g/10分以下となるようにし,重合体成
分Aと重合体成分Bの溶融後のメルトフローレート値比
(B/A)を1/1〜6/1とし,かつ重合体成分Aと
重合体成分Bの吐出線速度を2〜10m/分として溶融
複合紡糸し,得られた未延伸複合繊維を50℃以上かつ
繊維相互が融着しない温度で熱延伸し,次いで得られた
延伸複合繊維に捲縮付与処理を施し,仕上げ油剤を付与
した後乾燥し,所定長さに切断して短繊維とし,次いで
得られた複合短繊維50重量%以上を用いてカードウエ
ブを作成し,このカードウエブを多孔性支持部材上に載
置し,圧力が30kg/cm2 未満の流体噴流により前
記ウエブに流体絡合処理を施した後,圧力が50kg/
cm2 以上の流体噴流により前記ウエブに流体絡合処理
を施してウエブを構成する前記複合短繊維相互を三次元
的に絡合させ,引き続きウエブに乾熱処理を施して水分
を除去するとともに複合短繊維に捲縮を発現させること
を特徴とする不織布の製造方法,
5) Polypropylene system in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized, and Q value (weight average molecular weight / number average molecular weight) is 8 or less. Copolymer component A, 9
7 wt% to 100 wt% propylene and 0 wt%
When a polypropylene-based copolymer component B having a Q value (weight average molecular weight / number average molecular weight) of 5 or more and 8 or less is copolymerized with ethylene of 3% by weight or less and 3% by weight or less, and a composite short fiber is obtained. Melt flow rate value is 15g / 1
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is 1/1 to 6/1 and is 0 to 45 g / 10 min. Melt composite spinning was performed at a discharge linear velocity of A and the polymer component B of 2 to 10 m / min, and the obtained undrawn composite fiber was heat drawn at a temperature of 50 ° C. or higher and at a temperature at which the fibers were not fused to each other, and then obtained. The drawn composite fiber is subjected to a crimping treatment, a finishing oil is applied thereto, and then dried, cut into a predetermined length to form a short fiber, and then a card web is prepared using 50% by weight or more of the obtained composite short fiber. After placing this card web on a porous support member and subjecting the web to fluid entanglement with a fluid jet having a pressure of less than 30 kg / cm 2 , the pressure is 50 kg / cm 2.
The web is subjected to a fluid entanglement treatment by a fluid jet of 3 cm 2 or more to three-dimensionally entangle the composite short fibers constituting the web, and then the web is subjected to a dry heat treatment to remove water and the composite short fibers. A method for producing a non-woven fabric, characterized by expressing crimps in fibers,

【0009】6)92重量%以上97重量%以下のプロ
ピレンと3重量%以上8重量%以下のエチレンがランダ
ム共重合され,かつQ値(重量平均分子量/数平均分子
量)が8以下のポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合され,かつQ値
(重量平均分子量/数平均分子量)が5以上8以下のポ
リプロピレン系共重合体成分Bとを複合成分とし,複合
短繊維としたときのメルトフローレート値が15g/1
0分以上45g/10分以下となるようにし,重合体成
分Aと重合体成分Bの溶融後のメルトフローレート値比
(B/A)を1/1〜6/1とし,かつ重合体成分Aと
重合体成分Bの吐出線速度を2〜10m/分として溶融
複合紡糸し,得られた未延伸複合繊維を50℃以上かつ
繊維相互が融着しない温度で熱延伸して下記条件(1)
〜(3)を満足する複合繊維とし,次いで得られた延伸
複合繊維に捲縮付与処理を施し,仕上げ油剤を付与した
後乾燥し,所定長さに切断して短繊維とし,次いで得ら
れた複合短繊維50重量%以上を用いてカードウエブを
作成し,このカードウエブを多孔性支持部材上に載置
し,圧力が30kg/cm2 未満の流体噴流により前記
ウエブに流体絡合処理を施した後,圧力が50kg/c
2 以上の流体噴流により前記ウエブに流体絡合処理を
施してウエブを構成する前記複合短繊維相互を三次元的
に絡合させ,引き続きウエブに乾熱処理を施して水分を
除去するとともに複合短繊維に下記条件(4)〜(6)
を満足させ,かつ捲縮を発現させることを特徴とする不
織布の製造方法, (1)熱処理前の複合短繊維の共重合体成分A部分の複
屈折と共重合体成分B部分の複屈折が共に0.02以上
であること, (2)広角X線回折法により測定される熱処理前の複合
短繊維の結晶体積が100000Å3 以下であること, (3)小角X線散乱法により測定される熱処理前の複合
短繊維の長周期が130Å未満であること, (4)熱処理後の複合短繊維の共重合体成分A部分の複
屈折と共重合体成分B部分の複屈折が共に上記熱処理前
の複合短繊維の共重合体成分A部分の複屈折と共重合体
成分B部分の複屈折よりそれぞれ低いこと, (5)広角X線回折法により測定される熱処理後の複合
短繊維の結晶体積が200000Å3 以上であること, (6)小角X線散乱法により測定される熱処理後の複合
短繊維の長周期が130Å以上であること, を要旨とするものである。
6) Polypropylene system in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized, and the Q value (weight average molecular weight / number average molecular weight) is 8 or less. Copolymer component A, 9
7 wt% to 100 wt% propylene and 0 wt%
When a polypropylene-based copolymer component B having a Q value (weight average molecular weight / number average molecular weight) of 5 or more and 8 or less is copolymerized with ethylene of 3% by weight or less and 3% by weight or less, and a composite short fiber is obtained. Melt flow rate value is 15g / 1
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is 1/1 to 6/1 and is 0 to 45 g / 10 min. Melt composite spinning was performed at a discharge linear velocity of 2 to 10 m / min of A and the polymer component B, and the resulting undrawn composite fiber was hot-drawn at a temperature of 50 ° C. or higher and at a temperature at which the fibers were not fused to each other. )
A composite fiber satisfying (3) to (3) is obtained. Then, the drawn composite fiber obtained is subjected to crimping treatment, applied with a finishing oil agent, dried and cut into a predetermined length to obtain a short fiber, which is then obtained. A card web is prepared using 50% by weight or more of the composite short fibers, the card web is placed on a porous support member, and the web is subjected to a fluid entanglement treatment by a fluid jet having a pressure of less than 30 kg / cm 2. The pressure is 50kg / c
The web is subjected to a fluid entanglement treatment with a fluid jet of m 2 or more to three-dimensionally entangle the composite short fibers constituting the web, and then the web is subjected to a dry heat treatment to remove water and the composite short fibers. The following conditions (4) to (6) for the fiber
And a crimp is expressed. (1) The birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the composite short fiber before heat treatment are Both are 0.02 or more, (2) the crystal volume of the composite short fiber before heat treatment measured by the wide-angle X-ray diffraction method is 100,000 Å 3 or less, (3) measured by the small-angle X-ray scattering method The long period of the composite short fibers before heat treatment is less than 130Å, (4) the birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the composite short fibers after heat treatment are both before the above heat treatment. Lower than the birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the composite staple fiber of (5), (5) Crystal volume of the composite staple fiber after heat treatment measured by wide-angle X-ray diffractometry Is 200000Å 3 or more, (6) The gist is that the long period of the composite short fibers after heat treatment measured by the small angle X-ray scattering method is 130 Å or more.

【0010】次に,本発明を詳細に説明する。まず,本
発明の複合短繊維の製造方法に関して説明する。本発明
の方法では,まず,92重量%以上97重量%以下のプ
ロピレンと3重量%以上8重量%以下のエチレンがラン
ダム共重合されたポリプロピレン系共重合体成分Aと,
97重量%以上100重量%以下のプロピレンと0重量
%以上3重量%以下のエチレンが共重合されたポリプロ
ピレン系共重合体成分Bとから構成される複合短繊維を
製造する。
Next, the present invention will be described in detail. First, the method for producing the composite staple fiber of the present invention will be described. In the method of the present invention, first, a polypropylene-based copolymer component A in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized,
A composite staple fiber composed of 97 wt% or more and 100 wt% or less propylene and 0 wt% or more and 3 wt% or less ethylene-based polypropylene-based copolymer component B is produced.

【0011】重合体成分Aは,92重量%以上97重量
%以下のプロピレンと3重量%以上8重量%以下のエチ
レンが共重合され,かつ繊維形成性を有し曵糸性よく溶
融紡糸できるものである。このエチレンの共重合は共重
合体の融点降下と熱収縮性に大きく影響し,共重合量に
比例して共重合体の融点を降下させ,かつ熱収縮性を増
大させる。この共重合量が3重量%未満であると,共重
合体の融点降下が小さくなり,複合短繊維を熱処理した
とき捲縮発現性が低下し,しかも熱収縮率が低下するの
で好ましくない。しかしながら,この共重合量が8重量
%を超えると,重合するに際し重合溶媒(炭化水素)に
可溶性の副生物の生成割合が増加して生産性が低下する
ので工業的に不経済となり好ましくない。したがって,
この共重合量は,3重量%以上8重量%以下とし,好ま
しくは3.2重量%以上7.0重量%以下,特に好まし
くは3.5重量%以上6.0重量%以下とするのがよ
い。また,重合体成分Aは,前記3重量%以上8重量%
以下のエチレンと92重量%以上97重量%以下のプロ
ピレンがランダム共重合されたものである。このランダ
ム共重合は,共重合体の均一な熱収縮特性と曵糸性の点
で極めて重要である。他の共重合形態としてブロツク共
重合があるが,この共重合では,ポリプロピレンの構造
の中にエチレンの構造部がブロツク単位で存在するた
め,共重合体の熱収縮特性が不均一となり,しかも曵糸
性が極度に低下するという問題が生じるので好ましくな
い。
The polymer component A is obtained by copolymerizing 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene, has fiber-forming properties and can be melt-spun with good spinnability. Is. The copolymerization of ethylene has a great influence on the melting point lowering and heat shrinkability of the copolymer, lowers the melting point of the copolymer in proportion to the copolymerization amount, and increases the heat shrinkability. If the amount of this copolymer is less than 3% by weight, the melting point of the copolymer will be less likely to drop, and the crimping property will decrease when the composite short fibers are heat-treated, and the heat shrinkage will also decrease, such being undesirable. However, if the amount of the copolymerization exceeds 8% by weight, the rate of production of by-products soluble in the polymerization solvent (hydrocarbon) increases during the polymerization and the productivity decreases, which is industrially uneconomical and is not preferable. Therefore,
The copolymerization amount is 3% by weight or more and 8% by weight or less, preferably 3.2% by weight or more and 7.0% by weight or less, and particularly preferably 3.5% by weight or more and 6.0% by weight or less. Good. The polymer component A is 3% by weight or more and 8% by weight or more.
The following ethylene and 92% by weight or more and 97% by weight or less of propylene are randomly copolymerized. This random copolymerization is extremely important in terms of uniform heat shrinkage properties and spinnability of the copolymer. Block copolymerization is another type of copolymerization. In this copolymerization, the structure part of ethylene exists in the block structure of polypropylene as a block unit, so that the heat shrinkage property of the copolymer becomes non-uniform and This is not preferable because it causes a problem that the threadiness is extremely lowered.

【0012】前記重合体成分Bは,97重量%以上10
0重量%以下のプロピレンと0重量%以上3重量%以下
のエチレンが共重合され,かつ繊維形成性を有し曵糸性
よく溶融紡糸できるものである。このエチレンの共重合
は,前述したように,共重合体の融点降下と熱収縮性に
大きく影響し,共重合量に比例して共重合体の融点を降
下させ,かつ熱収縮性を増大させるものであり,この重
合体成分Bでは,融点降下と熱収縮性の増大を抑制する
必要がある。すなわち,重合体成分Aと重合体成分Bと
の間で融点及び熱収縮特性の差が小さくなりすぎると,
複合短繊維を熱処理したとき捲縮発現性が低下するので
好ましくない。したがって,この共重合量は,0重量%
以上3重量%以下とし,好ましくは2.5重量%以下,
特に好ましくは2重量%以下とするのがよい。
The polymer component B is 97% by weight or more and 10% or more.
Propylene of 0% by weight or less and ethylene of 0% by weight or more and 3% by weight or less are copolymerized, and it has fiber-forming properties and can be melt-spun with good spinnability. As described above, the copolymerization of ethylene has a great influence on the melting point lowering and heat shrinkability of the copolymer, lowers the melting point of the copolymer in proportion to the copolymerization amount, and increases the heat shrinkability. In this polymer component B, it is necessary to suppress lowering of melting point and increase of heat shrinkability. That is, when the difference in melting point and heat shrinkage characteristics between the polymer component A and the polymer component B becomes too small,
When the composite short fibers are heat-treated, the crimp developability decreases, which is not preferable. Therefore, this copolymerization amount is 0% by weight.
3% by weight or less, preferably 2.5% by weight or less,
Particularly preferably, it is 2% by weight or less.

【0013】本発明では,溶融複合紡糸は,通常の溶融
複合紡糸装置を用いて行うことができる。溶融複合紡糸
に際しては,前記共重合体成分Aとしてメルトフローレ
ート値が5g/10分以上40g/10分以下のもの
を,前記共重合体成分Bとしてメルトフローレート値が
15g/10分以上80g/10分以下のものを用い,
両重合体を複合して得られた複合短繊維のメルトフロー
レート値が15g/10分以上45g/10分以下とな
るようにして溶融紡糸する必要がある。この複合短繊維
のメルトフローレート値は,ASTM D 1238
(L)に記載の方法により測定されるものであり,この
メルトフローレート値が15g/10分未満であると,
複合短繊維の熱収縮応力が高くなって捲縮力や伸縮力,
嵩高性を大きくすることができるが,重合体の曵糸性の
みならず次工程の熱延伸性が低下したり,溶融紡糸時の
紡糸温度が高く設定されるためポリプロピレン系重合体
が分解して多量のガスが発生し,紡糸室の環境を悪化さ
せたりするので好ましくない。一方,メルトフローレー
ト値が45g/10分を超えると,複合短繊維の熱収縮
力が低下するため伸縮性と嵩高性に優れた不織布を得る
ことができず,また,ポリプロピレン系重合体の重合度
が低すぎ分解して多量のガスが発生し,紡糸室の環境を
悪化させたりするので好ましくない。したがって,この
メルトフローレート値は,15g/10分以上45g/
10分以下とし,好ましくは18g/10分以上40g
/10分以下,特に好ましくは20g/10分以上35
g/10分以下とするのがよい。
In the present invention, melt-composite spinning can be carried out using a normal melt-composite spinning apparatus. In the melt composite spinning, the copolymer component A having a melt flow rate value of 5 g / 10 min or more and 40 g / 10 min or less and the copolymer component B having a melt flow rate value of 15 g / 10 min or more and 80 g or more are used. / 10 minutes or less,
It is necessary to carry out melt spinning so that the melt flow rate value of the composite staple fiber obtained by compounding both polymers is 15 g / 10 min or more and 45 g / 10 min or less. The melt flow rate value of this composite short fiber is ASTM D 1238.
It is measured by the method described in (L), and when the melt flow rate value is less than 15 g / 10 minutes,
The heat shrinkage stress of the composite short fibers increases, and the crimping force and the stretching force,
The bulkiness can be increased, but not only the spinnability of the polymer but also the thermal drawability in the next step is reduced, and the polypropylene polymer is decomposed because the spinning temperature during melt spinning is set high. A large amount of gas is generated and the environment of the spinning chamber is deteriorated, which is not preferable. On the other hand, when the melt flow rate value exceeds 45 g / 10 minutes, the heat shrinkage force of the composite short fibers decreases, so that a nonwoven fabric excellent in stretchability and bulkiness cannot be obtained, and the polymerization of the polypropylene-based polymer It is not preferable because it decomposes too slowly and a large amount of gas is generated to deteriorate the environment of the spinning chamber. Therefore, this melt flow rate value is 15 g / 10 minutes or more and 45 g /
10 minutes or less, preferably 18g / 10 minutes or more 40g
/ 10 minutes or less, particularly preferably 20 g / 10 minutes or more 35
It is preferably g / 10 minutes or less.

【0014】溶融複合紡糸に際しては,前記重合体成分
Aと重合体成分Bのメルトフローレート値比(B/A)
を1/1〜6/1とする必要がある。なお,ここでいう
メルトフローレート値比とは,個別に溶融計量された重
合体を複合紡糸する前に個別に採取し,一旦冷却してチ
ツプ状にしたものを試料とし,ASTM D 1238
(L)に記載の方法により測定して算出したものであ
る。本発明では,エチレンの共重合量が多い重合体成分
Aを高収縮成分とし,このメルトフローレート値比(B
/A)が1/1〜6/1すなわち重合体成分Aを重合体
成分Bより高粘度とすることが重要である。重合体成分
Aのメルトフローレート値1に対する重合体成分Bのメ
ルトフローレート値が1未満であると,複合短繊維の熱
収縮性が低下するので好ましくない。一方,重合体成分
Bのメルトフローレート値が6を超えると,両成分を用
いて溶融紡糸するに際し,紡糸口金面でニーイングが多
発して紡糸性を低下させるので好ましくない。したがっ
て,このメルトフローレート値比は,1/1〜6/1と
し,好ましくは1.2/1〜5.0/1,特に好ましく
は1.5/1〜4.0/1とするのがよい。
In the melt composite spinning, the melt flow rate value ratio (B / A) of the polymer component A and the polymer component B is
Should be 1/1 to 6/1. The melt flow rate value ratio referred to here is a sample obtained by individually collecting the melt-measured polymers before composite spinning, cooling them once, and making them into chips, according to ASTM D 1238.
It is measured and calculated by the method described in (L). In the present invention, the polymer component A having a large amount of ethylene copolymerization is defined as the high shrinkage component, and the melt flow rate value ratio (B
/ A) is 1/1 to 6/1, that is, it is important that the polymer component A has a higher viscosity than the polymer component B. When the melt flow rate value of the polymer component B is less than 1 relative to the melt flow rate value of the polymer component A, the heat shrinkability of the composite staple fiber is lowered, which is not preferable. On the other hand, if the melt flow rate value of the polymer component B exceeds 6, when melt-spinning is performed using both components, kneeing frequently occurs on the spinneret surface and spinnability is deteriorated, which is not preferable. Therefore, the melt flow rate value ratio is set to 1/1 to 6/1, preferably 1.2 / 1 to 5.0 / 1, and particularly preferably 1.5 / 1 to 4.0 / 1. Is good.

【0015】また,溶融複合紡糸に際しては,前記重合
体成分Aの溶融後のQ値(重量平均分子量/数平均分子
量)を8以下とするのが好ましい。このQ値とは,ゲル
パーミエイシヨンクロマトグラフ法により求められる重
合体の重量平均分子量と数平均分子量の比であり,個別
に溶融計量された重合体を複合紡糸する前に個別に採取
し,冷却した重合体を試料として測定した値である。ポ
リプロピレン重合体は溶融紡糸時に受ける熱及び剪断の
影響で劣化しやすく,溶融紡糸後のQ値は,紡糸前のそ
れに比べ低下することが知られている。Q値は分子量分
布の幅を示すものであり,複合繊維の製造適性と加工適
性に大きく影響するものである。すなわち,Q値が大き
く分子量分布の幅が広いと,複合繊維に捲縮を発現させ
たり伸縮性を付与するための熱処理温度領域が広くな
り,嵩高性や伸縮性を有する不織布を安定して得ること
ができる。しかしながら,Q値が大きくなって分子量分
布の幅が広くなりすぎると,溶融紡糸時の糸条冷却が悪
くなって曵糸性が低下する。したがって,このQ値は8
以下とし,好ましくは7.5以下,特に好ましくは7.
0以下とするのがよい。
In the melt composite spinning, the Q value (weight average molecular weight / number average molecular weight) of the polymer component A after melting is preferably 8 or less. The Q value is the ratio of the weight average molecular weight and the number average molecular weight of the polymer, which is determined by gel permeation chromatography, and the individually melt-measured polymers are individually collected before composite spinning, It is a value measured using a cooled polymer as a sample. It is known that the polypropylene polymer is easily deteriorated by the influence of heat and shear during melt spinning, and the Q value after melt spinning is lower than that before spinning. The Q value shows the width of the molecular weight distribution and has a great influence on the manufacturing suitability and processing suitability of the composite fiber. That is, when the Q value is large and the molecular weight distribution is wide, the temperature range of heat treatment for developing crimps or imparting elasticity to the composite fiber is wide, and a nonwoven fabric having bulkiness and elasticity can be stably obtained. be able to. However, if the Q value becomes large and the width of the molecular weight distribution becomes too wide, the yarn cooling during melt spinning becomes poor and the spinnability decreases. Therefore, this Q value is 8
Or less, preferably 7.5 or less, particularly preferably 7.
It is preferable to set it to 0 or less.

【0016】また,前記重合体成分Bの溶融後のQ値
(重量平均分子量/数平均分子量)を5以上8以下とす
るのが好ましい。このQ値は,前述したように,分子量
分布の幅を示すものであり,複合繊維の製造適性と加工
適性大きく影響する。特に,重合体成分BのQ値は,重
合体成分AのQ値よりもさらに限定するのがよい。重合
体成分Bは,複合繊維の高融点成分であって捲縮発現時
の繊維モジユラスを代表するものであり,分子量分布の
幅が特に重要となる。すなわち,Q値が5未満であると
重合体の分子量分布が狭くなって複合繊維の収縮率が低
下し,例えば,スタツフアボツクスを適用せずに複合繊
維に捲縮を付与するとき顕在捲縮の発現性が低下し,ウ
エブ形成に最も一般的に用いられるカード工程を良好に
通過させることが困難となったり,また,カード工程通
過後の不織ウエブあるいは不織布にエンボスローラや熱
風乾燥機等の熱処理装置を用いて熱処理を施して捲縮を
発現させたり伸縮性を付与するための熱処理温度領域が
狭くなり,嵩高性や伸縮性を有し,かつ品位の高い不織
布を安定して得ることができない。さらに,複合繊維の
タフネスが低下するため,嵩高性及び柔軟性に優れた不
織布を得ることができない。一方,Q値が8を超える
と,重合体の分子量分布の幅が広くなりすぎて,溶融紡
糸時の糸条冷却が悪くなって曵糸性が低下し,細繊度の
複合繊維を得ることが困難となる。したがって,このQ
値は5以上8以下とし,好ましくは5.3以上7.8以
下,特に好ましくは5.5以上7.5以下とするのがよ
い。
The Q value (weight average molecular weight / number average molecular weight) of the polymer component B after melting is preferably 5 or more and 8 or less. As described above, this Q value shows the width of the molecular weight distribution, and has a great influence on the manufacturing suitability and processing suitability of the composite fiber. In particular, the Q value of the polymer component B should be more limited than the Q value of the polymer component A. The polymer component B is a high melting point component of the composite fiber and represents the fiber module when crimping occurs, and the width of the molecular weight distribution is particularly important. That is, when the Q value is less than 5, the molecular weight distribution of the polymer is narrowed and the shrinkage rate of the composite fiber is lowered. For example, when crimping is applied to the composite fiber without applying the stuff abox, the actual crimp Is less likely to pass through the card process, which is most commonly used for web formation, and it is also difficult to pass through the nonwoven web or nonwoven fabric after passing the card process, such as embossing rollers or hot air dryers. Stable production of high-quality non-woven fabrics that have a high bulk and stretchability by narrowing the heat treatment temperature range for developing crimps and imparting stretchability by performing heat treatment using the above heat treatment equipment I can't. Furthermore, since the toughness of the composite fiber is reduced, it is not possible to obtain a nonwoven fabric having excellent bulkiness and flexibility. On the other hand, when the Q value exceeds 8, the width of the molecular weight distribution of the polymer becomes too wide, the cooling of the yarn during melt spinning becomes poor, and the spinnability decreases, and a fine composite fiber can be obtained. It will be difficult. Therefore, this Q
The value is 5 or more and 8 or less, preferably 5.3 or more and 7.8 or less, and particularly preferably 5.5 or more and 7.5 or less.

【0017】さらに,溶融複合紡糸に際しては,重合体
成分Aと重合体成分Bの吐出線速度を2〜10m/分とす
る必要がある。ここでいう吐出線速度とは,溶融重合体
の単紡糸孔吐出量Q(g/分),同重合体の密度ρ(g
/cm3 )及び紡糸孔径d(mm)を用い次式(a)に
より算出されるものである。 吐出線速度(m/分)=4Q/(πρd2 ) ・・・・・・・・・・・・・・・・・・・・(a) 通常,異種の重合体からなる複合繊維を溶融紡糸するに
際しては,組み合わせる重合体間のメルトフローレート
差による可紡域の差と高粘度成分により限定される溶融
温度とにより曵糸性が大きく左右され,重合体の種類に
応じて適当な吐出線速度を選択する必要がある。したが
って,本発明では,良好な曵糸性を得るために吐出線速
度を2〜10m/分とすることが必要で,吐出線速度がこ
の範囲外では曵糸性が低下する。好ましくは3〜9m/
分,特に好ましくは4〜8m/分とするのがよい。
Further, in the melt composite spinning, it is necessary to set the discharge linear velocity of the polymer component A and the polymer component B to 2 to 10 m / min. The discharge linear velocity here means the discharge amount Q (g / min) of the single spinning hole of the molten polymer, and the density ρ (g of the same polymer.
/ Cm 3 ) and the spinning hole diameter d (mm), and is calculated by the following equation (a). Discharge linear velocity (m / min) = 4Q / (πρd 2 ) ... (a) Normally, the composite fiber made of different polymers is melted. When spinning, the spinnability is greatly affected by the difference in the spinnability range due to the difference in the melt flow rate between the polymers to be combined and the melting temperature limited by the high viscosity component, and the appropriate discharge depending on the type of the polymer. It is necessary to select the linear velocity. Therefore, in the present invention, it is necessary to set the discharge linear velocity to 2 to 10 m / min in order to obtain good spinnability, and if the discharge linear velocity is outside this range, the spinnability is deteriorated. Preferably 3-9 m /
Min, particularly preferably 4 to 8 m / min.

【0018】本発明では,複合繊維の複合比(B/A)
(重量比)は,特に問わないが,通常,75/25〜2
5/75とするのがよく,50/50とすると捲縮発現
性が向上するので特に好ましい。また,複合形態は,一
般的な並列構造,同心円型又は偏心円型芯鞘構造あるい
は異形断面型とするが,熱収縮性と捲縮発現性の向上を
考慮すると,並列構造とするのが望ましい。芯鞘型構造
とするときは,次式(b)で定義される偏芯率を15以
上とするのがよい。 偏芯率=(単繊維の中心と芯成分の中心との間の距離)×100 /(単繊維半径)≧15 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(b) 偏芯率が15未満であると,捲縮発現性が低下し,伸縮
性と嵩高性に優れた不織布を得ることができず好ましく
ない。なお,前記両成分には,通常,繊維に用いられる
艶消し剤,耐光剤,耐熱剤あるいは顔料等を,本発明の
効果が損なわれない範囲であれば,添加することができ
る。
In the present invention, the composite ratio (B / A) of the composite fibers
(Weight ratio) is not particularly limited, but is usually 75/25 to 2
5/75 is preferable, and 50/50 is particularly preferable because crimp developability is improved. Moreover, the composite form is a general parallel structure, a concentric or eccentric type core-sheath structure, or an irregular cross-section type, but considering the improvement of heat shrinkability and crimp developability, the parallel structure is desirable. .. When using a core-sheath structure, the eccentricity defined by the following equation (b) is preferably 15 or more. Eccentricity = (distance between center of single fiber and center of core component) × 100 / (radius of single fiber) ≧ 15 ... (B) When the eccentricity is less than 15, the crimp developability deteriorates, and a nonwoven fabric excellent in stretchability and bulkiness cannot be obtained, which is not preferable. A matting agent, a lightproofing agent, a heatproofing agent, a pigment or the like which is usually used for fibers can be added to both the components as long as the effects of the present invention are not impaired.

【0019】本発明では,次に,溶融複合紡糸して得ら
れた前記未延伸複合繊維を50℃以上かつ繊維相互が融
着しない温度で熱延伸する。熱延伸は,通常の熱延伸装
置を用いて行うことができる。通常,熱可塑性合成繊維
を延伸する場合,ガラス転移温度以上で加熱延伸をする
ことが知られているが,本発明ではガラス転移温度より
相当高い50℃以上の温度で熱延伸をする。延伸温度が
50℃未満であると,延伸張力が高くなりすぎて延伸性
が低下し,また,延伸装置が設備的に高くなるので好ま
しくない。また,本発明では,延伸温度は高くとも繊維
相互が融着し始める温度未満とする。延伸温度が高くな
りすぎて繊維相互が融着し始めると,延伸工程で糸切れ
が発生して操業性が低下したり,製品の均一性が低下す
ることによって品位が低下したりするので好ましくな
い。したがって,この延伸温度は,50℃以上かつ繊維
相互が融着しない温度とし,好ましくは70〜120℃
とするのがよい。
In the present invention, the unstretched composite fiber obtained by melt-composite spinning is then heat-stretched at a temperature of 50 ° C. or higher and at a temperature at which the fibers do not fuse together. The hot drawing can be performed using a normal hot drawing apparatus. Usually, when drawing a thermoplastic synthetic fiber, it is known to heat draw at a glass transition temperature or higher, but in the present invention, heat draw is performed at a temperature of 50 ° C. or higher, which is considerably higher than the glass transition temperature. If the stretching temperature is lower than 50 ° C., the stretching tension becomes too high, the stretchability is lowered, and the stretching apparatus becomes expensive, which is not preferable. Further, in the present invention, the drawing temperature is set to be lower than the temperature at which the fibers start to be fused even though the drawing temperature is high. If the drawing temperature becomes too high and the fibers start to fuse together, yarn breakage will occur in the drawing process and the operability will decrease, or the product uniformity will decrease and the quality will decrease, which is not desirable. .. Therefore, the stretching temperature is 50 ° C. or higher and the temperature at which the fibers are not fused to each other, and preferably 70 to 120 ° C.
It is good to say

【0020】次いで,得られた延伸複合繊維に捲縮付与
処理を施す。捲縮付与処理は,通常のスタツフア型捲縮
付与装置等の捲縮付与装置を用いて行うことができる。
この捲縮付与処理に引き続き,繊維に仕上げ油剤を付与
し,乾燥した後,所定長さに切断して短繊維とする。
Next, the obtained stretched composite fiber is subjected to crimping treatment. The crimping treatment can be performed using a crimping device such as a normal stuffer type crimping device.
Subsequent to this crimping treatment, a finishing oil agent is applied to the fibers, dried, and then cut into a predetermined length to obtain short fibers.

【0021】本発明では,複合短繊維の単繊維繊度を6
デニール以下とするのがよい。単繊維繊度が6デニール
を超えると,不織布としたとき柔軟性が低下したり,あ
るいは溶融紡糸に際し,ポリプロピレン系溶融重合体の
冷却が不十分となりフイラメント間に融着が生じて曵糸
性が低下したりするため好ましくない。
In the present invention, the single fiber fineness of the composite short fibers is 6
It is better to set it to denier or less. When the monofilament fineness exceeds 6 denier, the flexibility of the nonwoven fabric decreases, or when melt spinning, the polypropylene-based melt polymer is insufficiently cooled and fusion occurs between filaments, resulting in poor spinnability. It is not preferable because

【0022】本発明の方法で得られる複合短繊維は,温
度120℃及び初荷重2mg条件において35%以上の
乾熱収縮率を,かつ温度120℃での熱処理で捲縮数が
60個/25mm以上の捲縮を発現するものである。複
合短繊維の乾熱収縮率は,繊維自身の増径と捲縮形態へ
の変換力により伸縮力に寄与するものであり,また,熱
処理後の捲縮数は,未処理繊維の捲縮数の増加分が伸縮
性と嵩高性に寄与するものであり,乾熱収縮率と熱処理
後の捲縮数は,共に高いほど大きな伸縮性と嵩高性を発
現する。この乾熱収縮率は,温度120℃及び初荷重2
mgの条件で測定されるものであって,本発明の方法で
得られる複合短繊維は,上記温度及び荷重条件で35%
以上の乾熱収縮率を発現し,かつ上記温度での熱処理で
捲縮数が60個/25mm以上の捲縮を発現し,伸縮性
と嵩高性に優れた不織布を得ることができるのである。
前記乾熱収縮率が35%未満,かつ前記熱処理後の捲縮
数が60個/25mm未満であると,伸縮性と嵩高性に
優れた不織布を得ることができず好ましくない。なお,
本発明の方法で得られる複合短繊維では,温度120℃
及び初荷重50mgの条件で測定される乾熱収縮率が3
0%以上であると,高伸長応力下においても高度の収縮
性が発現し,繊維に瞬時の回復性が発現するため,さら
に好ましい。
The composite short fibers obtained by the method of the present invention have a dry heat shrinkage of 35% or more under the conditions of a temperature of 120 ° C. and an initial load of 2 mg, and the number of crimps is 60/25 mm after heat treatment at a temperature of 120 ° C. The above crimps are developed. The dry heat shrinkage of the composite short fibers contributes to the stretching force due to the diameter increase of the fibers themselves and the conversion force to the crimped form, and the number of crimps after heat treatment is the number of crimps of the untreated fibers. The increase in the amount contributes to the stretchability and bulkiness. The higher the dry heat shrinkage rate and the number of crimps after heat treatment, the greater the stretchability and bulkiness. This dry heat shrinkage rate is 120 ° C and initial load is 2
The composite short fiber obtained by the method of the present invention is 35% under the above temperature and load conditions.
It is possible to obtain a nonwoven fabric that exhibits the dry heat shrinkage ratio described above, and that the number of crimps is 60 crimps / 25 mm or more by heat treatment at the above temperature, and that is excellent in stretchability and bulkiness.
If the dry heat shrinkage is less than 35% and the number of crimps after the heat treatment is less than 60 pieces / 25 mm, a nonwoven fabric excellent in stretchability and bulkiness cannot be obtained, which is not preferable. In addition,
The composite short fibers obtained by the method of the present invention have a temperature of 120 ° C.
And the dry heat shrinkage ratio measured under the condition of the initial load of 50 mg is 3
When it is 0% or more, a high degree of shrinkage is exhibited even under a high elongation stress, and an instantaneous recoverability is exhibited in the fiber, which is more preferable.

【0023】本発明の方法で得られる複合短繊維は,3
g/デニール以上の強度を有するものであり,複合短繊
維を用いて不織布を作成し,得られた不織布を特におむ
つ等の医療衛生材用素材に用いたとき原綿が脱落し肌に
付着して違和感を生じたり,おむつ内外へ繊維吸収体が
露出する等の問題を生じたりすることがない。また,サ
ポータとして用いたときには,膝抜け現象が生じたり,
破損したりすることがない。
The composite short fibers obtained by the method of the present invention are 3
It has a strength of g / denier or more, and when a non-woven fabric is made from composite short fibers, and the obtained non-woven fabric is used as a material for medical hygiene materials such as diapers, raw cotton falls off and adheres to the skin. It does not cause a feeling of strangeness, and does not cause problems such as the fiber absorbent being exposed inside or outside the diaper. Also, when used as a supporter, a knee drop phenomenon may occur,
It will not be damaged.

【0024】本発明の方法で得られる複合短繊維は,熱
処理前の複合短繊維の共重合体成分A部分の複屈折と共
重合体成分B部分の複屈折が共に0.02以上であり,
かつ熱処理後の複合短繊維の共重合体成分A部分の複屈
折と共重合体成分B部分の複屈折が共に上記熱処理前の
複合短繊維の共重合体成分A部分の複屈折と共重合体成
分B部分の複屈折よりそれぞれ低いものである。この複
屈折は,カールツアイス イエナ干渉顕微鏡を用い,封
入剤として流動パラフインとα−ブロムナフタリン混合
液を用いて処理を行い,得られた複合繊維を試料として
重合体成分Aと重合体成分Bの複屈折をそれぞれ測定し
たものである。複屈折は繊維の配向性を表す指標として
一般的に用いられるものである。複合繊維はある一定の
配向を有し,繊維に熱処理を施すと熱収縮が極めて大き
くなるが,このとき配向は一挙に緩和して複屈折が低下
する。このことは,実質的な収縮が繊維の構造変化をも
たらすことを意味しており,この熱収縮により大きな伸
縮性を発現する繊維構造を得ることができる。複屈折が
低いと,繊維の配向性が低いため熱処理を施しても熱収
縮が大きくならず,このため大きな伸縮性を発現する繊
維構造を得ることができず好ましくない。
The composite short fibers obtained by the method of the present invention have both birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the composite short fibers before heat treatment of 0.02 or more,
The birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the composite short fiber after heat treatment are both the birefringence and the copolymer of the copolymer component A portion of the composite short fiber before the heat treatment. It is lower than the birefringence of the component B part. This birefringence was treated with a Karlzeus-Jena interference microscope, using a mixed solution of liquid paraffin and α-bromonaphthalene as an encapsulant, and the obtained composite fiber was used as a sample for polymer component A and polymer component B. The birefringence is measured respectively. Birefringence is generally used as an index showing the orientation of fibers. The composite fiber has a certain orientation, and when heat treatment is applied to the fiber, the heat shrinkage becomes extremely large, but at this time, the orientation is alleviated at once and the birefringence decreases. This means that substantial shrinkage brings about a structural change of the fiber, and this thermal shrinkage makes it possible to obtain a fiber structure exhibiting great stretchability. When the birefringence is low, the heat shrinkage does not increase even when heat treatment is performed because the orientation of the fibers is low, and thus it is not possible to obtain a fiber structure exhibiting a large elasticity.

【0025】本発明の方法で得られる複合短繊維は,広
角X線回折法により測定される熱処理前の複合短繊維の
結晶体積が100000Å3 以下であり,かつ広角X線
回折法により測定される熱処理後の複合短繊維の結晶体
積が200000Å3 以上のものである。この結晶体積
は広角X線回折法により求められるものであって,α型
単位胞(a=6.65Å,b=20.96Å,c=6.
50Å,β=99.2°)のa軸方向,b軸方向及びc
軸方向に相当する各結晶面L(110),L(130)
及びL(003)の面間隔を用い次のScherrer
の式(c)により見掛けの結晶サイズL(hkl)を求
め,それらの結晶サイズの積から算出されるものであ
る。 結晶サイズ〔L(hkl)〕=Kλ/βcosθ ・・・・・・・・・・・・・・・・(c) K=0.9,λ=1.5418, β=[〔各結晶面の半価幅(deg)〕2 −0.672 1/2 熱処理前の繊維の結晶体積が100000Å3 を超える
と,結晶体積が大き過ぎるため繊維に熱処理を施しても
結晶の成長が望めず,したがって熱収縮が大きくならな
いため大きな伸縮性を発現する繊維構造を得ることがで
きず好ましくない。一方,熱処理後の繊維の結晶体積が
200000Å3 未満であると,結晶体積が十分に大き
くないため安定な繊維構造を得ることができず好ましく
ない。
The composite short fibers obtained by the method of the present invention have a crystal volume of 100,000 Å 3 or less before heat treatment, which is measured by the wide-angle X-ray diffraction method, and are measured by the wide-angle X-ray diffraction method. The crystal volume of the composite short fibers after heat treatment is 200,000Å 3 or more. This crystal volume is obtained by a wide-angle X-ray diffraction method, and is an α-type unit cell (a = 6.65Å, b = 20.96Å, c = 6.
50Å, β = 99.2 °) a-axis direction, b-axis direction and c
Crystal planes L (110), L (130) corresponding to the axial direction
And the following Scherrer using the surface spacing of L (003)
The apparent crystal size L (hkl) is obtained by the equation (c) and the product of these crystal sizes is calculated. Crystal size [L (hkl)] = Kλ / β cos θ (c) K = 0.9, λ = 1.5418, β = [[each crystal plane Half-width (deg)] 2 −0.67 2 ] 1/2 If the crystal volume of the fiber before heat treatment exceeds 100000Å 3 , the crystal volume is too large, so that crystal growth is expected even if the fiber is heat treated. Therefore, the heat shrinkage does not increase, so that a fiber structure exhibiting a large elasticity cannot be obtained, which is not preferable. On the other hand, if the crystal volume of the fiber after the heat treatment is less than 200,000Å 3 , the crystal volume is not sufficiently large and a stable fiber structure cannot be obtained, which is not preferable.

【0026】本発明の方法で得られる複合短繊維は,小
角X線散乱法により測定される熱処理前の複合短繊維の
長周期が130Å未満であり,かつ小角X線散乱法によ
り測定される熱処理後の複合短繊維の長周期が130Å
以上のものである。この長周期は広角X線回折法により
求められるものであって,重合体成分Aと重合体成分B
が接合された状態での結晶部と非晶部との和の平均的な
長さを示すものである。この複合短繊維では,熱処理前
の複合短繊維の長周期が130Å未満で,適度な結晶部
と適度な非晶部とが混在した状態にある。熱処理前の複
合短繊維の長周期が130Å以上で繊維の結晶部がすで
に大きく成長しているとき繊維が構造緩和した状態に近
づいているため熱収縮率が大きくならず,したがって大
きな伸縮性を発現する繊維構造を得ることができず好ま
しくない。また,繊維の非晶部が大きいとき熱収縮率は
大きくなるが,経時安定性が劣るため好ましくない。し
たがって,熱処理前の複合短繊維は,適度な結晶部と適
度な非晶部とが混在した状態であって,長周期が130
Å未満であることが好ましい。熱処理前の長周期が抑制
された状態にあることによって,熱処理後の繊維の分子
鎖的構造緩和を助長し,熱収縮をより大きくすることが
できるのである。さらに,この複合短繊維では,熱処理
後の複合短繊維の長周期が130Å以上であることが好
ましい。熱処理により,非晶部の結晶部への組み込みに
より結晶が分子鎖軸方向に成長して長周期が130Å以
上となることにより,安定な構造を得ることができるの
である。なお,ここでいう熱処理とは,複合短繊維を
(重合体成分Bの融点−40℃)以上重合体成分Bの融
点未満の温度で自由長処理するものをいう。
The composite short fibers obtained by the method of the present invention have a long period of less than 130 Å before heat treatment measured by the small angle X-ray scattering method and a heat treatment measured by the small angle X-ray scattering method. The long period of the subsequent composite short fibers is 130Å
That is all. This long period is obtained by the wide-angle X-ray diffraction method, and the polymer component A and the polymer component B are
It shows the average length of the sum of the crystal part and the amorphous part in the state of being joined. In this composite short fiber, the long cycle of the composite short fiber before heat treatment is less than 130 Å, and a suitable crystal part and a suitable amorphous part are mixed. When the long period of the composite short fiber before heat treatment is 130 Å or more and the crystal part of the fiber is already largely grown, the fiber is approaching the structurally relaxed state, so the thermal shrinkage rate does not increase, and thus a large elasticity is exhibited. It is not preferable because it is not possible to obtain a fiber structure. Further, when the amorphous portion of the fiber is large, the heat shrinkage rate becomes large, but it is not preferable because the stability with time is poor. Therefore, the composite short fibers before heat treatment are in a state in which a suitable crystal part and a suitable amorphous part are mixed and the long cycle is 130
It is preferably less than Å. By suppressing the long cycle before the heat treatment, it is possible to promote the relaxation of the molecular chain structure of the fiber after the heat treatment and increase the heat shrinkage. Furthermore, in this composite short fiber, it is preferable that the long cycle of the composite short fiber after heat treatment is 130 Å or more. By the heat treatment, the crystal grows in the direction of the molecular chain axis due to the incorporation of the amorphous part into the crystal part, and the long period becomes 130 Å or more, so that a stable structure can be obtained. The term "heat treatment" as used herein means that the composite short fibers are subjected to free length treatment at a temperature of (melting point of polymer component B-40 ° C) or higher and lower than melting point of polymer component B.

【0027】本発明の方法で得られる複合短繊維は,密
度法により測定される熱処理前の複合短繊維の結晶化度
が70%未満であり,かつ密度法により測定される熱処
理後の複合短繊維の結晶化度が70%以上のものであ
る。この結晶化度は密度法により測定されるものであっ
て,次式(d)から算出される。 結晶化度=(ρc/ρ)×〔(ρ−ρa)/(ρc−ρa)〕 ×100 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(d) ρcは結晶密度,ρaは非晶密度,ρは試料の密度測定
値 ρc=0.9360g/cm3 ,ρa=0.8545g
/cm3 この複合短繊維に熱処理を施して結晶化度を向上させる
ことにより,この繊維を用いて最終製品としたとき耐熱
性が向上した製品を得ることができる。
The composite short fibers obtained by the method of the present invention have a crystallinity of the composite short fibers before heat treatment measured by a density method of less than 70%, and a composite short fiber after heat treatment measured by a density method. The crystallinity of the fiber is 70% or more. This crystallinity is measured by the density method and is calculated from the following equation (d). Crystallinity = (ρc / ρ) × [(ρ−ρa) / (ρc−ρa)] × 100 ... (D) ρc is the crystal density, ρa is the amorphous density, ρ is the density measurement value of the sample ρc = 0.360g / cm 3 , ρa = 0 0.8545 g
/ Cm 3 By subjecting this composite short fiber to a heat treatment to improve its crystallinity, a product with improved heat resistance can be obtained when the final product is made from this fiber.

【0028】次に,本発明の不織布の製造方法に関して
説明する。本発明の方法では,まず,前記複合短繊維を
用いてウエブを作成する。まず,前記複合短繊維を単独
で,あるいは前記複合短繊維50重量%以上と他素材の
短繊維50重量%以下とを混綿し,カード機によりカー
デイングして所定目付けのウエブを作成する。前記複合
短繊維と混綿する他素材の短繊維としては通常の熱可塑
性合成短繊維あるいはコツトン等の天然繊維を用いるこ
とができる。このウエブは,構成繊維の配列度合によっ
て,カード機の進行方向に配列したパラレルウエブ,ラ
ンダムに配列したランダムウエブ,あるいは両者の中程
度に配列したセミランダムウエブのいずれであってもよ
い。なお,前記複合短繊維のカードウエブと他素材のカ
ードウエブを重ねた積層ウエブとしてもよい。本発明で
は,不織布の構成繊維の50重量%以上を前記複合短繊
維とするため,伸縮性と嵩高性に優れた不織布を得るこ
とができる。
Next, the method for producing the nonwoven fabric of the present invention will be described. In the method of the present invention, first, a web is prepared using the composite short fibers. First, the composite short fibers are used alone, or 50% by weight or more of the composite short fibers and 50% by weight or less of other materials are mixed and carded by a card machine to prepare a web having a predetermined basis weight. As the short fibers of other materials mixed with the composite short fibers, usual thermoplastic synthetic short fibers or natural fibers such as Kotton can be used. This web may be a parallel web arranged in the traveling direction of the card machine, a random web arranged randomly, or a semi-random web arranged in a medium degree of both depending on the arrangement degree of the constituent fibers. A laminated web in which the card web of the composite short fibers and the card web of another material are stacked may be used. In the present invention, since 50% by weight or more of the constituent fibers of the non-woven fabric is the composite short fibers, a non-woven fabric excellent in stretchability and bulkiness can be obtained.

【0029】次に,得られたカードウエブを多孔性支持
部材上に載置した後,圧力が30kg/cm2 未満の流
体噴流により前記ウエブに流体絡合処理を施した後,圧
力が50kg/cm2 以上の流体噴流により前記ウエブ
に流体絡合処理を施してウエブを構成する前記複合短繊
維相互を三次元的に絡合させる。本発明でいう流体絡合
処理とは,孔径が0.05〜1.0mmのオリフイスを
オリフイス間距離0.5〜10mmで1列又は複数列に
複数個配設し,これらのオリフイスから高圧で柱状に噴
出される流体噴流によりウエブの構成繊維同士を絡合さ
せるものである。流体としては,常温の水あるいは熱水
を使用することができる。また,添加剤を混入した水を
使用することもできる。流体噴流を前記ウエブに衝突さ
せるに際しては,前記オリフイスが1列又は複数列に複
数個配設されたオリフイスヘツドを,多孔性支持部材上
に積層載置された前記ウエブの進行方向と直角の方向
に,オリフイス間距離と同一距離の振幅で往復運動さ
せ,柱状流体噴流を均一に衝突させるとよい。この流体
絡合処理は,少なくとも2回に分けて施すとよい。第1
回目の流体絡合処理は,圧力が30kg/cm2 未満の
流体噴流を使用し,同圧力の流体噴流を前記ウエブに衝
突させることにより,ウエブの構成繊維相互を予備絡合
させるものである。この圧力が30kg/cm2 以上で
あると,ウエブの構成繊維相互が絡合されず,しかも構
成繊維が水流により乱れてしまい,ウエブに目付け斑が
生じるので好ましくない。次いで,第2回目の流体絡合
処理を施す。第2回目の流体絡合処理は,圧力が50k
g/cm2 以上の流体噴流を使用し,同圧力の流体噴流
を前記ウエブに衝突させることにより,第1回目の流体
絡合処理によりウエブに形成された構成繊維相互の予備
絡合をより強固なものにするためのものである。この第
2回目の処理では,圧力を50kg/cm2 以上とする
のが好ましく,圧力が50kg/cm2 未満であると,
構成繊維同士の絡合がより強固なものにならず,不織布
として使用するに際し十分な強力を得ることができな
い。なお,さらに強固な絡合を必要とする場合には,前
記第2回目の流体絡合処理を,同一条件で複数回施すと
よい。前記ウエブが載置される多孔性支持部材として
は,ウエブを通過した流体噴流が抵抗なく除去されるも
のであればいかなるものであってもよいが,特に,金網
や合成繊維織物等からなる200メツシユ以下の多孔性
部材が好ましい。
Next, after placing the obtained card web on the porous support member, the web was subjected to a fluid entanglement treatment with a fluid jet having a pressure of less than 30 kg / cm 2 , and then the pressure was 50 kg / cm 2. The web is subjected to a fluid entanglement treatment with a fluid jet of cm 2 or more to three-dimensionally entangle the composite short fibers constituting the web. The fluid entanglement treatment as referred to in the present invention is to arrange a plurality of orifices having a hole diameter of 0.05 to 1.0 mm in one row or a plurality of rows with a distance between orifices of 0.5 to 10 mm, and to apply high pressure from these orifices. The constituent fibers of the web are entangled with each other by a fluid jet ejected in a columnar shape. As the fluid, normal temperature water or hot water can be used. It is also possible to use water mixed with additives. When the fluid jet impinges on the web, a plurality of orifice heads having a plurality of orifices arranged in one row or a plurality of rows are provided in a direction perpendicular to the traveling direction of the webs stacked on the porous support member. In addition, it is advisable to reciprocate with the same amplitude as the distance between the orifices so that the columnar fluid jets collide uniformly. This fluid entanglement process may be performed at least twice. First
The fluid entanglement process for the second time is to pre-entangle the constituent fibers of the web by using a fluid jet having a pressure of less than 30 kg / cm 2 and causing the fluid jet having the same pressure to collide with the web. When the pressure is 30 kg / cm 2 or more, the constituent fibers of the web are not entangled with each other, and the constituent fibers are disturbed by the water flow, which causes unsightly spots on the web, which is not preferable. Then, the second fluid entanglement process is performed. In the second fluid entanglement process, the pressure is 50k.
By using a fluid jet of g / cm 2 or more and colliding the fluid jet of the same pressure with the web, the pre-entanglement of the constituent fibers formed on the web by the first fluid entanglement treatment is further strengthened. It is for making something special. In this second treatment, the pressure is preferably 50 kg / cm 2 or more, and when the pressure is less than 50 kg / cm 2 ,
The entanglement of the constituent fibers does not become stronger, and sufficient strength cannot be obtained when used as a nonwoven fabric. In addition, when stronger entanglement is required, the second fluid entanglement process may be performed a plurality of times under the same condition. The porous support member on which the web is placed may be any one as long as the fluid jet passing through the web can be removed without resistance. In particular, the porous support member 200 made of wire mesh or synthetic fiber fabric is used. A porous member having a mesh size or less is preferable.

【0030】次に,前記流体絡合処理に引き続き,ウエ
ブ中に残存する水分を乾燥除去した後,熱風循環式乾燥
機等の乾燥装置を用いて乾熱処理を施すことにより,ウ
エブの構成繊維に捲縮を発現させる。この捲縮は,温度
120℃で熱処理したとき捲縮数が60個/25mm以
上のものであり,これにより不織布に伸縮性と嵩高性が
付与される。本発明の方法では,ウエブに,ウエブ中に
残存する水を乾燥除去した後,熱カレンダあるいは熱エ
ンボスローラにより乾熱処理を施すこともできる。本発
明の方法は,前記複合短繊維からなるウエブに他の素
材,例えば,コツトンのカードウエブを重ねた積層ウエ
ブに流体絡合処理を施すことも含むものである。
Next, subsequent to the fluid entanglement treatment, the moisture remaining in the web is dried and removed, and then a dry heat treatment is performed using a drying device such as a hot air circulation dryer to give the constituent fibers of the web. Develop crimps. The crimps have a number of crimps of 60/25 mm or more when heat-treated at a temperature of 120 ° C., thereby imparting stretchability and bulkiness to the nonwoven fabric. In the method of the present invention, the web may be subjected to dry heat treatment with a heat calender or a hot embossing roller after the water remaining in the web is removed by drying. The method of the present invention also includes subjecting a laminated web obtained by stacking another web, for example, a card web of Kottton to the web made of the above-mentioned composite short fibers to a fluid entanglement treatment.

【0031】本発明の方法で得られる不織布は,不織布
を構成する前記複合短繊維相互が三次元的に絡合してい
るため不織布として使用するに際し実用上十分な強力が
発現する。また,温度120℃及び初荷重2mg条件に
おける乾熱収縮率が35%以上となる高収縮力と,温度
120℃で熱処理後の捲縮数が60個/25mm以上と
なる高捲縮力とを有する前記複合短繊維から構成される
ため,伸縮性と嵩高性に優れるともとに見掛け密度が
0.10g/cm3 以下と低密度のものとなる。さら
に,不織布の引張強力測定における20%及び50%伸
長時の伸長弾性率が縦横方向共40%以上であり,縦横
方向共に伸縮性に優れ,しかもこの高モジユラスにより
形態安定性が優れ,不織布を特に医療衛生材用素材とし
て使用したとき型崩れを生じたりすることがない。な
お,本発明では,不織布の目付けは,その用途上の要求
特性からして,10g/m2 以上150g/m2 以下と
するのがよい。
The nonwoven fabric obtained by the method of the present invention has a practically sufficient strength when used as a nonwoven fabric because the composite short fibers constituting the nonwoven fabric are three-dimensionally entangled with each other. In addition, a high shrinkage force of which the dry heat shrinkage rate is 35% or more at a temperature of 120 ° C and an initial load of 2 mg, and a high crimping force of which the number of crimps after heat treatment is 120 pieces / 60 mm / 25 mm or more. Since it is composed of the above-mentioned composite short fibers, it has excellent elasticity and bulkiness, and also has a low apparent density of 0.10 g / cm 3 or less. Furthermore, the tensile modulus of the nonwoven fabric is 40% or more in both longitudinal and transverse directions at 20% and 50% elongation, and it has excellent stretchability in both longitudinal and transverse directions. Especially when it is used as a material for medical hygiene materials, it does not lose its shape. In the present invention, the basis weight of the non-woven fabric is preferably 10 g / m 2 or more and 150 g / m 2 or less in view of the characteristics required for its application.

【0032】[0032]

【実施例】次に,実施例に基づいて本発明を具体的に説
明する。なお,実施例における各種特性の測定及び評価
は,次の方法により実施した。 重合体の融点:パーキンエルマ社製示差走査型熱量計D
SC−2型を用い,昇温速度20℃/分で測定した融解
吸収熱曲線の極値を与える温度を融点とした。 メルトフローレート値:ASTM D 1238(L)
に記載の方法により測定した。 繊維の引張強伸度:東洋ボールドウイン社製テンシロン
UTM−4−1−100を用い,試料長20mmの試料
を引張速度20mm/分で測定した。 繊維の乾熱収縮率I:単繊維計15本を試料とし,各単
繊維ごとに初荷重2mg/デニール時の長さL1 (c
m)を測定し,次いでエアーオーブン型熱処理機中で1
20℃×15分間熱処理した後の長さL2 (cm)を測
定し,次式(e)により収縮率を算出し,その平均値を
乾熱収縮率Iとした。 乾熱収縮率I(%)=(L1 −L2 )×100/L1 ・・・・・・・・・・・・(e) 繊維の乾熱収縮率II:単繊維計15本を試料とし,各単
繊維ごとに初荷重50mg/デニール時の長さL3 (c
m)を測定し,次いでエアーオーブン型熱処理機中で1
20℃×15分間熱処理した後の長さL4 (cm)を測
定し,次式(f)により収縮率を算出し,その平均値を
乾熱収縮率IIとした。 乾熱収縮率II(%)=(L3 −L4 )×100/L3 ・・・・・・・・・・・・(f) 不織布の引張強伸度:東洋ボールドウイン社製テンシロ
ンUTM−4−1−100を用い,JIS L−109
6Aに記載のストリツプ法にしたがい,試料幅2.5c
m,試料長10cmの試料片を引張速度10cm/分で
測定した。 不織布の伸長弾性率:東洋ボールドウイン社製テンシロ
ンUTM−4−1−100を用い,JIS L−109
6 6.13.1Aに記載の方法にしたがい,試料幅
2.5cm,試料長10cmの試料片を引張速度10c
m/分で引張試験を実施し,伸度が20%時点又は50
%時点の一定伸びに対する回復伸びの比率から求めた。 不織布の見掛け密度:試料幅10cm,試料長10cm
の試料片を計5個準備し,各試料片ごとに目付け(g/
2 )を測定した後,大栄科学精器製作所製厚さ測定器
を用いて,4.5g/cm2 の荷重を印加し10秒放置
した後の厚さ(mm)を測定し,次式(g)により見掛
け密度を算出し,その平均値を不織布の見掛け密度とし
た。 見掛け密度(g/cm3 )=(目付け)×10-3/(厚さ) ・・・・・・・・(g) ニーイング:溶融紡糸時の紡糸孔部におけるニーイング
の発生を次の2段階で評価した。○:ニーイングの角度
が75°未満で,操業上問題とならない。×:ニーイン
グの角度が75°以上と大きく,操業上問題である。 発煙性:溶融紡糸時の紡糸口金部での発煙度合いを視覚
判定により次の4段階で評価した。◎:発煙が全く観察
されない。○:発煙がやや観察される。△:発煙が相当
観察されるが,操業上問題とならない。×:発煙が極め
て多く,発煙物が紡糸口金付近に堆積し,操業上問題で
ある。 曵糸性:溶融紡糸時の曵糸性を糸切れの発生率により次
の3段階で評価した。○:糸切れが全く発生せず,操業
性が良好である。△:糸切れが24時間・紡糸錘数16
当たり1回発生。×:糸切れが24時間・紡糸錘数16
当たり2回以上発生し,操業上問題である。 延伸性:延伸性を糸切れ及び単糸切れの発生率により次
の3段階で評価した。○:糸切れや単糸切れが全く発生
せず,操業性が良好である。△:糸切れや単糸切れが2
4時間当たり1回発生。×:糸切れや単糸切れが24時
間当たり2回以上発生し,操業上問題である。
EXAMPLES Next, the present invention will be specifically described based on Examples. The measurement and evaluation of various characteristics in the examples were carried out by the following methods. Melting point of polymer: Differential scanning calorimeter D manufactured by Perkin Elmer
The melting point was the temperature at which the exothermic value of the melting and absorption heat curve measured using a SC-2 type at a heating rate of 20 ° C./min. Melt flow rate value: ASTM D 1238 (L)
It was measured by the method described in. Tensile strength and elongation of fiber: Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd. was used to measure a sample having a sample length of 20 mm at a tensile speed of 20 mm / min. Dry heat shrinkage ratio I of fiber: 15 single fibers in total as sample, length L 1 (c) at initial load of 2 mg / denier for each single fiber
m) and then 1 in an air oven type heat treatment machine
The length L 2 (cm) after heat treatment at 20 ° C. for 15 minutes was measured, the shrinkage rate was calculated by the following equation (e), and the average value was defined as the dry heat shrinkage rate I. Dry heat shrinkage I (%) = (L 1 −L 2 ) × 100 / L 1 ... (e) Dry heat shrinkage II of fiber: 15 single fiber total As a sample, length L 3 (c) at initial load of 50 mg / denier for each single fiber
m) and then 1 in an air oven type heat treatment machine
The length L 4 (cm) after heat treatment at 20 ° C. for 15 minutes was measured, the shrinkage ratio was calculated by the following formula (f), and the average value was defined as the dry heat shrinkage ratio II. Dry heat shrinkage II (%) = (L 3 −L 4 ) × 100 / L 3 ... (f) Tensile strength / elongation of nonwoven fabric: Tensilon UTM manufactured by Toyo Baldwin Co., Ltd. -4-1-100, JIS L-109
According to the strip method described in 6A, sample width 2.5c
A sample piece having a m and a sample length of 10 cm was measured at a tensile speed of 10 cm / min. Elongation elastic modulus of non-woven fabric: Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd. was used, and JIS L-109 was used.
6 According to the method described in 6.13.1A, a sample piece having a sample width of 2.5 cm and a sample length of 10 cm was pulled at a pulling speed of 10 c.
Tensile test was performed at m / min and the elongation was 20% or 50%.
It was calculated from the ratio of the recovery growth to the constant growth at the time point%. Apparent density of non-woven fabric: sample width 10 cm, sample length 10 cm
Prepare a total of 5 sample pieces for each sample weight (g / g
After measuring m 2 ), using a thickness measuring instrument manufactured by Daiei Kagaku Seiki Seisakusho, apply a load of 4.5 g / cm 2 and measure the thickness (mm) after leaving for 10 seconds. The apparent density was calculated from (g), and the average value was used as the apparent density of the nonwoven fabric. Apparent density (g / cm 3 ) = (unit weight) × 10 −3 / (thickness) ・ ・ ・ (g) Kneeing: The following two stages of kneeing occur in the spinning hole during melt spinning. It was evaluated by. ◯: The kneeing angle is less than 75 °, which causes no problem in operation. X: The kneeing angle is as large as 75 ° or more, which is a problem in operation. Smoke emission: The degree of smoke emission at the spinneret during melt spinning was evaluated by the following four grades by visual judgment. A: No smoke is observed. ○: Smoke emission is slightly observed. Fair: Smoke emission is observed considerably, but this does not pose a problem in operation. X: Extremely large amount of smoke is emitted, and smoke is accumulated near the spinneret, which is a problem in operation. Spinnability: The spinnability during melt spinning was evaluated according to the following three grades based on the occurrence rate of yarn breakage. ◯: Yarn break does not occur at all, and operability is good. △: 24 hours of yarn breakage, 16 spinning spindles
Occurs once per hit. ×: 24 hours of yarn breakage, 16 spinning spindles
It occurs more than once, which is a problem in operation. Stretchability: Stretchability was evaluated according to the following three grades based on the occurrence rates of yarn breakage and single yarn breakage. ◯: No yarn breakage or single yarn breakage occurred, and operability was good. Δ: 2 yarn breaks or single yarn breaks
Occurs once every 4 hours. X: Thread breakage or single thread breakage occurs twice or more per 24 hours, which is a problem in operation.

【0033】実施例1〜11及び比較例1〜9 表1に示したQ値とメルトフローレート値,融点を有
し,プロピレンとエチレンがランダム共重合されたポリ
プロピレン系共重合体を成分Aとし,表1に示したQ値
とメルトフローレート値,融点を有するポリプロピレン
重合体あるいはプロピレンとエチレンがランダム共重合
又はブロツク共重合されたポリプロピレン系共重合体を
成分Bとし,通常のエクストルーダ型溶融押出機で溶融
した後,紡糸孔径が0.5mm,孔数が300の紡糸口
金を用い,単孔吐出量を各々0.5g/分すなわち成分
Aと成分Bの複合比(B/A)(重量比)を1/1とし
て表2に示した組み合わせ及び紡糸温度条件で溶融紡出
し,引取速度1000m/分で引取って,並列型複合フ
イラメント糸の未延伸糸条を得た。得られた未延伸糸条
を複数本集束しトウとして熱延伸をした。延伸に際して
は,2段熱ローラ延伸機を用い,延伸条件を延伸速度1
00m/分,第1ローラ温度60℃,第2ローラ温度9
0℃,第3ローラ温度25℃とし,最大延伸倍率の80
%の延伸倍率で延伸を行った。延伸に連続して,延伸ト
ウをスタツフアボツクスに供給して14個/25mmの
捲縮を付与し仕上げ油剤を付与した後,温度70℃で乾
燥し,繊維長51mmに切断し,単繊維繊度が2デニー
ルの並列型複合短繊維の原綿を得た。次いで,得られた
原綿に,温度120℃で1分間の熱処理を施した。な
お,表1において,イ〜ホ,ヨ及びタは通常の単一重合
体,ヘ〜オ及びカはランダム共重合体,ワはブロツク共
重合体である。複合短繊維を構成する重合体成分の組み
合わせ及び紡糸温度条件を表2に,得られた原綿の特性
と曵糸性,延伸性の結果を表3に,原綿及び熱処理を施
した綿の微細構造の測定結果を表4及び表5に示す。
Examples 1 to 11 and Comparative Examples 1 to 9 A polypropylene copolymer having the Q value, the melt flow rate value and the melting point shown in Table 1 and having propylene and ethylene randomly copolymerized was used as the component A. , A polypropylene polymer having a Q value, a melt flow rate value, and a melting point shown in Table 1 or a polypropylene copolymer in which propylene and ethylene are randomly copolymerized or block copolymerized, is used as a component B, and a normal extruder-type melt extrusion is performed. After melting in a machine, using a spinneret with a spinning hole diameter of 0.5 mm and a number of holes of 300, the single hole discharge rate is 0.5 g / min, that is, the composite ratio (B / A) of component A and component B (weight) The ratio) is 1/1 and the melt-spun is carried out under the combinations and spinning temperature conditions shown in Table 2 and is drawn at a take-up speed of 1000 m / min to obtain an undrawn yarn of the parallel type composite filament yarn. Obtained. A plurality of the obtained unstretched yarns were bundled and hot-drawn as a tow. At the time of drawing, a two-stage hot roller drawing machine was used, and the drawing conditions were set to a drawing speed of 1
00m / min, first roller temperature 60 ° C, second roller temperature 9
0 ℃, 3rd roller temperature 25 ℃, maximum draw ratio of 80
Stretching was performed at a stretching ratio of%. Continuously after drawing, draw tow is supplied to the stuffed box to give 14 crimps / 25mm of crimp and a finishing oil is applied, then dried at a temperature of 70 ° C, cut into fiber length of 51mm, and single fiber fineness To obtain a raw cotton of a parallel type composite short fiber of 2 denier. Then, the obtained raw cotton was heat-treated at a temperature of 120 ° C. for 1 minute. In Table 1, a to h, yo and ta are ordinary homopolymers, ha to o and ka are random copolymers, and w is a block copolymer. Table 2 shows the combination of polymer components constituting the composite short fibers and the spinning temperature conditions, the characteristics of the obtained raw cotton and the results of the spinnability and stretchability are shown in Table 3, and the microstructures of the raw cotton and the heat-treated cotton. The measurement results of are shown in Tables 4 and 5.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】表2及び表3から明らかなように,本発明
の要件を満足する原綿は,温度120℃及び初荷重2m
g条件における乾熱収縮率が35%以上で,かつ温度1
20℃で熱処理後の捲縮数が60個/25mm以上であ
り,高収縮性と高捲縮性を有するものであった。また,
短繊維のメルトフローレート値が15g/10分以上4
5g/10分以下であり,曵糸性と延伸性とも良好であ
った。比較例1では,重合体成分Aと重合体成分Bの溶
融後のメルトフローレート値比(B/A)が6/1を超
えているため溶融紡糸時の紡糸孔部におけるニーイング
が強く発生し,曵糸性が低下した。比較例2では,溶融
後のメルトフローレート値比が1/1未満であり曵糸性
は良好であるものの,乾熱収縮率が低下した。比較例3
では,エチレンのランダム共重合量が少なく,乾熱収縮
率が低下した。比較例4では,曵糸性が劣るブロツク共
重合体を重合体成分Bとして用いているため,重合体成
分Aと複合しているにもかかわらず曵糸性が低下した。
比較例5では,短繊維のメルトフローレート値が45g
/10分以上でありポリプロピレン系重合体の重合度が
低すぎて分解するため多量のガスが発生し,紡糸室の環
境が悪化した。比較例6及び7では,短繊維のメルトフ
ローレート値が15g/10分未満であり,曵糸性と延
伸性が低下し,しかも紡糸温度を高く設定しなければな
らなかったためポリプロピレン系重合体が分解して多量
のガスが発生し,紡糸室の環境が悪化した。比較例8で
は,重合体成分BのQ値が高く,溶融紡糸時の糸条冷却
が悪くなって曵糸性が低下した。比較例9では,重合体
成分BのQ値が低く,延伸性が低下し,しかも得られた
短繊維は,温度120℃及び初荷重2mg条件における
乾熱収縮率と温度120℃で熱処理後の捲縮数がいずれ
も低いものであった。また,表5に示した繊維の微細構
造の測定結果から明らかなように,熱処理前の長周期が
大きい比較例2及び結晶体積が大きい比較例3では,乾
熱収縮率が低く,捲縮特性が十分発揮されなかった。
As is clear from Tables 2 and 3, raw cotton satisfying the requirements of the present invention has a temperature of 120 ° C. and an initial load of 2 m.
Dry heat shrinkage of 35% or more under g condition and temperature of 1
The number of crimps after heat treatment at 20 ° C. was 60 pieces / 25 mm or more, and it had high shrinkability and high crimpability. Also,
Melt flow rate value of short fiber is 15g / 10min or more 4
It was 5 g / 10 minutes or less, and the spinnability and drawability were good. In Comparative Example 1, since the melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting exceeds 6/1, strong kneeing occurs in the spinning hole during melt spinning. , The spinnability decreased. In Comparative Example 2, the melt flow rate value ratio after melting was less than 1/1, and the spinnability was good, but the dry heat shrinkage ratio decreased. Comparative Example 3
In the case of ethylene, the random copolymerization amount of ethylene was small, and the dry heat shrinkage rate decreased. In Comparative Example 4, since the block copolymer having inferior spinnability was used as the polymer component B, the spinnability was lowered even though it was combined with the polymer component A.
In Comparative Example 5, the short fiber melt flow rate value is 45 g.
/ 10 minutes or more, the degree of polymerization of the polypropylene-based polymer was too low and decomposed to generate a large amount of gas, deteriorating the environment of the spinning chamber. In Comparative Examples 6 and 7, since the melt flow rate value of the short fibers was less than 15 g / 10 minutes, the spinnability and the drawability were lowered, and the spinning temperature had to be set high, the polypropylene polymer was It decomposed and generated a large amount of gas, which deteriorated the environment of the spinning chamber. In Comparative Example 8, the Q value of the polymer component B was high, the yarn cooling during melt spinning was poor, and the spinnability was lowered. In Comparative Example 9, the Q value of the polymer component B was low, the drawability was reduced, and the obtained short fibers were dried at a temperature of 120 ° C. and an initial load of 2 mg, and were subjected to heat treatment at a temperature of 120 ° C. The number of crimps was low. Further, as is clear from the measurement results of the fine structure of the fibers shown in Table 5, in Comparative Example 2 in which the long period before heat treatment is large and Comparative Example 3 in which the crystal volume is large, the dry heat shrinkage rate is low and the crimping property is low. Was not fully exerted.

【0040】実施例12〜18及び比較例10と11 表6に示した紡糸孔径の紡糸口金を用い,単孔吐出量を
表6に示したように設定した以外は,実施例3と同様に
して,並列型複合フイラメント糸を溶融紡出した。得ら
れた結果を表6に示す。
Examples 12 to 18 and Comparative Examples 10 and 11 Same as Example 3 except that the spinneret having the spinning hole diameter shown in Table 6 was used and the single hole discharge rate was set as shown in Table 6. Then, the parallel type composite filament yarn was melt spun. The obtained results are shown in Table 6.

【0041】[0041]

【表6】 [Table 6]

【0042】表6から明らかなように,重合体成分Aと
重合体成分Bの吐出線速度が2〜10m/分であると
き,良好な曵糸性と延伸性を得ることができた。
As is clear from Table 6, when the discharge linear velocities of the polymer component A and the polymer component B were 2 to 10 m / min, good spinnability and stretchability could be obtained.

【0043】実施例19〜21及び比較例12〜14 表7に示したように,前記実施例及び比較例で得られた
原綿をカーデイング機に供給して表7に示した目付けの
ウエブを作成し,90メツシユのエンドレスの金網から
なり,かつ速度が2m/分で移動するコンベア上に移
し,このウエブに第1回目の流体絡合処理を施した。第
1回目の流体絡合処理条件は,流体として水を採用し,
孔径が0.1mm,オリフイス間距離が1mmのオリフ
イスを横1列に配設したオリフイスヘツドを使用し,オ
リフイス面とウエブ間の距離を5cm,オリフイスヘツ
ドの移動振幅を横方向に1mm,周期を10往復/秒,
水噴流の水圧を20kg/cm2 とした。第1回目の流
体絡合処理に引き続き,ウエブに第2回目の流体絡合処
理を施した。第2回目の流体絡合処理条件は,流体とし
て水を採用し,孔径が0.125mm,オリフイス間距
離が1mmのオリフイスを横2列に配設したオリフイス
ヘツドを使用し,オリフイス面とウエブ間の距離を5c
m,オリフイスヘツドの移動振幅を横方向に1mm,周
期を10往復/秒,水噴流の水圧を75kg/cm2
した。なお,前記オリフイスヘツドにおいて,2列目の
オリフイスは,1列目の隣接する各オリフイス間の中点
から縦方向に延長した各線上に存在し,1列目と2列目
は幾何学的に平行に配設されている。前記第2回目の流
体絡合処理の後,第2回目の流体絡合処理と同一条件で
第3回目の流体絡合処理を施し,熱風循環式乾燥機を用
い温度120℃で1分間熱処理して不織布を製造した。
得られた不織布の性能を表7に,その微細構造の測定結
果を表8示す。
Examples 19 to 21 and Comparative Examples 12 to 14 As shown in Table 7, the raw cottons obtained in the above Examples and Comparative Examples were supplied to a carding machine to prepare webs having the basis weight shown in Table 7. Then, it was transferred onto a conveyor made of an endless wire mesh of 90 mesh and moving at a speed of 2 m / min, and this web was subjected to the first fluid entanglement treatment. The first fluid entanglement treatment condition is to use water as the fluid,
Using an orifice head with a hole diameter of 0.1 mm and a distance between orifices of 1 mm arranged in a row, the distance between the orifice surface and the web is 5 cm, the movement amplitude of the orifice is 1 mm in the lateral direction, and the cycle is 10 round trips / second,
The water pressure of the water jet was set to 20 kg / cm 2 . Following the first fluid entanglement treatment, the web was subjected to the second fluid entanglement treatment. The condition for the second fluid entanglement process was to use water as the fluid, use an orifice head with a hole diameter of 0.125 mm and a distance between the orifices of 1 mm arranged in two rows, and between the orifice surface and the web. Distance of 5c
m, the movement amplitude of the orifice head was 1 mm in the lateral direction, the cycle was 10 reciprocations / second, and the water pressure of the water jet was 75 kg / cm 2 . In the above-mentioned orientation head, the orientation of the second row exists on each line extending vertically from the midpoint between the adjacent orientations of the first row, and the first and second rows are geometrically arranged. They are arranged in parallel. After the second fluid entanglement treatment, the third fluid entanglement treatment is performed under the same conditions as the second fluid entanglement treatment, and heat treatment is performed at a temperature of 120 ° C. for 1 minute using a hot air circulation dryer. To produce a non-woven fabric.
The performance of the obtained nonwoven fabric is shown in Table 7, and the measurement result of its fine structure is shown in Table 8.

【0044】[0044]

【表7】 [Table 7]

【0045】[0045]

【表8】 [Table 8]

【0046】表7から明らかなように,本発明の方法で
得られた不織布は,見掛け密度が0.10g/cm3
下で極めて嵩高性に優れ,しかも不織布の引張強力測定
における20%及び50%伸長時の伸長弾性率が縦横方
向共40%以上であって,極めて形態安定性に優れたも
のであった。比較例12〜14では,いずれも50%伸
長時の伸長弾性率が縦横方向共40%未満であり,十分
な伸縮特性を有する不織布を得ることができなかった。
また,表8に示した不織布の微細構造の測定結果から明
らかなように,熱処理前の長周期が大きい比較例13及
び結晶体積が大きい比較例14では,伸縮特性が十分な
不織布を得ることができなかった。
As is apparent from Table 7, the non-woven fabric obtained by the method of the present invention has an apparent density of 0.10 g / cm 3 or less and is extremely bulky, and the non-woven fabric has a tensile strength of 20% and 50%. The elongation elastic modulus at the time of% elongation was 40% or more in both the longitudinal and lateral directions, which was extremely excellent in morphological stability. In Comparative Examples 12 to 14, the elongation elastic modulus at 50% elongation was less than 40% both in the longitudinal and transverse directions, and it was not possible to obtain a nonwoven fabric having sufficient stretchability.
Further, as is clear from the measurement results of the fine structure of the nonwoven fabric shown in Table 8, in Comparative Example 13 in which the long period before heat treatment is large and Comparative Example 14 in which the crystal volume is large, a nonwoven fabric having sufficient stretchability can be obtained. could not.

【0047】実施例22及び23 表1に示したポリプロピレン系共重合体チを成分Aと
し,表1に示したポリプロピレン重合体ハ及びタを成分
Bとし,実施例1と同様にして,並列型複合フイラメン
ト糸の未延伸糸条を得た。得られた未延伸糸条を複数本
集束しトウとして熱延伸をした。延伸に際しては,2段
熱ローラ延伸機を用い,延伸条件を延伸速度100m/
分,第1ローラ温度55℃,第2ローラ温度85℃,第
3ローラ温度25℃とし,最大延伸倍率の80%の延伸
倍率で延伸を行った。延伸に連続して,延伸トウをギヤ
型リールにより引取り,仕上げ油剤を付与した後,温度
80℃で乾燥し,繊維長51mmに切断し,単繊維繊度
が2デニールの並列型複合短繊維の原綿を得た。複合短
繊維を構成する重合体成分の組み合わせ及び紡糸温度条
件を表9に,得られた原綿の特性と曵糸性,延伸性の結
果を表10に示す。
Examples 22 and 23 The polypropylene-based copolymer H shown in Table 1 was used as the component A, and the polypropylene polymers C and H shown in Table 1 were used as the component B. An undrawn yarn of a composite filament yarn was obtained. A plurality of the obtained unstretched yarns were bundled and hot-drawn as a tow. At the time of drawing, a two-stage hot roller drawing machine was used, and the drawing conditions were set to a drawing speed of 100 m /
Min, the first roller temperature was 55 ° C., the second roller temperature was 85 ° C., and the third roller temperature was 25 ° C., and stretching was performed at a stretching ratio of 80% of the maximum stretching ratio. Following drawing, the drawn tow was taken by a gear type reel, and after applying a finishing oil, it was dried at a temperature of 80 ° C. and cut into a fiber length of 51 mm. I got raw cotton. Table 9 shows the combinations of polymer components constituting the composite short fibers and the spinning temperature conditions, and Table 10 shows the properties of the obtained raw cotton and the spinnability and drawability.

【0048】[0048]

【表9】 [Table 9]

【0049】[0049]

【表10】 [Table 10]

【0050】表9及び表10から明らかなように,本発
明の方法で得られた原綿は,温度120℃及び初荷重2
mg条件における乾熱収縮率が41%,かつ温度120
℃で熱処理後の捲縮数が83個/25mmであり,高収
縮性と高捲縮性を有するものであった。また,短繊維の
メルトフローレート値が28g/10分であり,曵糸性
と延伸性とも良好であった。しかも,スタツフアボツク
スを用いなくても複合繊維に顕在捲縮を十分発現させる
ことができ,また,カード通過性も良好であった。な
お,実施例23では,溶融紡糸後の重合体成分BのQ値
が低く,延伸性がやや低下し,しかも得られた短繊維
は,温度120℃及び初荷重2mg条件における乾熱収
縮率と温度120℃で熱処理後の捲縮数がいずれもやや
低いものであった。
As is clear from Tables 9 and 10, the raw cotton obtained by the method of the present invention has a temperature of 120 ° C. and an initial load of 2
41% dry heat shrinkage in mg condition and temperature 120
The number of crimps after heat treatment at ℃ was 83/25 mm, and it had high shrinkability and high crimpability. Further, the melt flow rate value of the short fibers was 28 g / 10 minutes, and the spinnability and the drawability were good. Moreover, it was possible to sufficiently develop the actual crimps in the composite fiber without using the stuffed box, and the card passing property was also good. In Example 23, the Q value of the polymer component B after melt spinning was low, the drawability was slightly lowered, and the obtained short fiber had a dry heat shrinkage ratio at a temperature of 120 ° C. and an initial load of 2 mg. The number of crimps after the heat treatment at a temperature of 120 ° C. was slightly low in all cases.

【0051】[0051]

【発明の効果】本発明の複合短繊維の製造方法は,前記
特定のポリプロピレン系共重合体を用いるものであり,
本発明によれば,高収縮性,高捲縮性,かつ高強度を有
する複合短繊維を得ることができる。また,本発明の不
織布の製造方法は,前記複合短繊維を用いるものであ
り,本発明によれば,伸縮性,嵩高性,柔軟性に優れ,
特に医療衛生材用素材として好適に使用することができ
る不織布を得ることができる。
EFFECT OF THE INVENTION The method for producing the composite staple fiber of the present invention uses the above specific polypropylene-based copolymer,
According to the present invention, it is possible to obtain a composite short fiber having high shrinkability, high crimpability, and high strength. Further, the method for producing a nonwoven fabric of the present invention uses the composite short fibers, and according to the present invention, it is excellent in stretchability, bulkiness and flexibility,
In particular, it is possible to obtain a nonwoven fabric that can be suitably used as a material for medical hygiene materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D04H 1/54 A 7199−3B (72)発明者 宮原 芳基 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location D04H 1/54 A 7199-3B (72) Inventor Yoshimoto Miyamoto 23 Uji Kozakura, Uji-shi, Kyoto Unitika Incorporated Central Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 92重量%以上97重量%以下のプロピ
レンと3重量%以上8重量%以下のエチレンがランダム
共重合されたポリプロピレン系共重合体成分Aと,97
重量%以上100重量%以下のプロピレンと0重量%以
上3重量%以下のエチレンが共重合されたポリプロピレ
ン系共重合体成分Bとを複合成分とし,複合短繊維とし
たときのメルトフローレート値が15g/10分以上4
5g/10分以下となるようにし,重合体成分Aと重合
体成分Bの溶融後のメルトフローレート値比(B/A)
を1/1〜6/1とし,かつ重合体成分Aと重合体成分
Bの吐出線速度を2〜10m/分として溶融複合紡糸
し,得られた未延伸複合繊維を50℃以上かつ繊維相互
が融着しない温度で熱延伸し,次いで得られた延伸複合
繊維に捲縮付与処理を施し,仕上げ油剤を付与した後乾
燥し,所定長さに切断して短繊維とすることを特徴とす
るポリプロピレン系短繊維の製造方法。
1. A polypropylene-based copolymer component A in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized,
The melt flow rate value when a composite short fiber is obtained by using a polypropylene-based copolymer component B in which 0% by weight or more and 100% by weight or less propylene and 0% by weight or more and 3% by weight or less ethylene are copolymerized as a composite component 15g / 10 minutes or more 4
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting was set to 5 g / 10 minutes or less.
Is 1 to 6/1 and the discharge linear velocity of the polymer component A and the polymer component B is 2 to 10 m / min. Is heat-stretched at a temperature that does not cause fusion, and then the resulting stretched composite fiber is subjected to crimping treatment, a finishing oil agent is applied, and then dried and cut into short fibers to obtain short fibers. Method for producing polypropylene-based short fibers.
【請求項2】 92重量%以上97重量%以下のプロピ
レンと3重量%以上8重量%以下のエチレンがランダム
共重合され,かつQ値(重量平均分子量/数平均分子
量)が8以下のポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合され,かつQ値
(重量平均分子量/数平均分子量)が5以上8以下のポ
リプロピレン系共重合体成分Bとを複合成分とし,複合
短繊維としたときのメルトフローレート値が15g/1
0分以上45g/10分以下となるようにし,重合体成
分Aと重合体成分Bの溶融後のメルトフローレート値比
(B/A)を1/1〜6/1とし,かつ重合体成分Aと
重合体成分Bの吐出線速度を2〜10m/分として溶融
複合紡糸し,得られた未延伸複合繊維を50℃以上かつ
繊維相互が融着しない温度で熱延伸し,次いで得られた
延伸複合繊維に捲縮付与処理を施し,仕上げ油剤を付与
した後乾燥し,所定長さに切断して短繊維とすることを
特徴とするポリプロピレン系短繊維の製造方法。
2. A polypropylene system in which 92 wt% or more and 97 wt% or less of propylene and 3 wt% or more and 8 wt% or less of ethylene are randomly copolymerized, and a Q value (weight average molecular weight / number average molecular weight) is 8 or less. Copolymer component A, 9
7 wt% to 100 wt% propylene and 0 wt%
When a polypropylene-based copolymer component B having a Q value (weight average molecular weight / number average molecular weight) of 5 or more and 8 or less is copolymerized with ethylene of 3% by weight or less and 3% by weight or less, and a composite short fiber is obtained. Melt flow rate value is 15g / 1
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is 1/1 to 6/1 and is 0 to 45 g / 10 min. Melt composite spinning was performed at a discharge linear velocity of A and the polymer component B of 2 to 10 m / min, and the obtained undrawn composite fiber was heat drawn at a temperature of 50 ° C. or higher and at a temperature at which the fibers were not fused to each other, and then obtained. A method for producing a polypropylene-based short fiber, which comprises subjecting a stretched composite fiber to crimping treatment, applying a finishing oil, drying it, and cutting it into short fibers to obtain short fibers.
【請求項3】 92重量%以上97重量%以下のプロピ
レンと3重量%以上8重量%以下のエチレンがランダム
共重合され,かつQ値(重量平均分子量/数平均分子
量)が8以下のポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合され,かつQ値
(重量平均分子量/数平均分子量)が5以上8以下のポ
リプロピレン系共重合体成分Bとを複合成分とし,複合
短繊維としたときのメルトフローレート値が15g/1
0分以上45g/10分以下となるようにし,重合体成
分Aと重合体成分Bの溶融後のメルトフローレート値比
(B/A)を1/1〜6/1とし,かつ重合体成分Aと
重合体成分Bの吐出線速度を2〜10m/分として溶融
複合紡糸し,得られた未延伸複合繊維を50℃以上かつ
繊維相互が融着しない温度で熱延伸して下記条件(1)
〜(3)を満足する複合繊維とし,次いで得られた延伸
複合繊維に捲縮付与処理を施し,仕上げ油剤を付与した
後乾燥し,所定長さに切断して短繊維とすることを特徴
とするポリプロピレン系短繊維の製造方法。 (1)熱処理前の複合短繊維の共重合体成分A部分の複
屈折と共重合体成分B部分の複屈折が共に0.02以上
であること, (2)広角X線回折法により測定される熱処理前の複合
短繊維の結晶体積が100000Å3 以下であること, (3)小角X線散乱法により測定される熱処理前の複合
短繊維の長周期が130Å未満であること。
3. A polypropylene system in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized and Q value (weight average molecular weight / number average molecular weight) is 8 or less. Copolymer component A, 9
7 wt% to 100 wt% propylene and 0 wt%
When a polypropylene-based copolymer component B having a Q value (weight average molecular weight / number average molecular weight) of 5 or more and 8 or less is copolymerized with ethylene of 3% by weight or less and 3% by weight or less, and a composite short fiber is obtained. Melt flow rate value is 15g / 1
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is 1/1 to 6/1 and is 0 to 45 g / 10 min. Melt composite spinning was performed at a discharge linear velocity of 2 to 10 m / min of A and the polymer component B, and the resulting undrawn composite fiber was hot-drawn at a temperature of 50 ° C. or higher and at a temperature at which the fibers were not fused to each other. )
To (3), the drawn composite fiber is then subjected to a crimping treatment, a finishing oil agent is applied thereto, dried, and cut into a predetermined length to obtain a short fiber. Method for producing polypropylene-based short fibers. (1) The birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the composite short fiber before heat treatment are both 0.02 or more, (2) measured by wide-angle X-ray diffractometry The crystalline volume of the composite short fiber before heat treatment is 100,000Å 3 or less, and (3) the long period of the composite short fiber before heat treatment measured by the small-angle X-ray scattering method is less than 130Å.
【請求項4】 92重量%以上97重量%以下のプロピ
レンと3重量%以上8重量%以下のエチレンがランダム
共重合されたポリプロピレン系共重合体成分Aと,97
重量%以上100重量%以下のプロピレンと0重量%以
上3重量%以下のエチレンが共重合されたポリプロピレ
ン系共重合体成分Bとを複合成分とし,複合短繊維とし
たときのメルトフローレート値が15g/10分以上4
5g/10分以下となるようにし,重合体成分Aと重合
体成分Bの溶融後のメルトフローレート値比(B/A)
を1/1〜6/1とし,かつ重合体成分Aと重合体成分
Bの吐出線速度を2〜10m/分として溶融複合紡糸
し,得られた未延伸複合繊維を50℃以上かつ繊維相互
が融着しない温度で熱延伸し,次いで得られた延伸複合
繊維に捲縮付与処理を施し,仕上げ油剤を付与した後乾
燥し,所定長さに切断して短繊維とし,次いで得られた
複合短繊維50重量%以上を用いてカードウエブを作成
し,このカードウエブを多孔性支持部材上に載置し,圧
力が30kg/cm2 未満の流体噴流により前記ウエブ
に流体絡合処理を施した後,圧力が50kg/cm2
上の流体噴流により前記ウエブに流体絡合処理を施して
ウエブを構成する前記複合短繊維相互を三次元的に絡合
させ,引き続きウエブに乾熱処理を施して水分を除去す
るとともに複合短繊維に捲縮を発現させることを特徴と
する不織布の製造方法。
4. A polypropylene-based copolymer component A in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized,
The melt flow rate value when a composite short fiber is obtained by using a polypropylene-based copolymer component B in which 0% by weight or more and 100% by weight or less propylene and 0% by weight or more and 3% by weight or less ethylene are copolymerized as a composite component 15g / 10 minutes or more 4
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting was set to 5 g / 10 minutes or less.
Is 1 to 6/1 and the discharge linear velocity of the polymer component A and the polymer component B is 2 to 10 m / min. Is heat-stretched at a temperature that does not cause fusion, and then the resulting stretched composite fiber is subjected to crimping treatment, applied with a finishing oil agent, dried, and cut into short fibers to give short fibers. A card web was prepared using 50% by weight or more of short fibers, the card web was placed on a porous support member, and the web was subjected to a fluid entanglement treatment with a fluid jet having a pressure of less than 30 kg / cm 2 . After that, the web is subjected to a fluid entanglement treatment by a fluid jet having a pressure of 50 kg / cm 2 or more to three-dimensionally entangle the composite short fibers constituting the web, and then the web is subjected to a dry heat treatment to obtain a moisture content. To remove the composite short fiber A method for producing a non-woven fabric, which comprises expressing crimps in
【請求項5】 92重量%以上97重量%以下のプロピ
レンと3重量%以上8重量%以下のエチレンがランダム
共重合され,かつQ値(重量平均分子量/数平均分子
量)が8以下のポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合され,かつQ値
(重量平均分子量/数平均分子量)が5以上8以下のポ
リプロピレン系共重合体成分Bとを複合成分とし,複合
短繊維としたときのメルトフローレート値が15g/1
0分以上45g/10分以下となるようにし,重合体成
分Aと重合体成分Bの溶融後のメルトフローレート値比
(B/A)を1/1〜6/1とし,かつ重合体成分Aと
重合体成分Bの吐出線速度を2〜10m/分として溶融
複合紡糸し,得られた未延伸複合繊維を50℃以上かつ
繊維相互が融着しない温度で熱延伸し,次いで得られた
延伸複合繊維に捲縮付与処理を施し,仕上げ油剤を付与
した後乾燥し,所定長さに切断して短繊維とし,次いで
得られた複合短繊維50重量%以上を用いてカードウエ
ブを作成し,このカードウエブを多孔性支持部材上に載
置し,圧力が30kg/cm2 未満の流体噴流により前
記ウエブに流体絡合処理を施した後,圧力が50kg/
cm2 以上の流体噴流により前記ウエブに流体絡合処理
を施してウエブを構成する前記複合短繊維相互を三次元
的に絡合させ,引き続きウエブに乾熱処理を施して水分
を除去するとともに複合短繊維に捲縮を発現させること
を特徴とする不織布の製造方法。
5. A polypropylene system in which 92 wt% or more and 97 wt% or less of propylene and 3 wt% or more and 8 wt% or less of ethylene are randomly copolymerized, and a Q value (weight average molecular weight / number average molecular weight) is 8 or less. Copolymer component A, 9
7 wt% to 100 wt% propylene and 0 wt%
When a polypropylene-based copolymer component B having a Q value (weight average molecular weight / number average molecular weight) of 5 or more and 8 or less is copolymerized with ethylene of 3% by weight or less and 3% by weight or less, and a composite short fiber is obtained. Melt flow rate value is 15g / 1
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is 1/1 to 6/1 and is 0 to 45 g / 10 min. Melt composite spinning was performed at a discharge linear velocity of A and the polymer component B of 2 to 10 m / min, and the obtained undrawn composite fiber was heat drawn at a temperature of 50 ° C. or higher and at a temperature at which the fibers were not fused to each other, and then obtained. The drawn composite fiber is subjected to a crimping treatment, a finishing oil is applied thereto, and then dried, cut into a predetermined length to form a short fiber, and then a card web is prepared using 50% by weight or more of the obtained composite short fiber. After placing this card web on a porous support member and subjecting the web to fluid entanglement with a fluid jet having a pressure of less than 30 kg / cm 2 , the pressure is 50 kg / cm 2.
The web is subjected to a fluid entanglement treatment by a fluid jet of 3 cm 2 or more to three-dimensionally entangle the composite short fibers constituting the web, and then the web is subjected to a dry heat treatment to remove water and the composite short fibers. A method for producing a non-woven fabric, characterized in that fibers are crimped.
【請求項6】 92重量%以上97重量%以下のプロピ
レンと3重量%以上8重量%以下のエチレンがランダム
共重合され,かつQ値(重量平均分子量/数平均分子
量)が8以下のポリプロピレン系共重合体成分Aと,9
7重量%以上100重量%以下のプロピレンと0重量%
以上3重量%以下のエチレンが共重合され,かつQ値
(重量平均分子量/数平均分子量)が5以上8以下のポ
リプロピレン系共重合体成分Bとを複合成分とし,複合
短繊維としたときのメルトフローレート値が15g/1
0分以上45g/10分以下となるようにし,重合体成
分Aと重合体成分Bの溶融後のメルトフローレート値比
(B/A)を1/1〜6/1とし,かつ重合体成分Aと
重合体成分Bの吐出線速度を2〜10m/分として溶融
複合紡糸し,得られた未延伸複合繊維を50℃以上かつ
繊維相互が融着しない温度で熱延伸して下記条件(1)
〜(3)を満足する複合繊維とし,次いで得られた延伸
複合繊維に捲縮付与処理を施し,仕上げ油剤を付与した
後乾燥し,所定長さに切断して短繊維とし,次いで得ら
れた複合短繊維50重量%以上を用いてカードウエブを
作成し,このカードウエブを多孔性支持部材上に載置
し,圧力が30kg/cm2 未満の流体噴流により前記
ウエブに流体絡合処理を施した後,圧力が50kg/c
2 以上の流体噴流により前記ウエブに流体絡合処理を
施してウエブを構成する前記複合短繊維相互を三次元的
に絡合させ,引き続きウエブに乾熱処理を施して水分を
除去するとともに複合短繊維に下記条件(4)〜(6)
を満足させ,かつ捲縮を発現させることを特徴とする不
織布の製造方法。 (1)熱処理前の複合短繊維の共重合体成分A部分の複
屈折と共重合体成分B部分の複屈折が共に0.02以上
であること, (2)広角X線回折法により測定される熱処理前の複合
短繊維の結晶体積が100000Å3 以下であること, (3)小角X線散乱法により測定される熱処理前の複合
短繊維の長周期が130Å未満であること, (4)熱処理後の複合短繊維の共重合体成分A部分の複
屈折と共重合体成分B部分の複屈折が共に上記熱処理前
の複合短繊維の共重合体成分A部分の複屈折と共重合体
成分B部分の複屈折よりそれぞれ低いこと, (5)広角X線回折法により測定される熱処理後の複合
短繊維の結晶体積が200000Å3 以上であること, (6)小角X線散乱法により測定される熱処理後の複合
短繊維の長周期が130Å以上であること。
6. A polypropylene system in which 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene are randomly copolymerized, and a Q value (weight average molecular weight / number average molecular weight) is 8 or less. Copolymer component A, 9
7 wt% to 100 wt% propylene and 0 wt%
When a polypropylene-based copolymer component B having a Q value (weight average molecular weight / number average molecular weight) of 5 or more and 8 or less is copolymerized with ethylene of 3% by weight or less and 3% by weight or less, and a composite short fiber is obtained. Melt flow rate value is 15g / 1
The melt flow rate value ratio (B / A) of the polymer component A and the polymer component B after melting is 1/1 to 6/1 and is 0 to 45 g / 10 min. Melt composite spinning was performed at a discharge linear velocity of 2 to 10 m / min of A and the polymer component B, and the resulting undrawn composite fiber was hot-drawn at a temperature of 50 ° C. or higher and at a temperature at which the fibers were not fused to each other. )
A composite fiber satisfying (3) to (3) is obtained. Then, the drawn composite fiber obtained is subjected to crimping treatment, applied with a finishing oil agent, dried and cut into a predetermined length to obtain a short fiber, which is then obtained. A card web is prepared using 50% by weight or more of the composite short fibers, the card web is placed on a porous support member, and the web is subjected to a fluid entanglement treatment by a fluid jet having a pressure of less than 30 kg / cm 2. The pressure is 50kg / c
The web is subjected to a fluid entanglement treatment with a fluid jet of m 2 or more to three-dimensionally entangle the composite short fibers constituting the web, and then the web is subjected to a dry heat treatment to remove water and the composite short fibers. The following conditions (4) to (6) for the fiber
And a method for producing a crimp, which is characterized by satisfying the requirements. (1) The birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the composite short fiber before heat treatment are both 0.02 or more, (2) measured by wide-angle X-ray diffractometry The crystalline volume of the composite short fibers before heat treatment is 100,000Å 3 or less, (3) the long period of the composite short fibers before heat treatment measured by the small angle X-ray scattering method is less than 130Å, (4) heat treatment The birefringence of the copolymer component A portion and the birefringence of the copolymer component B portion of the subsequent composite short fiber are both the birefringence of the copolymer component A portion of the composite short fiber before the heat treatment and the copolymer component B. Lower than the birefringence of each part, (5) the crystal volume of the composite short fibers after heat treatment measured by wide-angle X-ray diffraction method is 200,000Å 3 or more, (6) measured by small-angle X-ray scattering method The long cycle of the composite short fibers after heat treatment is 130 That is greater than or equal to.
JP24481891A 1990-08-29 1991-08-29 Method for producing polypropylene-based composite short fiber and nonwoven fabric Expired - Fee Related JP2788140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24481891A JP2788140B2 (en) 1990-08-29 1991-08-29 Method for producing polypropylene-based composite short fiber and nonwoven fabric

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22893890 1990-08-29
JP2-228938 1990-08-29
JP24481891A JP2788140B2 (en) 1990-08-29 1991-08-29 Method for producing polypropylene-based composite short fiber and nonwoven fabric

Publications (2)

Publication Number Publication Date
JPH0571057A true JPH0571057A (en) 1993-03-23
JP2788140B2 JP2788140B2 (en) 1998-08-20

Family

ID=26528547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24481891A Expired - Fee Related JP2788140B2 (en) 1990-08-29 1991-08-29 Method for producing polypropylene-based composite short fiber and nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2788140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180209080A1 (en) * 2014-03-20 2018-07-26 Idemitsu Kosan Co., Ltd. Crimped fiber and nonwoven fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180209080A1 (en) * 2014-03-20 2018-07-26 Idemitsu Kosan Co., Ltd. Crimped fiber and nonwoven fabric

Also Published As

Publication number Publication date
JP2788140B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
US4988560A (en) Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
US5993943A (en) Oriented melt-blown fibers, processes for making such fibers and webs made from such fibers
US5141699A (en) Process for making oriented melt-blown microfibers
JPH02127553A (en) Stretchable non-woven fabric and production thereof
WO1994015003A1 (en) Meso triad syndiotactic polypropylene fibers
JPS58191215A (en) Polyethylene hot-melt fiber
EP0696655B1 (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
US6274237B1 (en) Potentially crimpable composite fiber and a non-woven fabric using the same
JP4505987B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the same
TWI776814B (en) Heat-fusible composite fibers and nonwoven fabrics and products using the same
JP4433567B2 (en) Latent crimpable conjugate fiber and nonwoven fabric using the same
JP2925441B2 (en) Core-sheath type composite short fiber and method for producing the same
JP2955406B2 (en) Polypropylene composite staple fiber and nonwoven fabric thereof
JP2872543B2 (en) Thermally bonded nonwoven fabric and method for producing the same
US6682672B1 (en) Process for making polymeric fiber
JP2788140B2 (en) Method for producing polypropylene-based composite short fiber and nonwoven fabric
JPH0770898A (en) Heat-bonded nonwoven cloth and its production
JP3055288B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JP2691320B2 (en) Stretchable non-woven fabric
JP2741122B2 (en) Stretchable bulky long-fiber nonwoven fabric and method for producing the same
JP3132202B2 (en) Method for producing heat-fusible conjugate fiber
JP2002146631A (en) Polyolefin fiber and nonwoven fabric and absorbent article using the same
JPH04100963A (en) Nonwoven fabric made of crimping continuous filament and its production
JP4379127B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the composite fiber
CN1615380A (en) High elongation, low denier fibers using high extrusion rate spinning

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090605

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees