JP3132202B2 - Method for producing heat-fusible conjugate fiber - Google Patents

Method for producing heat-fusible conjugate fiber

Info

Publication number
JP3132202B2
JP3132202B2 JP31638492A JP31638492A JP3132202B2 JP 3132202 B2 JP3132202 B2 JP 3132202B2 JP 31638492 A JP31638492 A JP 31638492A JP 31638492 A JP31638492 A JP 31638492A JP 3132202 B2 JP3132202 B2 JP 3132202B2
Authority
JP
Japan
Prior art keywords
heat
nonwoven fabric
less
conjugate fiber
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31638492A
Other languages
Japanese (ja)
Other versions
JPH06146113A (en
Inventor
整 石澤
浩昭 西尾
雅彦 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP31638492A priority Critical patent/JP3132202B2/en
Publication of JPH06146113A publication Critical patent/JPH06146113A/en
Application granted granted Critical
Publication of JP3132202B2 publication Critical patent/JP3132202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱融着性複合繊維の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of heat-fusible conjugate fibers .
About the method .

【0002】[0002]

【従来の技術】紙オムツや生理用品等の表面材には目付
け約10〜45g/m2の低目付け不織布が使用されて
いる。又、不織布の用途の多様化に伴い不織布に要求さ
れる性能も高度化し、出来るだけ少ない不織布重量で高
い不織布強力を維持し、且つ嵩高で風合いがソフトなも
のが要求されている。このような要求を満たすために
は、細繊度の熱融着性複合繊維で不織布を構成するこ
と、熱融着性複合繊維の熱融着に寄与する低融点成分が
柔軟であること等が必要条件とされている。特開昭63
−92722号公報には、第1成分にポリエステル、第
2成分に剛性の低い直鎖状低密度ポリエチレンを用いた
細繊度の熱融着性複合繊維及びその複合繊維からなる熱
融着不織布が開示されているが、不織布強力が低く上記
要求を満足しない。特開昭63−135549号公報に
は第1成分に特定の高結晶性ポリプロピレン、第2成分
にポリエチレンを用いた熱融着性複合繊維からなる熱融
着不織布の製法が開示されている。この方法によれば、
従来のポリオレフイン系熱融着性複合繊維を使用した不
織布には不可能であつた高い嵩高でかつ嵩高維持率のよ
い不織布が得られるとしている。しかし、この方法によ
り得られた不織布は不織布強力が低く、かつ風合いも硬
いという欠点がある。
2. Description of the Related Art A low-weight nonwoven fabric having a basis weight of about 10 to 45 g / m 2 is used for surface materials such as disposable diapers and sanitary articles. Further, with the diversification of uses of the nonwoven fabric, the performance required for the nonwoven fabric has been advanced, and the nonwoven fabric has been required to maintain high strength of the nonwoven fabric with a minimum weight of the nonwoven fabric, and to be bulky and soft in texture. In order to satisfy such demands, it is necessary that the nonwoven fabric is composed of heat-fusible conjugate fibers of fine size and that the low melting point component that contributes to heat-sealing of the heat-fusible conjugate fibers is flexible. It is a condition. JP 63
JP-A-92722 discloses a heat-fusible conjugate fiber of fine fineness using polyester as the first component and low-rigidity linear low-density polyethylene as the second component, and a heat-fusible nonwoven fabric comprising the conjugate fiber. However, the strength of the nonwoven fabric is low and the above requirements are not satisfied. JP-A-63-135549 discloses a method for producing a heat-fusible nonwoven fabric comprising heat-fusible conjugate fibers using a specific high-crystalline polypropylene as the first component and polyethylene as the second component. According to this method,
It is stated that a nonwoven fabric having a high bulkiness and a good bulkiness maintenance rate, which is not possible with a nonwoven fabric using a conventional polyolefin-based heat-fusible conjugate fiber, is obtained. However, the nonwoven fabric obtained by this method has the disadvantages of low nonwoven fabric strength and hard texture.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、不織
布強力及び嵩高性が大きく、かつ、ソフトな風合いを有
する不織布の製造に最適な熱融着性複合繊維の製造方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a heat-fusible conjugate fiber which is large in strength and bulkiness of a nonwoven fabric and which is optimal for producing a nonwoven fabric having a soft texture. To provide.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を重ねた結果、以下に示す発明に到
達した。 即ち、密度が0.905以上、沸騰n−ヘプ
タン不溶部のアイソタクチックペンタッド分率が0.9
50以上、かつ2個の異種コンフィギュレーションを有
するペンタッド分率が0.002以下であるポリプロピ
レンより成る第1成分と、密度が0.940以上、0.
955以下で、かつ、メルトフローレート(MFR;1
90℃)が8以上、25以下である高密度ポリエチレン
より成る第2成分とを、第1成分対第2成分の重量比を
45対55から35対65の範囲とし、第2成分が繊維
表面の少なくとも一部を長さ方向に連続して存在するよ
うに並列型又は鞘芯型に複合紡糸して未延伸糸を得、こ
の未延伸糸を延伸ゾ−ン全体の温度を90℃以上、13
0℃以下とし、かつ、最高延伸比の0.85倍以上の延
伸比で延伸し、次いで90℃以上、130℃以下の温度
でアニ−リングすることにより、引張抵抗度が40g/
d以上で、かつ熱収縮率が5%以下である熱融着性複合
繊維の製造方法である。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the invention described below. That is, the density is 0.905 or more, and the isotactic pentad fraction of the boiling n-heptane insoluble portion is 0.9%.
A first component made of polypropylene having a pentad fraction of 0.002 or less and having two or more different configurations, and a density of 0.940 or more and a 0.1% or less.
955 or less and a melt flow rate (MFR; 1)
(90 ° C.) a high-density polyethylene having a ratio of 8 to 25, and a weight ratio of the first component to the second component in the range of 45:55 to 35:65. Is obtained by compound spinning into a parallel type or a sheath-core type so that at least a part of the yarn is continuously present in the longitudinal direction to obtain an undrawn yarn. 13
It is stretched at a temperature of 90 ° C. or more and 130 ° C. or less by stretching at a temperature of 0 ° C. or less and 0.85 times or more of the maximum stretching ratio, and then having a tensile resistance of 40 g / g.
This is a method for producing a heat-fusible composite fiber having a heat shrinkage of not less than d and not more than 5%.

【0005】[0005]

【0006】ここで、ポリプロピレンのアイソタクチッ
クペンタッド分率とは、A.Zambelli等によっ
てMacromolecules ,925(197
3)に発表されている方法、すなわち13C−NMRを使
用して測定されるポリプロピレン分子鎖中のペンタッド
単位でのアイソタクチック分率である。従ってアイソタ
クチックペンタッド分率とは、プロピレンモノマー単位
が5個連続してアイソタクチック結合したプロピレンモ
ノマー単位の分率である。2個の異種コンフィギュレー
ションを有するペンタッド分率とは、分子鎖中の5個の
モノマー単位のコンフィギュレーションのうち3個が共
通コンフィギュレーションであり、他の2個がその反対
のコンフィギュレーションを持つようなペンタッド分率
である。
Here, the isotactic pentad fraction of polypropylene refers to A.I. Macromolecules 6 , 925 (197) by Zambelli et al.
It is an isotactic fraction in pentad units in a polypropylene molecular chain measured using a method published in 3), that is, 13 C-NMR. Therefore, the isotactic pentad fraction is the fraction of propylene monomer units in which five consecutive propylene monomer units are isotactically bonded. A pentad fraction with two heterogeneous configurations is such that three out of the five monomer unit configurations in the molecular chain have a common configuration and the other two have the opposite configuration. Pentad fraction.

【0007】本発明で複合繊維の第1成分として用いる
ポリプロピレンは、密度が0.905以上、沸騰n−ヘ
プタン不溶部のアイソタクチックペンタッド分率
(P)が0.950以上、かつ2個の異種コンフィギ
ュレーションを有するペンタッド分率(P)が0.0
02以下のものである。Pが0.950に満たないポ
リプロピレンを第1成分に用いた熱融着性複合繊維で
は、不織布化のための熱処理時にウエブが収縮して嵩高
な不織布が出来ない。又、Pが0.002を超えるポ
リプロピレンを第1成分に用いた熱融着性複合繊維でも
同様に嵩高な不織布は得ることは出来ない。又、本発明
で用いるポリプロピレンは、抽出処理をしないままでそ
の密度が0.905以上、好ましくは0.910以上の
ものである。密度が0.905に満たないポリプロピレ
ンを第1成分に用いた熱融着性複合繊維では、前記同様
に嵩高な不織布を得ることは出来ない。又、このポリプ
ロピレンのメルトフローレート(MFR;230℃)に
ついては特別な限定は不要であるが、紡糸のし易さから
メルトフローレートが5〜45程度のものが好ましく用
いられる。本発明において第1成分として用いる上記の
ポリプロピレンは特公平1−48922号公報に記載さ
れているような特定の触媒の存在下にプロピレンを重合
させることにより得られ、通常のポリプロピレンより剛
性が大きな重合体であり、沸騰n−ヘプタン不溶部は重
合体全体の95%以上を占める。
The polypropylene used as the first component of the conjugate fiber in the present invention has a density of 0.905 or more, an isotactic pentad fraction (P 0 ) of boiling n-heptane-insoluble portion of 0.950 or more, and 2 Pentad fraction (P 2 ) having a number of different configurations is 0.0
02 or less. In the case of a heat-fusible conjugate fiber using polypropylene whose P 0 is less than 0.950 as the first component, the web shrinks during heat treatment for forming a nonwoven fabric, and a bulky nonwoven fabric cannot be formed. Further, P 2 can not be obtain similar bulky woven or non-hot-melt adhesive conjugate fibers with the polypropylene in excess of 0.002 in the first component. The polypropylene used in the present invention has a density of 0.905 or more, preferably 0.910 or more, without being subjected to the extraction treatment. A heat-fusible conjugate fiber using a polypropylene having a density of less than 0.905 as the first component cannot provide a bulky nonwoven fabric as described above. Although there is no particular limitation on the melt flow rate (MFR; 230 ° C.) of this polypropylene, a polypropylene having a melt flow rate of about 5 to 45 is preferably used from the viewpoint of easy spinning. The polypropylene used as the first component in the present invention is obtained by polymerizing propylene in the presence of a specific catalyst as described in Japanese Patent Publication No. 1-48922, and has a greater rigidity than ordinary polypropylene. It is coalesced, and the boiling n-heptane insoluble portion accounts for 95% or more of the whole polymer.

【0008】本発明で熱融着性複合繊維の第2成分とし
て用いるポリエチレンは、密度が0.940以上0.9
55以下であることを必要とする。密度が0.940に
満たないポリエチレンを第2成分に用いた熱融着性複合
繊維では、高い不織布強力を得ることは出来ない。又、
密度が0.955を超えるポリエチレンを用いた熱融着
性複合繊維では不織布の風合が固くなり、この様なポリ
エチレンは使用できない。また、このポリエチレンはメ
ルトフローレート(MFR;190℃)が8〜25であ
ることが必要である。MFRが8未満のポリエチレンを
用いた熱融着性複合繊維では、不織布の風合が硬くな
り、25を超えるポリエチレンを用いた熱融着性複合繊
維では不織布強力が低くなり、この様なポリエチレンは
いずれも使用できない。
In the present invention, the polyethylene used as the second component of the heat-fusible conjugate fiber has a density of 0.940 or more and 0.9 or more.
It needs to be 55 or less. A heat-fusible conjugate fiber using a polyethylene having a density of less than 0.940 as the second component cannot obtain high nonwoven fabric strength. or,
In the case of a heat-fusible conjugate fiber using a polyethylene having a density exceeding 0.955, the hand of the nonwoven fabric becomes hard, and such a polyethylene cannot be used. Further, this polyethylene needs to have a melt flow rate (MFR; 190 ° C.) of 8 to 25. In the heat-fusible conjugate fiber using polyethylene having an MFR of less than 8, the feel of the nonwoven fabric becomes hard, and in the heat-fusible conjugate fiber using polyethylene exceeding 25, the nonwoven fabric strength becomes low. Neither can be used.

【0009】上記第1成分と第2成分はその重量比を3
5対65から45対55の範囲とし、第2成分が繊維表
面の少なくとも一部を長さ方向に連続して存在する様に
並列型または鞘芯型に配置され、引張抵抗度が40g/
d以上で熱収縮率が5%以下である。第1成分の重量比
率が35%未満、又は引張抵抗度が40g/d未満の場
合は、このような熱融着性複合繊維を用いた不織布は嵩
高性が劣るほか、風合が悪化し強度も低下する。第1成
分の重量比が45%を越えると、不織布の嵩高性は良く
なるが高い不織布強力が得られない。又、第1成分と第
二成分の重量比が前記範囲内であつても、熱収縮率が5
%を越えるものは、不織布化時の熱処理時のウエブの収
縮率が大きくなり、しわの無い均質な薄物不織布が得ら
れない。ここで引張抵抗度とは後記の測定条件で算出さ
れる繊維の剛性のファクタ−であり、熱収縮率とは13
0℃で3分間処理したときの収縮率である。
The weight ratio of the first component and the second component is 3
The ratio is in the range of 5:65 to 45:55, and the second component is arranged in a parallel type or a sheath-core type so that at least a part of the fiber surface is continuously present in the length direction, and the tensile resistance is 40 g /
The heat shrinkage is 5% or less at d or more. When the weight ratio of the first component is less than 35% or the tensile resistance is less than 40 g / d, the nonwoven fabric using such a heat-fusible conjugate fiber has poor bulkiness and deteriorates feeling and strength. Also decrease. If the weight ratio of the first component exceeds 45%, the bulkiness of the nonwoven fabric is improved, but high strength of the nonwoven fabric cannot be obtained. Further, even when the weight ratio of the first component and the second component is within the above range, the heat shrinkage ratio is 5%.
%, The shrinkage of the web at the time of heat treatment at the time of forming the nonwoven fabric becomes large, and a uniform thin nonwoven fabric without wrinkles cannot be obtained. Here, the tensile resistance is a factor of the rigidity of the fiber calculated under the measurement conditions described later.
It is a shrinkage ratio when treated at 0 ° C. for 3 minutes.

【0010】引張抵抗度や熱収縮率等が前記範囲内にあ
る本発明の熱融着性複合繊維は、上記の2成分を公知の
溶融紡糸法にて複合紡糸して得た未延伸糸を、延伸ゾ−
ン全体の温度を90℃以上130℃以下、好ましくは9
2〜125℃で、かつ最高延伸比の0.85倍以上、好
ましくは0.87倍以上、更に好ましくは0.95倍以
上の倍率で延伸し、所望により捲縮加工等を施した後、
90℃以上130℃以下の温度でアニ−リングすること
により得られる。ここで延伸ゾ−ン全体の温度とは、実
質的に延伸に寄与する部位の温度を言う。即ち、延伸チ
ャンバ−の入口と出口に延伸ロ−ルを備えた延伸装置を
用いる場合、延伸ロ−ルのみならず延伸チャンバ−の温
度をも意味する。具体的には、Aロ−ル群とBロ−ル群
及びCロ−ル群からなる多段型延伸装置を用いる場合、
各ロ−ル群間の延伸ゾ−ンにもカバー等を設けて延伸チ
ャンバ−とし、該チャンバ−の温度も90℃以上加熱す
る事を意味する。更にいえば、Aロ−ル群が7個のロー
ルからなる場合、7個のロ−ル間の僅かな空間を加熱す
るという意味では無い。
The heat-fusible conjugate fiber of the present invention, which has a tensile resistance, a heat shrinkage, etc. within the above-mentioned ranges, is an undrawn yarn obtained by conjugate spinning the above two components by a known melt spinning method. , Stretching zone
The temperature of the entire assembly is 90 ° C to 130 ° C, preferably 9 ° C.
After stretching at a temperature of 2 to 125 ° C. and 0.85 times or more of the maximum stretching ratio, preferably 0.87 times or more, and more preferably 0.95 times or more, and optionally crimping,
It is obtained by annealing at a temperature of 90 ° C. or more and 130 ° C. or less. Here, the temperature of the whole drawing zone means a temperature of a portion which substantially contributes to drawing. That is, when using a stretching apparatus having a stretching roll at the entrance and the exit of the stretching chamber, it means not only the stretching roll but also the temperature of the stretching chamber. Specifically, in the case of using a multi-stage stretching apparatus including the A roll group, the B roll group, and the C roll group,
This also means that a cover or the like is provided in the stretching zone between the roll groups to form a stretching chamber, and the temperature of the chamber is also heated to 90 ° C. or more. Furthermore, if the A-roll group consists of seven rolls, this does not mean that a small space between the seven rolls is heated.

【0011】延伸温度が90℃未満の場合、引張抵抗度
の高い繊維が得られなく、又、130℃を越える場合、
ポリエチレンによる繊維同士の融着が著しく発生するの
で好ましくない。延伸比が最高延伸比の0.85倍以下
の場合、引張抵抗度の高いものを得ることが出来ない。
なお、最高延伸比とは延伸比を徐々に上げていつた際に
トウに毛羽が発生し始めるときの延伸比を言う。延伸
後、90℃以上130℃以下の温度で約0.5〜30分
間アニ−リングすることにより熱収縮率が低いものが得
られる。アニーリング温度が90℃未満では30分間以
上のアニーリング時間が必要となり、かつ熱収縮率の低
いものが得られず、また130℃以上では引張抵抗が低
くなり、いずれも好ましくない。本発明の熱融着性複合
繊維は不織布への加工のし易さ等から所定の長さに切断
しステ−プルとして用いられることが多い。
When the stretching temperature is lower than 90 ° C., a fiber having a high tensile resistance cannot be obtained.
It is not preferable because the fusion of the fibers by polyethylene occurs remarkably. When the stretching ratio is 0.85 times or less of the maximum stretching ratio, it is impossible to obtain a film having a high tensile resistance.
The maximum stretching ratio refers to a stretching ratio at which fluff starts to be generated in the tow when the stretching ratio is gradually increased. After stretching, annealing is performed at a temperature of 90 ° C. or more and 130 ° C. or less for about 0.5 to 30 minutes to obtain a material having a low heat shrinkage. If the annealing temperature is less than 90 ° C., an annealing time of 30 minutes or more is required, and a material having a low heat shrinkage rate cannot be obtained. The heat-fusible conjugate fiber of the present invention is often cut into a predetermined length and used as a staple for ease of processing into a nonwoven fabric.

【0012】本発明の製造方法で得られる熱融着性複合
繊維(以下、単に本発明の熱融着性複合繊維という)を
用いた不織布は、本発明の熱融着性複合繊維のみからな
る繊維集合体、あるいは本発明の熱融着性複合繊維を2
0重量%以上含有する他の繊維との混合繊維集合体を公
知のカ−ディング法、エア−レイ法、乾式パルプ法、湿
式抄紙法、トウ開繊法等によりウェブとし、このウェブ
を熱処理して熱融着性複合繊維の接点を熱融着すること
により得ることができる。熱処理方法としては、熱風ド
ライヤ−、サクションバンドドライヤ−、ヤンキ−ドラ
イヤ−等のドライヤ−を用いる方法や、フラットカレン
ダ−ロ−ル、エンボスロ−ル等の加圧ロ−ルを用いる方
法等のいずれの方法も使用できる。熱処理温度は、複合
繊維の第2成分の融点以上、第1成分の融点以下の温度
であり、約120〜155℃の範囲が用いられる。処理
時間は前記ドライヤ−等を用いる場合は約5秒以上が、
前記加圧ロ−ルを用いる場合は5秒以下が一般的であ
る。本発明の熱融着性複合繊維と混合して使用できる他
の繊維としては、上記の熱処理により変質せず、本発明
の目的を阻害しないものであれば自由に使用でき、ポリ
エステル、ポリアミド、ポリプロピレン、ポリエチレ
ン、その他の合成繊維あるいは木綿や羊毛などの天然繊
維、レ−ヨン等の繊維を例示できる。本発明の熱融着性
繊維を用いた不織布において、該熱融着性繊維はバイン
ダ−として作用する。
The heat-fusible composite obtained by the production method of the present invention
Fiber (hereinafter, simply referred to as the heat-fusible conjugate fiber of the present invention)
The nonwoven fabric used was a fiber aggregate consisting of only the heat-fusible conjugate fiber of the present invention or a heat-fusible conjugate fiber of the present invention in 2 fibers.
A mixed fiber aggregate with other fibers containing 0% by weight or more is formed into a web by a known carding method, an air-lay method, a dry pulp method, a wet papermaking method, a tow opening method, or the like. By heat-sealing the contacts of the heat-fusible composite fiber. As the heat treatment method, any of a method using a dryer such as a hot air dryer, a suction band dryer, a yankee dryer, and a method using a pressurized roll such as a flat calender roll and an emboss roll are used. Can also be used. The heat treatment temperature is a temperature equal to or higher than the melting point of the second component of the conjugate fiber and equal to or lower than the melting point of the first component, and is in a range of about 120 to 155 ° C. The processing time is about 5 seconds or more when using the dryer or the like,
When using the above-mentioned pressure roll, the time is generally 5 seconds or less. Other fibers that can be used as a mixture with the heat-fusible conjugate fiber of the present invention can be freely used as long as they do not deteriorate by the above-mentioned heat treatment and do not inhibit the object of the present invention. Polyester, polyamide, polypropylene , Polyethylene, other synthetic fibers, natural fibers such as cotton and wool, and fibers such as rayon. The heat sealability of the present invention
In a non-woven fabric using fibers , the heat-fusible fibers act as a binder.

【0013】[0013]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお実施例中に示された物性値の測定法および定義
をまとめて示しておく。 密度:JIS K−6758のプレス法により試料片を
作製し、JIS K−7112の密度勾配管法により測
定した。 ポリプロピレンの沸騰n−ヘプタン不溶部:5gのポリ
プロピレンを500ミリリツトルの沸騰キシレン中に全
溶解し、これを5リツトルのメタノールに投入し、析出
した重合体を乾燥した後、沸騰n−ヘプタンで6時間ソ
クッスレー抽出した抽出残留物である。 アイソタクチックペンタッド分率(P0)及び2個の異
種コンフィギュレーションを有するペンタッド分率(P
2):ポリプロピレンの沸騰n−ヘプタン不溶部につい
てMacromolecules ,925(197
3)に記載の方法により測定した。NMRの測定におけ
るピークの帰属決定法は、上記同誌 ,687(19
75)に基づいた。このNMRによる測定にはFT−N
MRの270MHzの装置を用い、27,000回の積
算測定によりシグナル検出限界をアイソタクッチクペン
タッド分率で0.001にまで向上させた。 メルトフローレート(MFR;230℃):ASTM
D1238の条件(L)による。 メルトフローレート(MFR;190℃):ASTM
D1238の条件(E)による。
The present invention will be described below in detail with reference to examples. The measurement methods and definitions of the physical property values shown in the examples are collectively shown. Density: A sample piece was prepared by a press method of JIS K-6758, and measured by a density gradient tube method of JIS K-7112. Boiling n-heptane insoluble part of polypropylene: 5 g of polypropylene was completely dissolved in 500 ml of boiling xylene, and this was poured into 5 liter of methanol, and the precipitated polymer was dried and then heated with boiling n-heptane for 6 hours. It is an extraction residue obtained by soxhlet extraction. An isotactic pentad fraction (P 0 ) and a pentad fraction with two heterogeneous configurations (P
2 ): Regarding the boiling n-heptane insoluble portion of polypropylene, Macromolecules 6 , 925 (197)
It was measured by the method described in 3). The method for determining the assignment of peaks in NMR measurement is described in the above-mentioned Journal, 8 , 687 (19).
75). FT-N
Using a 270 MHz MR apparatus, the signal detection limit was improved to 0.001 in isotactic pentad fraction by 27,000 integrated measurements. Melt flow rate (MFR; 230 ° C): ASTM
According to condition (L) of D1238. Melt flow rate (MFR; 190 ° C): ASTM
According to condition (E) of D1238.

【0014】不織布強力:JIS L1085(不織布
芯地試験方法)に準じ繊維方向(MD)とその直角方向
(CD)に切りとった幅5cmの試験片の破断強度を、
つかみ間隔10cm、引張速度30±2cmで測定し
た。単位はkg/5cm。 嵩高性:試料片に10g/cm2の荷重をかけ、その直
後に厚さA(mm)を測定し、目付B(g/m2)との
比(A/B)×Cで求めた比容積(cm3/g)、但し
Cは単位補正で、C=1000である。 不織布風合:5人のパネラ−による官能試験を行い、し
わ等によるガサツキ感がなくしかもソフトであると全員
が判定した場合を優(○)、3名以上が判定した場合を
良(△)、3名以上がしわ等によるガサツキ感があるか
またはソフト感に欠けると判定した場合を不可(×)と
評価した。 引張抵抗度:JIS−L−1015の方法に準じ複合繊
維の引張強度試験を行い、5%伸張時の応力A(g)、
と10%伸張時の応力B(g)を求め、試料の繊度C
(d)から以下の式で算出した。 引張抵抗度=[(B−A)/{(10%−5%)/10
0%}]/C 熱収縮率:ドライヤ−を用い無荷重下125℃で3分間
加熱した後の複合繊維の収縮率を求め、20個の試料の
平均値を示した。
Nonwoven fabric strength: The breaking strength of a 5 cm wide test piece cut in the fiber direction (MD) and the direction perpendicular thereto (CD) according to JIS L1085 (test method for nonwoven fabric interlining)
The measurement was performed at a grip interval of 10 cm and a tensile speed of 30 ± 2 cm. The unit is kg / 5cm. Bulkiness: A load of 10 g / cm 2 was applied to the sample, and immediately after that, the thickness A (mm) was measured, and the ratio to the weight per unit area B (g / m 2 ) (A / B) × C. Volume (cm 3 / g), where C is unit correction and C = 1000. Non-woven fabric feel: A sensory test was conducted by five panelists, and all were determined to be soft without any rough feeling due to wrinkles, etc. (good), and good when three or more were determined (good). In the case where three or more persons judged that they had a rough feeling due to wrinkles or the like or lacked a soft feeling, they were evaluated as unacceptable (x). Tensile resistance: A tensile strength test of the conjugate fiber was performed according to the method of JIS-L-1015, and a stress A (g) at 5% elongation was obtained.
And the stress B (g) at the time of 10% elongation, and the fineness C of the sample
It was calculated from (d) by the following equation. Tensile resistance = [(BA) / {(10% -5%) / 10
0%}] / C Thermal shrinkage: The shrinkage of the composite fiber after heating at 125 ° C. for 3 minutes under no load using a dryer was determined, and the average value of 20 samples was shown.

【0015】実施例1〜2、比較例1〜4 第1表に示すポリプロピレンを芯成分とし、表1に示す
種々のポリエチレンを鞘成分とし、孔径0.6mm、孔
数350の芯鞘型口金を用いて単糸デニール8d/fの
芯鞘形複合繊維を紡糸した。この未延伸糸を全体を90
〜100℃の所定温度に加熱した延伸ロールとチャンバ
ーを備えた延伸装置を用い、最高延伸比の0.91倍以
上の所定倍率に延伸し、クリンパーで捲縮を付与し、そ
の後105℃で5分間アニーリングし、カッターで切断
して単糸デニール2d/f繊維長51mmの熱融着性複
合繊維ステープルを得た。原料ポリマーの特性、紡糸条
件等を表1に示した。得られた熱融着性複合繊維ステー
プルをカード機により目付け20g/mのウェブと
し、このウェブを乾燥機を用いて135〜140℃の所
定温度で5秒間加熱処理し熱融着性繊維の交点が熱融着
した不織布を得た。不織布化条件、不織布特性等を表2
に示した。表1、表2の結果から、本発明による複合繊
維は引張抵抗度が40g/d以上と高くしかも熱収縮率
が5%以下と低いことが判る。この複合繊維を用いて得
られた不織布は、縦(MD)横(CD)共に不織布強力
が高く、嵩高性が良く、しわが無くしかも風合いも良
い。しかし本発明以外の複合繊維を用いて得られた不織
布は、不織布横強力(CD)、嵩高性、風合いの何れか
が悪いことが判る。
Examples 1-2, Comparative Examples 1-4 Core-sheath type die having a core component of polypropylene shown in Table 1 and a sheath component of various polyethylenes shown in Table 1, having a pore diameter of 0.6 mm and a number of holes of 350. Was spun into a core-sheath composite fiber having a single yarn denier of 8 d / f. 90% of the undrawn yarn
Using a stretching device equipped with a stretching roll and a chamber heated to a predetermined temperature of 100100 ° C., the film is stretched to a predetermined ratio of 0.91 times or more of the maximum stretching ratio, and crimped by a crimper. After annealing for one minute, the resultant was cut with a cutter to obtain a heat-fusible conjugate staple having a single yarn denier of 2 d / f and a fiber length of 51 mm. Table 1 shows the properties and spinning conditions of the raw material polymer. The obtained heat-fusible conjugate fiber staple was made into a web having a basis weight of 20 g / m 2 by a card machine, and the web was heat-treated at a predetermined temperature of 135 to 140 ° C. for 5 seconds by using a drier to obtain a heat-fusible fiber. A nonwoven fabric was obtained in which the intersections were heat-sealed. Table 2 shows nonwoven fabric forming conditions and nonwoven fabric characteristics.
It was shown to. From the results in Tables 1 and 2, it can be seen that the conjugate fiber according to the present invention has a high tensile resistance of 40 g / d or more and a low heat shrinkage of 5% or less. The nonwoven fabric obtained by using this composite fiber has high strength of the nonwoven fabric in both the vertical (MD) and horizontal (CD) directions, has a good bulkiness, has no wrinkles, and has a good texture. However, it can be seen that the nonwoven fabric obtained by using a conjugate fiber other than the present invention is poor in any of nonwoven fabric transverse strength (CD), bulkiness, and texture.

【0016】実施例3、比較例5〜7 表1の各例に示すポリプロピレン及びポリエチレンを用
い、実施例1と同じ芯鞘型口金によりポリプロピレンを
芯とし、ポリエチレンを鞘とする単糸デニール14d/
fの芯鞘形複合繊維を紡糸した。この未延伸糸を実施例
1と同じ延伸装置を用い、延伸ロール及びチヤンバーの
全てを90℃とし最高延伸比の0.85倍以上で延伸
し、実施例1同様に捲縮加工、120℃で5分間のアニ
ーリング及び切断をし単糸デニール3d/f繊維長51
mmの熱融着性複合繊維ステープルを得た。 得られた
複合繊維を実施例1同様にカード機を用いウェブとし、
次いで140℃で5秒間加熱処理し目付け20g/m
の不織布を得た。表1に複合繊維の紡糸条件等を、表2
に不織布の特性等を示す。各表の結果から本発明の複合
繊維は引張抵抗度が40g/d以上と高くしかも熱収縮
率が5%以下と低いことが判る。この複合繊維を用いて
得られた熱融着不織布は、不織布強力、嵩高性が良く、
しわがなくしかも風合いも良い。しかし本発明以外の複
合繊維を用いて得られた不織布は不織布横強力(C
D)、嵩高性、風合いの何れかが悪いことが判る。
Example 3, Comparative Examples 5 to 7 Using the polypropylene and polyethylene shown in the respective examples in Table 1, the same core-sheath type die as in Example 1 was used to form a polypropylene core and a polyethylene single-sheath denier 14d /
The core-sheath composite fiber of f was spun. This undrawn yarn was drawn using the same drawing apparatus as in Example 1, the drawing roll and the chamber were all set to 90 ° C., and drawn at 0.85 times or more of the maximum drawing ratio. Annealing and cutting for 5 minutes, single yarn denier 3d / f fiber length 51
mm of the heat-fusible conjugate fiber staple was obtained. The obtained composite fiber was formed into a web using a card machine in the same manner as in Example 1,
Next, heat treatment was performed at 140 ° C. for 5 seconds, and the basis weight was 20 g / m 2.
Was obtained. Table 1 shows the spinning conditions of the conjugate fiber and Table 2
Shows the characteristics of the nonwoven fabric. From the results in each table, it is understood that the conjugate fiber of the present invention has a high tensile resistance of 40 g / d or more and a low heat shrinkage of 5% or less. The heat-sealed non-woven fabric obtained using this composite fiber has strong non-woven fabric and good bulkiness,
There are no wrinkles and the texture is good. However, the non-woven fabric obtained by using a conjugate fiber other than the present invention has a non-woven fabric with a lateral strength (C
It can be seen that D), bulkiness and texture are bad.

【0017】実施例4〜5、比較例8〜10 表1に示すポリプロピレン及びポリエチレンを用い、並
列型口金により、単糸デニールが12d/fの並列型複
合繊維を紡糸した。この未延伸糸を実施例1と同じ延伸
装置を用い、延伸ロール及びチヤンバーの全体を110
℃とし最高延伸比の0.83倍以上で延伸し、実施例1
と同様に捲縮加工、100℃で5分間のアニーリング及
び切断をし単糸デニール4d/f繊維長64mmの並列
型熱融着性複合繊維ステープルを得た。得られた複合繊
維ステープル(15〜25重量%)と、単糸デニール6
d/f繊維長51mmのポリエチレンテレフタレート繊
維ステープル(85〜75重量%)とをカード機により
混合し実施例1同様にウェブとし、次いで140℃で5
間加熱処理して目付け20g/mの不織布を得た。
表1に複合繊維の紡糸条件等を、表2に不織布の特性等
を示す。比較例8では実施例4と同じ複合繊維を用いて
いる。各表の結果から本発明の複合繊維は引張抵抗度が
40g/d以上と高くしかも熱収縮率が5%以下と低い
ことが判る。この複合繊維を20重量%以上含む熱融着
不織布は、不織布強力、嵩高性が良く、しわがなくしか
も風合いも良い。しかし本発明以外の複合繊維を用いて
得られた不織布は不織布横強力(CD)が低いことが判
る。
Examples 4 to 5 and Comparative Examples 8 to 10 Using polypropylene and polyethylene shown in Table 1, parallel type composite fibers having a single yarn denier of 12 d / f were spun by a parallel type die. This undrawn yarn was drawn using the same drawing device as in Example 1, and the entire drawing roll and chamber were turned into 110
And stretched at 0.83 times or more of the maximum stretch ratio.
In the same manner as described above, crimping, annealing and cutting at 100 ° C. for 5 minutes were performed to obtain a parallel type heat-fusible conjugate fiber staple having a single yarn denier of 4 d / f and a fiber length of 64 mm. The obtained composite fiber staple (15 to 25% by weight) and single yarn denier 6
d / f Polyethylene terephthalate fiber staple having a fiber length of 51 mm (85 to 75% by weight) was mixed with a carding machine to form a web in the same manner as in Example 1.
To obtain a nonwoven basis weight 20 g / m 2 and s between heat treatment.
Table 1 shows the spinning conditions and the like of the conjugate fiber, and Table 2 shows the characteristics and the like of the nonwoven fabric. In Comparative Example 8, the same composite fiber as in Example 4 is used. From the results in each table, it is understood that the conjugate fiber of the present invention has a high tensile resistance of 40 g / d or more and a low heat shrinkage of 5% or less. The heat-sealed nonwoven fabric containing the composite fiber in an amount of 20% by weight or more has good nonwoven fabric strength, bulkiness, no wrinkles, and good texture. However, it can be seen that the nonwoven fabric obtained by using a conjugate fiber other than the present invention has a low nonwoven fabric transverse strength (CD).

【0018】実施例6、比較例11〜13及び比較例1
4−15 実施例3で得られた未延伸糸を、実施例1に同じ延伸装
置を用い、延伸ロール温度を90℃に一定とし、延伸比
を最高延伸比の0.69〜0.89倍の範囲で変えて延
伸し、捲縮加工等をし、アニーリングをしない複合繊維
(比較例14,15)、及びアニーリング(120℃×
5分間)をした複合繊維(実施例6,比較例11−1
3)を得た。得られた複合繊維ステープルを実施例1同
様にカード機を用いウェブとし、次いで140℃で5秒
間加熱処理して目付け20g/mの不織布を得た。表
3に複合繊維の紡糸条件等を、表4に不織布特性等を示
す。各表から最高延伸比の0.85倍以上で延伸し、か
つアニーリング処理して得られた複合繊維は引張抵抗度
が40g/d以上と高くかつ熱収縮率も5%以下と低い
ことが判る(実施例6)。しかし、延伸比が最高延伸比
の0.86倍未満のもの(比較例11−13)は引張抵
抗度が40g/d未満と低く、またアニーリングをしな
い複合繊維(比較例14〜15)は熱収縮率が5%以上
と高いことが判る。本発明の複合繊維を用いて得られた
熱融着不織布(実施例6)は不織布強力、嵩高性が良
く、しわがなくしかも風合いも良い。しかし本発明以外
の複合繊維を用いて得られた不織布は、不織布横強力
(CD)が低いか嵩高が低いか又はしわがあるか風合い
が悪いかの何れかであることが判る。
Example 6, Comparative Examples 11 to 13 and Comparative Example 1
4-15 The undrawn yarn obtained in Example 3 was drawn using the same drawing apparatus as in Example 1, the draw roll temperature was kept constant at 90 ° C., and the draw ratio was 0.69 to 0.89 times the highest draw ratio. Stretched, crimped, etc., and subjected to annealing (Comparative Examples 14 and 15), and annealing (120 ° C. ×
5 minutes) composite fiber (Example 6, Comparative Example 11-1)
3) was obtained. The obtained composite fiber staple was formed into a web using a carding machine in the same manner as in Example 1, and then heat-treated at 140 ° C. for 5 seconds to obtain a nonwoven fabric having a basis weight of 20 g / m 2 . Table 3 shows the spinning conditions and the like of the conjugate fiber, and Table 4 shows the nonwoven fabric characteristics and the like. From each table, it can be seen that the composite fiber obtained by drawing at 0.85 times or more of the maximum drawing ratio and annealing treatment has a high tensile resistance of 40 g / d or more and a low heat shrinkage of 5% or less. (Example 6). However, those having a draw ratio of less than 0.86 times the maximum draw ratio (Comparative Examples 11 to 13) have a low tensile resistance of less than 40 g / d, and the non-annealed conjugate fibers (Comparative Examples 14 to 15) are heat-resistant. It can be seen that the shrinkage ratio is as high as 5% or more. The heat-sealed nonwoven fabric (Example 6) obtained by using the conjugate fiber of the present invention has good nonwoven fabric strength, good bulkiness, no wrinkles, and good texture. However, it can be seen that the nonwoven fabric obtained by using a conjugate fiber other than the present invention has either low nonwoven fabric transverse strength (CD), low bulk, wrinkles, or poor texture.

【0019】実施例7、比較例16〜18及び比較例1
9〜20 実施例1で得られた未延伸糸を実施例1と同じ延伸装置
を用い、延伸ロール温度と延伸チャンバーの温度を変
え、延伸比は最高延伸比の0.93倍の一定として延伸
し、捲縮加工をし、アニーリングをしない複合繊維(比
較例19,20)及びアニーリング(105℃×5分
間)をした複合繊維(実施例7,比較例16〜18)を
得た。得られた複合繊維を実施例1同様にカード機を用
いウェブとし、次いで140℃で5間加熱処理し目付
け20g/mの不織布を得た。表3に複合繊維の紡糸
条件等を、表4に延伸条件及び不織布特性等を示す。各
表から延伸ゾーンの全ての温度が90℃以上で延伸し且
つアニーリングして得られた複合繊維は、引張抵抗度が
40g/d以上と高くかつ熱収縮率も5%以下と低いこ
とが判る(実施例7)。しかし、チャンバーを加熱せず
に延伸したもの(比較例16〜18)は引張抵抗度が4
0g/d未満と低い。又、アニーリング処理なしの複合
繊維(比較例19〜20)は、引張抵抗度が40g/d
未満で低いか又は熱収縮率が5%以上と高いかの何れで
あることが判る。本発明の複合繊維を用いて得られた熱
融着不織布は、不織布横強力、嵩高性が良く、しわがな
くしかも風合いも良い。しかし本発明以外の複合繊維を
用いて得られた不織布は、不織布横強力が低いか嵩高が
低いか又はしわがあるか風合いが悪いかの何れかである
ことが判る。
Example 7, Comparative Examples 16-18 and Comparative Example 1
9-20 The undrawn yarn obtained in Example 1 was drawn by using the same drawing apparatus as in Example 1, changing the drawing roll temperature and the temperature of the drawing chamber, and keeping the drawing ratio constant at 0.93 times the maximum drawing ratio. Then, a crimped composite fiber without annealing (Comparative Examples 19 and 20) and a composite fiber with annealing (105 ° C. × 5 minutes) (Example 7, Comparative Examples 16 to 18) were obtained. The resulting composite fibers and the same manner as in Example 1 web using a carding machine, then to obtain a 140 ° C. for 5 seconds between heat treated having a basis weight of 20 g / m 2 non-woven fabric. Table 3 shows the spinning conditions and the like of the conjugate fiber, and Table 4 shows the drawing conditions and nonwoven fabric characteristics. From each table, it can be seen that the composite fiber obtained by drawing and annealing at all temperatures in the drawing zone at 90 ° C. or more has a high tensile resistance of 40 g / d or more and a low heat shrinkage of 5% or less. (Example 7). However, the one stretched without heating the chamber (Comparative Examples 16 to 18) had a tensile resistance of 4
It is as low as less than 0 g / d. The composite fiber without annealing treatment (Comparative Examples 19 to 20) had a tensile resistance of 40 g / d.
It can be seen that the heat shrinkage ratio is low, or lower, or the heat shrinkage ratio is as high as 5% or more. The heat-sealed nonwoven fabric obtained by using the conjugate fiber of the present invention has good nonwoven fabric lateral strength and bulkiness, no wrinkles, and good texture. However, it can be seen that the nonwoven fabric obtained by using a conjugate fiber other than the present invention has either low lateral strength, low bulk, wrinkles or poor texture.

【0020】[0020]

【発明の効果】実施例より明らかなように、本発明の熱
融着性複合繊維は引張抵抗度が高く、かつ熱収縮率が低
い。また、本発明で得られた熱融着性複合繊維を不織布
に加工することにより、これまで不可能であった高強力
と高嵩高性の両立に成功した。さらに、嵩高性が改良さ
れたことにより、これまでの不織布と比べ非常にソフト
な風合の不織布が得られるようになった。
As is clear from the examples, the heat-fusible conjugate fiber of the present invention has a high tensile resistance and a low heat shrinkage. In addition, by processing the heat-fusible conjugate fiber obtained in the present invention into a nonwoven fabric, it was possible to achieve both high strength and high bulkiness, which were not possible before. Furthermore, the improved bulkiness has made it possible to obtain a nonwoven fabric having a very soft feel compared to conventional nonwoven fabrics.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】密度が0.905以上、沸騰n−ヘプタン
不溶部のアイソタクチックペンタッド分率が0.950
以上、かつ2個の異種コンフィギュレーションを有する
ペンタッド分率が0.002以下であるポリプロピレン
より成る第1成分と、密度が0.940以上、0.95
5以下で、かつ、メルトフローレート(MFR;190
℃)が8以上25以下である高密度ポリエチレンより成
る第2成分とを、第1成分対第2成分の重量比を45対
55から35対65の範囲とし、第2成分が繊維表面の
少なくとも一部を長さ方向に連続して存在するように並
列型又は鞘芯型に複合紡糸して未延伸糸を得、この未延
伸糸を延伸ゾ−ン全体の温度を90℃以上、130℃以
下とし、かつ、最高延伸比の0.85倍以上の延伸比で
延伸して延伸糸を得、この延伸糸を90℃以上、130
℃以下の温度でアニ−リングすることを特徴とする、引
張抵抗度が40g/d以上で熱収縮率が5%以下である
熱融着性複合繊維の製造方法。
(1) a density of 0.905 or more, and an isotactic pentad fraction of a boiling n-heptane insoluble portion is 0.950;
A first component made of polypropylene having two or more different configurations and having a pentad fraction of 0.002 or less, and a density of 0.940 or more and 0.95 or more;
5 or less and a melt flow rate (MFR; 190
C) is at least 8 and at most 25, and the second component is a high-density polyethylene having a weight ratio of the first component to the second component in the range of 45:55 to 35:65. An undrawn yarn is obtained by compound spinning into a parallel type or a sheath-core type so that a part thereof is continuously present in the length direction, and the temperature of the undrawn yarn is set to 90 ° C. or more and 130 ° C. Or less, and stretched at a draw ratio of 0.85 times or more of the highest draw ratio to obtain a drawn yarn.
A method for producing a heat-fusible conjugate fiber having a tensile resistance of 40 g / d or more and a heat shrinkage of 5% or less, characterized by annealing at a temperature of not more than ℃.
JP31638492A 1992-10-30 1992-10-30 Method for producing heat-fusible conjugate fiber Expired - Fee Related JP3132202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31638492A JP3132202B2 (en) 1992-10-30 1992-10-30 Method for producing heat-fusible conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31638492A JP3132202B2 (en) 1992-10-30 1992-10-30 Method for producing heat-fusible conjugate fiber

Publications (2)

Publication Number Publication Date
JPH06146113A JPH06146113A (en) 1994-05-27
JP3132202B2 true JP3132202B2 (en) 2001-02-05

Family

ID=18076490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31638492A Expired - Fee Related JP3132202B2 (en) 1992-10-30 1992-10-30 Method for producing heat-fusible conjugate fiber

Country Status (1)

Country Link
JP (1) JP3132202B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665364B2 (en) * 2001-09-05 2011-04-06 チッソ株式会社 Heat-fusible composite fiber, and fiber molded body and fiber product using the same
JP3791919B2 (en) * 2002-04-09 2006-06-28 三菱レイヨン株式会社 Polypropylene conductive composite fiber and method for producing the same
JP2003328233A (en) * 2002-05-08 2003-11-19 Ube Nitto Kasei Co Ltd Polyolefin-based drawn conjugate fiber and nonwoven fabric obtained from the same
US8389100B2 (en) * 2006-08-29 2013-03-05 Mmi-Ipco, Llc Temperature responsive smart textile
JP6838301B2 (en) * 2016-06-27 2021-03-03 住友ゴム工業株式会社 Artificial turf

Also Published As

Publication number Publication date
JPH06146113A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
KR880000381B1 (en) Bulky non-woven fabric's making method
US4814032A (en) Method for making nonwoven fabrics
EP0691427B1 (en) Hot-melt-adhesive conjugate fibers and a non-woven fabric using the fibers
US5780155A (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
JPH02127553A (en) Stretchable non-woven fabric and production thereof
EP0696655B1 (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
US6274237B1 (en) Potentially crimpable composite fiber and a non-woven fabric using the same
JP3109629B2 (en) Polyolefin core-sheath type composite fiber and nonwoven fabric using the same
JP4505987B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the same
WO2000060148A1 (en) Polypropylene fibres
JP3132202B2 (en) Method for producing heat-fusible conjugate fiber
JP4433567B2 (en) Latent crimpable conjugate fiber and nonwoven fabric using the same
JP2002348737A (en) Hot melt adhesive composite fiber and fibrous formed material by using the same
JP4438181B2 (en) Latent crimpable conjugate fiber and nonwoven fabric using the same
JP2872543B2 (en) Thermally bonded nonwoven fabric and method for producing the same
US6001752A (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
JP4379127B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the composite fiber
JPH0138902B2 (en)
JPH04327256A (en) Stretchable nonwoven fabric
JP2003328233A (en) Polyolefin-based drawn conjugate fiber and nonwoven fabric obtained from the same
CN112912550B (en) Nonwoven fabric and method for producing same
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP3567892B2 (en) Thermo-adhesive conjugate fiber, non-woven fabric and molded article using the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP2581821B2 (en) Thermal adhesive composite fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees