JPH0571052B2 - - Google Patents

Info

Publication number
JPH0571052B2
JPH0571052B2 JP61070024A JP7002486A JPH0571052B2 JP H0571052 B2 JPH0571052 B2 JP H0571052B2 JP 61070024 A JP61070024 A JP 61070024A JP 7002486 A JP7002486 A JP 7002486A JP H0571052 B2 JPH0571052 B2 JP H0571052B2
Authority
JP
Japan
Prior art keywords
weight
evoh
polyamide
gas barrier
barrier properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61070024A
Other languages
Japanese (ja)
Other versions
JPS62225543A (en
Inventor
Taichi Negi
Satoshi Hirofuji
Nobuo Tanaka
Shuji Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7002486A priority Critical patent/JPS62225543A/en
Publication of JPS62225543A publication Critical patent/JPS62225543A/en
Publication of JPH0571052B2 publication Critical patent/JPH0571052B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は、加熱延伸、とくに加熱高速延伸操作
時、ピンホール、クラツク、局所的偏肉などのな
い、しかもガスバリアー性の優れた、さらにガス
バリアー性のバラツキの小さいエチレン−ビニル
アルコール共重合体(以下EVOHと記す)組成
物に関し、加熱延伸、とくに加熱高速延伸多層構
造体用の素材として有用である。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention is directed to a film that is free from pinholes, cracks, local thickness unevenness, etc., and has excellent gas barrier properties during heating stretching, especially during heating high-speed stretching operations. The present invention relates to an ethylene-vinyl alcohol copolymer (hereinafter referred to as EVOH) composition with small variations in barrier properties, and is useful as a material for heat-stretched, particularly high-speed heat-stretched multilayer structures.

B 従来の技術 EVOHは今日、食品等の包装用フイルム、特
に酸素に対するバリアー性が必要な食品、保香性
を必要とする他の製品などに対する使用を目的と
する分野において有効性が認められている。しか
し、EVOH単体フイルムはタフネスに欠け、ま
た水、水蒸気に対する有効なバリアー性を示さな
い欠点があつた。
B. Prior Art Today, EVOH has been recognized as effective in the field of packaging films for food products, especially food products that require oxygen barrier properties, and other products that require aroma retention. There is. However, EVOH single film lacks toughness and has the drawback of not exhibiting effective barrier properties against water and water vapor.

これらの欠点を改善する為、ポリプロピレン、
ポリスチレン等の熱可塑性樹脂と、アイオノマ
ー、エチレン酢酸ビニル共重合体などで代表され
る各種熱シーラント層とを積層してなる多層構造
体の形で用いられている。
In order to improve these drawbacks, polypropylene,
It is used in the form of a multilayer structure made by laminating a thermoplastic resin such as polystyrene and various heat sealant layers such as ionomer and ethylene vinyl acetate copolymer.

ところで各種方法で製造した多層構造体(フイ
ルム、シート、バリソンなど)を容器などに二次
加工する場合、特にEVOHの融点以下で延伸成
形に行なう場合、EVOH層に小さなボイド、ク
ラツク、局所的偏肉などが多発し、その結果成形
容器の酸素バイラー性が大巾に悪化する。また、
外見上も不良となり食品等の容器として使用に耐
えない状況であつた。
By the way, when a multilayer structure (film, sheet, balisong, etc.) manufactured by various methods is subjected to secondary processing into containers etc., especially when stretch molding is performed below the melting point of EVOH, small voids, cracks, and local deviations may occur in the EVOH layer. Meat and the like are frequently present, and as a result, the oxygen barrier properties of the molded container are greatly deteriorated. Also,
The appearance was also defective and the container could not be used as a container for food, etc.

そこで従来から、加熱延伸時に発生すEVOH
層のピンホール、クラツクなどを防止する目的で
EVOHに各種可塑剤の添加(特開昭53−88067、
特開昭59−20345)、ポリアミド系樹脂のブレンド
(特開昭52−141785、特開昭58−154755、特開昭
58−36412)等が検討されてはいるがいずれの場
合も、下記の点で十分満足すべきものでない事が
判明した。すなわち、ヒドロキシル基含有系、方
香族スルホンアミド系などで代表される可塑剤系
においては、加熱延伸特性改善の為には、添加量
がEVOH100重量部に対して10〜20重量部必要で
あり、ガスバリアー性の大巾な低下及び可塑剤の
ブリードによるものと思われるEVOH層と他樹
脂層との接着強度の低下など多くの問題があり使
用に耐えがたい。
Therefore, conventionally, EVOH generated during heating and stretching has been
For the purpose of preventing pinholes, cracks, etc. in the layer.
Addition of various plasticizers to EVOH (JP-A-53-88067,
JP-A-59-20345), blends of polyamide resins (JP-A-52-141785, JP-A-58-154755, JP-A-Sho 58-154755)
58-36412), etc., but it has been found that none of them are fully satisfactory in the following respects. In other words, in plasticizer systems such as hydroxyl group-containing systems and aromatic sulfonamide systems, the amount added must be 10 to 20 parts by weight per 100 parts by weight of EVOH in order to improve the heat-stretching properties. There are many problems such as a drastic decrease in gas barrier properties and a decrease in adhesive strength between the EVOH layer and other resin layers, which is thought to be due to plasticizer bleed, making it unusable.

一方EVOHにポリアミド系樹脂をブレドして
柔軟性を付与し、二次加工性を増す方法は公知で
あり、多数の特許が出願されている(特開昭44−
24277、特公昭60−24813、特開昭58−129035、特
公昭54−38897、特開昭58−36412など)が、加熱
高速延伸成形性が改善可能なポリアミドは
EVOHとの化学反応が大きい為か、成形物に多
数のゲル状物が存在し、また着色が顕著な為使用
に耐えない。一方ゲル着色が比較的少ないポリア
ミド系樹脂とEVOHとのブレンド系に関する特
許も出願されてはいるが、EVOHとの相溶性が
十分でない為か低速度下での加熱延伸成形性は外
見上クラツク、ピンホール、偏肉等の無い良好な
成形物に見えるが、ガスバリアー性の測定の結
果、測定値にバラツキが大きく、肉眼では観察不
可能な微少なピンホールの存在をうかがわせる。
さらに悪い事には最近、加熱延伸機のスピードア
ツプにともない加熱高速延伸成形を行なつた場
合、ガスバリアー性の測定値のバラツキが大巾に
増加し、ガスバリアー性容器としての信頼性が低
下する結果となつている。
On the other hand, the method of blending EVOH with polyamide resin to impart flexibility and increase secondary processability is well known, and numerous patents have been filed (Japanese Patent Laid-Open No. 44-1998).
24277, JP-A-60-24813, JP-A-58-129035, JP-A-54-38897, JP-A-58-36412, etc.), but polyamides with improved heating and high-speed stretch formability are
Perhaps due to the large chemical reaction with EVOH, there are many gel-like substances in the molded product, and the product is unusable due to significant discoloration. On the other hand, a patent has been filed for a blend system of EVOH and a polyamide resin with relatively little gel coloring, but the heat-stretching moldability at low speeds appears to be cracked, probably because the compatibility with EVOH is insufficient. Although the molded product appears to be in good condition with no pinholes or uneven thickness, the gas barrier property measurements show large variations in the measured values, suggesting the presence of minute pinholes that cannot be observed with the naked eye.
To make matters worse, as the speed of heating and stretching machines has recently increased, when heating and high-speed stretching is performed, the variation in measured values of gas barrier properties increases significantly, reducing the reliability of containers with gas barrier properties. The result is that

それ故、ガスバリアー性及びバリアー性容器と
しての信頼性(バラツキ)が良好である。すなわ
ち、可燃高速延伸時EVOH層に微少ピンホール、
クラツク、偏肉などが生じない成形加工特性が良
好なEVOHの開発が重要な課題の一つである。
Therefore, it has good gas barrier properties and reliability (variation) as a barrier property container. In other words, there are minute pinholes in the EVOH layer during high-speed flammable stretching.
One of the important issues is the development of EVOH with good molding properties that do not cause cracks or uneven thickness.

C 発明が解決しようとする問題点 EVOHは前記した様に優れた諸特性を持つて
いる反面、熱可塑性樹脂との積層体を容器などに
二次加工する場合、EVOH層にクラツク、ピン
ホール、局所的偏肉などが発生しガスバリアー性
が大巾に悪化する。
C. Problems to be solved by the invention Although EVOH has various excellent properties as described above, when a laminate with thermoplastic resin is secondary processed into containers etc., cracks, pinholes, etc. may occur in the EVOH layer. Local thickness unevenness occurs, and the gas barrier properties deteriorate significantly.

そこで本発明者らは、EVOHの優れたガスバ
リアー性をそこなうことなく、かつ積層体を容器
などに二次加工する場合に生じるEVOH層のク
ラツク、ピンホール、局所的偏肉などの発生を防
止し高いガスバリアー性を有する多層容器用
EVOH組成物を開発すべく鋭意検討を行なつた
結果、本発明を完成するに至つた。
Therefore, the inventors of the present invention aimed to prevent the occurrence of cracks, pinholes, local thickness unevenness, etc. in the EVOH layer that occur when secondary processing the laminate into containers, etc., without impairing the excellent gas barrier properties of EVOH. For multilayer containers with high gas barrier properties
As a result of intensive studies to develop an EVOH composition, the present invention has been completed.

D 問題点を解決するための手段 本発明はエチレン含有量25〜60モル%、けん化
度90%以上のEVOH100重量部にポリアミド5〜
30重量部よりなり、かつ該ポリアミドがカプロア
ミド単位を5〜50重量%含有するポリアミド(a)と
ラウリンラクタム単位を5〜49重量%含有するポ
リアミド(b)とをa:b=5:95乃至95:5の重量
比で含有してなり、さらに、該ポリアミド(a)、(b)
のそれぞれの融点が110〜180℃、溶融粘性指数比
がa/b=0.1〜10である樹脂組成物である。
D. Means for Solving the Problems The present invention consists of 100 parts by weight of EVOH with an ethylene content of 25 to 60 mol% and a saponification degree of 90% or more, and 5 to 50% of polyamide.
Polyamide (a) consisting of 30 parts by weight and containing 5 to 50% by weight of caproamide units and polyamide (b) containing 5 to 49% by weight of laurin lactam units in a ratio of a:b=5:95 to The polyamides (a) and (b) are contained in a weight ratio of 95:5.
The resin composition has a melting point of 110 to 180°C and a melt viscosity index ratio of a/b=0.1 to 10.

E 発明の作用効果 EVOH組成物層の片面または両面に接着性樹
脂を介して熱可塑性樹脂層を有する各種シートを
作成し、再加熱、延伸操作によつて、カツプ、ボ
トルに二次加工成形するに際し、容器の外見及び
ガスバリアー性の測定によりEVOH層の成形加
工性及びガスバリアー性の優劣を判断する事が出
来る。そこで本発明者らは、種々の可塑剤、ポリ
マー等をEVOHにブレンドし、EVOHの成形加
工性及びガスバリアー性の測定を行なつた。その
結果、融点が110〜180℃、かつ融点粘性指数
(190℃、2160g荷重で測定したメルトインデツク
ス値)(MI)が0.1〜10g/10分、とくに0.5〜9
g/10分のポリアミドをEVOH100重量部に対し
5〜30重量部ブレンドしたEVOH組成物は容器
成形時生じるクラツク、ムラ、偏肉等が少なく一
見良好である様に思われた。しかし容器のガスバ
リアー性(酸素バリアー性)を測定した所、原反
のガスバリアー性より悪化している事、さらに悪
い事には容器により測定値のバラツキが大きく、
時として、ガスバリアー性が1/10〜1/50に悪
化するものさえ認められる。特に加熱延伸速度が
増すにしたがいこの傾向は顕著になる。それ故ガ
スバリアー性容器としての信頼性に大きな問題を
なげかけている。そこで発明者らは、さらに鋭意
検討をかさねた結果、おどろくべき事にカプロア
ミド単位を5〜50重量%含有するポリアミド(a)と
ラウリンラクタム単位5〜49重量%を含有するポ
リアミド(b)をa:b=5:95乃至95:5の重量比
でブレンドしたポリアミドであり、かつ、ポリア
ミドのそれぞれの融点が110〜180℃、好ましくは
120〜170℃、溶融粘性指数比a/bが0.1〜10
g/10分である場合に、該ポリアミドをEVOH
にブレンドした時、加熱高速延伸を行なつても、
外見上、クラツク、偏肉の無い非常に良好な成形
物が得られるだけでなく、延伸速度に依存する、
ガスバリアー性(平均値)の悪化及び測定箇所に
よるバラツキがほとんどない信頼性が大巾に向上
したガスバリアー性多層構造体が得られる事は予
想外の事であつた。さらに該組成物は長期押出成
形した場合に発生しやすい、ゲル、ブツが非常に
少なく、長期安定運転性をも大巾に改善する事も
わかり、本発明にいたつた。この事は後述する実
施例からも明らかである。
E Effects of the Invention Various sheets having a thermoplastic resin layer on one or both sides of the EVOH composition layer via an adhesive resin are prepared, and secondary processing and molding into cups and bottles is performed by reheating and stretching operations. At this time, it is possible to judge the moldability and gas barrier properties of the EVOH layer by measuring the appearance of the container and gas barrier properties. Therefore, the present inventors blended various plasticizers, polymers, etc. with EVOH and measured the moldability and gas barrier properties of EVOH. As a result, the melting point is 110 to 180℃, and the melting point viscosity index (melt index value measured at 190℃ and 2160g load) (MI) is 0.1 to 10g/10 minutes, especially 0.5 to 9.
The EVOH composition prepared by blending 5 to 30 parts by weight of polyamide of 100 g/10 parts by weight with respect to 100 parts by weight of EVOH appeared to be good at first glance, with fewer cracks, unevenness, uneven thickness, etc. occurring during container molding. However, when we measured the gas barrier properties (oxygen barrier properties) of the containers, we found that they were worse than the gas barrier properties of the original fabric, and even worse, there were large variations in the measured values depending on the container.
In some cases, gas barrier properties are even observed to deteriorate by 1/10 to 1/50. In particular, this tendency becomes more pronounced as the heating stretching speed increases. Therefore, this poses a serious problem to its reliability as a gas barrier container. As a result of further intensive studies, the inventors surprisingly discovered that a polyamide (a) containing 5 to 50% by weight of caproamide units and a polyamide (b) containing 5 to 49% by weight of laurin lactam units. : b = polyamide blended at a weight ratio of 5:95 to 95:5, and each polyamide has a melting point of 110 to 180°C, preferably
120~170℃, melt viscosity index ratio a/b 0.1~10
g/10 min, the polyamide is EVOH
When blended with
Not only can a very good molded product with no cracks or uneven thickness be obtained in appearance, but also
It was unexpected that a gas barrier multilayer structure with significantly improved reliability, with almost no deterioration in gas barrier properties (average value) and little variation depending on the measurement location, was obtained. Furthermore, it was found that the composition has very little gel and lumps that tend to occur during long-term extrusion molding, and that long-term stable operation performance is also greatly improved, leading to the present invention. This fact is also clear from the examples described later.

カプロアミド系ポリアミドはEVOHとの相溶
性が良好であるが、ゲル、ブツ等の発生による製
膜異常を発現しやすく、一方、ラウリンラクタム
系ポリアミドはEVOHとの延伸成形性は一見改
善される様に見えるが、高速延伸時、相容性が必
ずしも良くなく、ラウリンラクタム系ポリアミド
とEVOHとの界面でクラツクを生じ、ガスバリ
アー性を悪化させる傾向にあると思われる。とこ
ろが、前記したとおり、両ポリアミドをEVOH
とブレドする事によりゲル、ブツの発生をおさ
え、かつ高速延伸性をもかねそなえるという優れ
た効果を発揮するのはまさに予想外のことであ
る。
Caproamide-based polyamide has good compatibility with EVOH, but is prone to film formation abnormalities due to the formation of gels, lumps, etc. On the other hand, lauryl-lactam-based polyamide appears to have improved stretch formability with EVOH. However, during high-speed stretching, the compatibility is not necessarily good, and cracks occur at the interface between the laurinlactam polyamide and EVOH, which seems to tend to deteriorate gas barrier properties. However, as mentioned above, both polyamides are EVOH
It is truly unexpected that by blending, it exhibits excellent effects such as suppressing the generation of gels and lumps and also providing high-speed stretchability.

F 発明のより詳細な説明 以下、本発明を更に詳しく説明する。F. More detailed description of the invention The present invention will be explained in more detail below.

本発明に使用されるEVOHは、エチレン含有
量25〜60%、好適には25〜55モル%、酢酸ビニル
成分のけん化度は90%以上、好適には95%以上の
エチレン−酢酸ビニル共重合体けん化物である。
エチレン含有量25モル%以下になると、成形温度
が分解温度が近くなり、成形が困難となる。一
方、エチレン含有量が60モル%以上になると、ガ
スバリアー性が低下し、該多層構成容器のガスバ
リアー性が不足し好ましくない。また、酢酸ビニ
ル成分のけん化度が95%未満、とくに90%未満の
EVOHは、容器成形時のクラツク、ピホール等
の少ない、又は無いものが得られるが、ガスバリ
アー性が十分でなく、好ましくない。さらにこの
EVOHはASTM−D1238−65Tにより190℃、
2160g荷重で測定した溶融粘性指数が好まいくは
0.1〜25g/10分、さらに好ましくは0.3〜20g/
10分である。
The EVOH used in the present invention is an ethylene-vinyl acetate copolymer having an ethylene content of 25 to 60%, preferably 25 to 55 mol%, and a saponification degree of the vinyl acetate component of 90% or more, preferably 95% or more. It is a combined saponified product.
When the ethylene content is less than 25 mol%, the molding temperature becomes close to the decomposition temperature, making molding difficult. On the other hand, if the ethylene content is 60 mol% or more, the gas barrier properties will be lowered and the gas barrier properties of the multilayered container will be insufficient, which is not preferable. In addition, if the degree of saponification of the vinyl acetate component is less than 95%, especially less than 90%,
With EVOH, products with little or no cracks or piholes can be obtained during container molding, but the gas barrier properties are not sufficient, so this is not preferable. Furthermore, this
EVOH is 190℃ according to ASTM-D1238-65T,
The melt viscosity index measured at 2160g load is preferable.
0.1-25g/10 minutes, more preferably 0.3-20g/
It's 10 minutes.

本発明で使用されるカプロアミド単位が5〜50
重量%、好適には10〜49重量%含有するポリアミ
ドとはカプロアミドとこれと共重合しうる成分と
の共重合体を意味する。カプロアミドと共重合す
る相手側の成分としてはラウリンラクタム(12−
ナイロン)、ウンデカアミド(11−ナイロン)、ヘ
キサメチレンセバカミド(6,10−ナイロン)、
ヘキサメチレンアジパミド(66−ナイロン)、
ω・アミノプタン酸(7−ナイロン)、ω・アミ
ノノナン酸(9−ナイロン)などのアミド成分、
さらにはポリエーテル、ポリエステル類などがあ
げられるが、特にラウリンラクタム(12−ナイロ
ン)、ヘキサメチレンアジパミド(66−ナイロ
ン)、ω・アミノノナン酸(9−ナイロン)が有
効である。カプロアミド単位が5重量%以下で
は、EVOHとの相容性が十分でなくガスバリア
ー性の測定値に大きなバラツキを生じる。一方50
重量%以上では、多層シート成形時、ゲル、ブツ
が多発しやすくなり、外見が悪いだけでなく、高
速延伸時、ガスバリアー測定値のバラツキが増
す。一方、ラウリンラクタム単位を5〜49重量
%、好適には10〜49重量%含有するポリアミドと
はラウリンラクタムとこれと共重合しうる成分と
の共重合体も意味する。ラウリンラクタムと共重
合する相手側の成分としてはカプロアミド(6−
ナイロン)、ω・アミノヘプタン酸(7−ナイロ
ン)、ヘキサメチレンアジパミド(66−ナイロ
ン)、ω・アミノノナン酸(9−ナイロン)、ウン
デカンアミド(11−ナイロン)、ヘキサメチレン
セバカミド(6,10−ナイロン)などのアミド成
分、さらにはポリエーテル、ポリエステル類等が
あげられるが、特に6−ナイロン、9−ナイロ
ン、66−ナイロン、ポリエーテル、ポリエステル
が有効である。ラウリンラクタム単位が5重量%
以下では、カプロアミド系共重合体ナイロンとの
相容性の関係か、ゲル、ムラが発生しやすく外見
上好ましくない。一方、49重量%以上の場合は、
EVOHとの相容性が十分でない為か高速延伸時、
ガスバリアー性の測定値に大きなバラツキが生じ
る。
The caproamide units used in the present invention are 5 to 50
Polyamide containing % by weight, preferably 10-49% by weight means a copolymer of caproamide and a component copolymerizable therewith. Laurinlactam (12-
nylon), undecamide (11-nylon), hexamethylene sebacamide (6,10-nylon),
hexamethylene adipamide (66-nylon),
Amide components such as ω-aminoptanoic acid (7-nylon) and ω-aminononanoic acid (9-nylon),
Further examples include polyethers and polyesters, and particularly effective are laurin lactam (12-nylon), hexamethylene adipamide (66-nylon), and ω-aminononanoic acid (9-nylon). If the caproamide unit content is 5% by weight or less, the compatibility with EVOH will be insufficient and the measured values of gas barrier properties will vary greatly. while 50
If it exceeds % by weight, gels and lumps tend to occur frequently during multilayer sheet molding, which not only looks bad, but also increases the dispersion of gas barrier measurements during high-speed stretching. On the other hand, the polyamide containing 5 to 49% by weight, preferably 10 to 49% by weight of laurinlactam units also means a copolymer of laurinlactam and a component copolymerizable with it. Caproamide (6-
nylon), ω-aminoheptanoic acid (7-nylon), hexamethylene adipamide (66-nylon), ω-aminononanoic acid (9-nylon), undecaneamide (11-nylon), hexamethylene sebacamide (6-nylon), , 10-nylon), as well as polyethers and polyesters, among which 6-nylon, 9-nylon, 66-nylon, polyether, and polyester are particularly effective. 5% by weight of laurin lactam units
In the following, gels and unevenness tend to occur, which is unfavorable in terms of appearance, probably due to compatibility with the caproamide copolymer nylon. On the other hand, if it is 49% by weight or more,
During high-speed stretching, perhaps because the compatibility with EVOH is not sufficient,
Large variations occur in the measured values of gas barrier properties.

ところで、カプロアミド単位が5〜50重量%含
有するポリアミド(a)とラウリンラクタム単位を5
〜49重量%含有するポリアミド(b)とのブレンド比
率は、重量比でa/b=5/95〜95/5であり、
好適にはa/b=20/80〜70/30である。ポリア
ミド(a)の含有率が5重量%以下の場合、ブレンド
ポリアミドとEVOHとの相容性が十分でない為
か、高速延伸時、ガスバリアー性の測定値に大き
なバラツキが認められる。一方、95重量%以上添
加した場合には、製膜時ゲルの発生、及び高速延
伸時ムラの発生、又はガスバリアー性測定値のバ
ラツキなど多種の異常が発現しやすい。ところで
上記ブレンドポリアミドを使用してもポリアミド
銘柄により、成形性が必ずしも改善されない場合
がある。そこでさらに検討を行なつた結果、ポリ
アミド(a)、(b)のそれぞれの融点が110〜180℃であ
り、かつ溶融粘性指数比がa/b=0.1〜10のポ
リアミドである時に、さらに好ましくはポリアミ
ド(a)、(b)のそれぞれの溶融粘性指数が0.1〜10
g/10分、とくに0.5〜9g/10分である時に加
熱高速延伸時外見が良好であり、かつガスバリア
ー性及びガスバリアー性のバラツキの少ない良好
な多層構成容器が得られることが判明した。
By the way, polyamide (a) containing 5 to 50% by weight of caproamide units and 5% by weight of laurinlactam units
The blend ratio with polyamide (b) containing ~49% by weight is a/b = 5/95 to 95/5 by weight,
Preferably a/b=20/80 to 70/30. When the content of polyamide (a) is 5% by weight or less, large variations in the measured values of gas barrier properties are observed during high-speed stretching, probably because the compatibility between the blend polyamide and EVOH is insufficient. On the other hand, if it is added in an amount of 95% by weight or more, various abnormalities are likely to occur, such as the generation of gel during film formation, the occurrence of unevenness during high-speed stretching, and variations in gas barrier property measurements. By the way, even if the above-mentioned blend polyamide is used, moldability may not necessarily be improved depending on the polyamide brand. Therefore, as a result of further study, it was found that polyamides (a) and (b) each having a melting point of 110 to 180°C and a melt viscosity index ratio of a/b = 0.1 to 10 are more preferable. The melt viscosity index of polyamide (a) and (b) is 0.1 to 10.
g/10 minutes, especially 0.5 to 9 g/10 minutes, it has been found that a multilayered container with good appearance during heating and high-speed stretching, and with less variation in gas barrier properties and gas barrier properties can be obtained.

ポリアミドの配合量はEVOH100重量部に対し
5〜30重量部、好適には7〜25重量部である。添
加量が5重量部以下では成形性の改善効果が十分
でなく、クラツク、ムラが発生しやすい。一方、
30重量部以上ではガスバリアー性が大巾に低下
し、ガスバリアー容器としては使用に耐えない。
EVOHとポリアミドとのブレンド方法に関して
は特に限定されるものではないが、EVOHおよ
びポリアミドをドライブレンドしバンバリーミキ
サー単軸又は二軸スクリユー押出機などでペレツ
ト化乾燥する方法等がある。ブレンドが不均一で
あつたり、またブレンド操作時にゲル、ブツの発
生、混入があると、加熱延伸成形時EVOHブレ
ンド層の破れ、ムラが発生する可能性が大きい
為、押出機による加熱ブレンドにおいては混練度
の高い押出機を使用し、ホツパー口のN2シール、
低温押出しが望ましい。またブレンドしたペレツ
トを220℃ホツトプレスで50μシートに成形し、
ナイロン粒子径を測定した場合粒子径0.1μ以下が
50%以上、好適には0.05μ以下が50%以上ある事
が望ましい。
The amount of polyamide blended is 5 to 30 parts by weight, preferably 7 to 25 parts by weight, per 100 parts by weight of EVOH. If the amount added is less than 5 parts by weight, the effect of improving moldability is not sufficient and cracks and unevenness are likely to occur. on the other hand,
If it exceeds 30 parts by weight, the gas barrier properties will be significantly reduced, making it unusable as a gas barrier container.
There are no particular limitations on the method of blending EVOH and polyamide, but there are methods such as dry blending EVOH and polyamide and drying them into pellets using a Banbury mixer single-screw or twin-screw extruder. If the blend is uneven, or if gels or lumps are generated or mixed in during the blending operation, there is a high possibility that the EVOH blend layer will break or become uneven during hot stretch molding. Using an extruder with a high degree of kneading, N2 seal at the hopper opening,
Cold extrusion is preferred. In addition, the blended pellets were formed into a 50μ sheet using a hot press at 220℃.
When measuring the nylon particle size, the particle size is 0.1μ or less.
It is desirable that 50% or more, preferably 0.05μ or less, be 50% or more.

一方、これらを混合する際、他の添加剤(各種
樹脂、酸化防止剤、可塑剤、着色剤など)を本発
明の作用効果が阻害されない範囲内で使用する事
は自由である。特に樹脂の熱安定性、ゲル発生防
止対策として、ハイドロタルサイト系化合物、ヒ
ンダードフエノール系、ヒンダードアミン系熱安
定剤を0.01〜1重量%添加する事は好適である。
On the other hand, when mixing these, other additives (various resins, antioxidants, plasticizers, colorants, etc.) may be used freely within the range that does not impede the effects of the present invention. In particular, as a measure to improve the thermal stability of the resin and prevent gel formation, it is preferable to add 0.01 to 1% by weight of a hydrotalcite-based compound, hindered phenol-based, or hindered amine-based heat stabilizer.

本発明のEVOH組成物は周知の溶融成形法、
圧縮成形法によりフイルム、シートチユーブ、ボ
トルなどの任意の成形品に成形する事が出来るが
前述したとおり、該組成物を多層構造体の一層と
して使用するとき、顕著な特長が発揮されるの
で、以下この点について説明を加える。
The EVOH composition of the present invention can be prepared by the well-known melt molding method.
By compression molding, it can be molded into any molded product such as a film, sheet tube, or bottle, but as mentioned above, when this composition is used as one layer of a multilayer structure, it exhibits remarkable characteristics. This point will be explained below.

本発明の組成物層の少なくとも片面に使用され
る熱可塑性樹脂としては、下記の温度で延伸成形
可能な樹脂であれば良く、ポリプロピレン系樹
脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポ
リ塩化ビニル系樹脂が好適である。
The thermoplastic resin used on at least one side of the composition layer of the present invention may be any resin that can be stretch-formed at the following temperatures, such as polypropylene resin, polystyrene resin, polyamide resin, polyvinyl chloride resin. is suitable.

EVOHの融点をX℃とし 熱可塑性樹脂の加熱延伸温度をY℃とした場合 X−10≧Y≧X−110 Yが(X−10)℃より高い場合は成形時
EVOHが軟化、融解する為、通常、添加剤を加
えなくても成形が可能である。一方、Yが(X−
110)℃以下の場合は熱可塑性樹脂のガラス転移
温度(Tg)が室温以下となる為、成形物の室温
下での形状安定性、寸法変化が大きく、使用に耐
えない。
When the melting point of EVOH is X℃ and the heating stretching temperature of thermoplastic resin is Y℃, X-10≧Y≧X-110 If Y is higher than (X-10)℃, during molding
Because EVOH softens and melts, it is usually possible to mold it without adding additives. On the other hand, Y is (X-
If the temperature is below 110)℃, the glass transition temperature (Tg) of the thermoplastic resin will be below room temperature, so the shape stability and dimensional changes of the molded product at room temperature will be large, making it unusable.

多層構造体を得る方法としては、該EVOH組
成物と熱可塑性樹脂とを接着性樹脂とを介して押
出ラミ法、ドライラミ法、共押出ラミ法、共押出
シート作成法(フイードブロツク又はマルチマニ
ホールド法など)、共押出パイプ作成法、共イン
ジエクシヨン法、各種溶液コート法などにより積
層体を得、次いでこれを真空圧空深絞り成形機、
二軸延伸ブロー機などにより、EVOHの融点以
下の範囲内で再加熱し延伸操作を行なう方法、あ
るいは前記積層体(シート又はフイルム)を二軸
延伸機に供し、加熱延伸する方法、さらには
EVOH組成物と熱可塑性樹脂とを共射出二軸延
伸する方法などがあげられる。
Methods for obtaining a multilayer structure include extrusion lamination method, dry lamination method, coextrusion lamination method, and coextrusion sheet production method (feed block or multi-manifold method) in which the EVOH composition and thermoplastic resin are bonded via an adhesive resin. A laminate is obtained by a co-extrusion pipe making method, a co-injection method, various solution coating methods, etc., and then this is processed using a vacuum-pressure deep drawing machine,
A method of reheating and stretching within a range below the melting point of EVOH using a biaxial stretching blow machine, or a method of subjecting the laminate (sheet or film) to a biaxial stretching machine and heating and stretching;
Examples include a method of co-injection and biaxial stretching of an EVOH composition and a thermoplastic resin.

さらに、多層構造体の厚み構成に関しても、特
に限定されるものではないが、成形性及びコスト
等を考慮した場合、全厚みに対するEVOH層の
厚み比は2〜20%程度が好適である。
Further, the thickness of the multilayer structure is not particularly limited, but when considering moldability, cost, etc., the thickness ratio of the EVOH layer to the total thickness is preferably about 2 to 20%.

また多層構造体の構成としては、EVOH組成
物層/接着性樹脂層/熱可塑性樹脂層、熱可塑性
樹脂層/接着性樹脂層/EVOH組成物層/接着
性樹脂層/熱可塑性樹脂層が代表的なものとして
あげられる。両外層に熱可塑性樹脂層を設ける場
合は、該樹脂は異なるもでもよいし、また同じも
のでもよい。ここで、接着性樹脂とはEVOHの
融点以下で延伸成形可能な、しかもEVOH組成
物層と熱可塑性樹脂層とを接着しうるものであれ
ば、とくに制限はないが、好適にはエチレン性不
飽和カルボン酸またはその無水物(たとえば無水
マレイン酸)を付加、またはグラフト化したポリ
オレフイン(たとえばポリエチレン、ポリプロピ
レン)、エチレン−酢酸ビニル共重合体、エチレ
ン−アクリル酸エステル(たとえばメチルエステ
ル、エチルエステル)共重合体などがあげられ
る。
Typical configurations of the multilayer structure include EVOH composition layer/adhesive resin layer/thermoplastic resin layer, thermoplastic resin layer/adhesive resin layer/EVOH composition layer/adhesive resin layer/thermoplastic resin layer. It can be cited as something. When providing thermoplastic resin layers on both outer layers, the resins may be different or the same. Here, the adhesive resin is not particularly limited as long as it can be stretch-molded at a temperature below the melting point of EVOH and can bond the EVOH composition layer and the thermoplastic resin layer, but it is preferably an ethylenic resin. Polyolefins (e.g. polyethylene, polypropylene) to which saturated carboxylic acids or their anhydrides (e.g. maleic anhydride) have been added or grafted, ethylene-vinyl acetate copolymers, ethylene-acrylic acid esters (e.g. methyl ester, ethyl ester) Examples include polymers.

本発明において、加熱延伸多層構造体とは前記
したとおり加熱延伸する事により得られるカツ
プ、ボトルなどの容器あるいはシート又はフイル
ム状物であり、また加熱とは、該多層構造体を加
熱延伸に必要な温度に所定の時間放置し、該多層
構造体が熱的にほぼ均一になる様に操作する方法
であれば良く、操業性を考慮して、種々のヒータ
ーで加熱、均一化する方法が好ましい。加熱操作
は延伸と同時に行なつてもよいし、また延伸前に
行なつても良い。また延伸とは熱的均一に加熱さ
れた多層構造体をチヤツク、プラグ、真空圧空、
ブローなどにより容器、カツプ、シートまたはフ
イルム状に均一に成形する操作を意味し、一軸延
伸、二軸延伸(同時又は逐次)のいずれも使用で
きる。また延伸倍率、延伸速度は目的に応じて適
宜選択できるが、本発明において高速延伸とは、
延伸速度が5×105%/分以上の高速度で容器又
はフイルム状に均一に成形する方法を意味し必ず
しも成形品が配向している必要はない。
In the present invention, the heat-stretched multilayer structure is a container such as a cup or bottle, or a sheet or film-like object obtained by heat-stretching as described above, and heating is a material necessary for heat-stretching the multilayer structure. Any method may be used as long as the multilayer structure is left at a certain temperature for a predetermined period of time and operated so that the multilayer structure becomes almost thermally uniform. Considering operability, it is preferable to heat the multilayer structure with various heaters to make it uniform. . The heating operation may be performed simultaneously with the stretching, or may be performed before the stretching. Stretching refers to stretching a multi-layered structure that has been heated uniformly through chucks, plugs, vacuum pressure, air, etc.
This refers to the operation of uniformly forming a container, cup, sheet, or film by blowing, etc., and either uniaxial stretching or biaxial stretching (simultaneous or sequential) can be used. In addition, the stretching ratio and stretching speed can be appropriately selected depending on the purpose, but in the present invention, high-speed stretching means
It refers to a method of uniformly forming a container or film at a high stretching speed of 5 x 10 5 %/min or higher, and the molded product does not necessarily have to be oriented.

また、本発明において、加熱延伸するにあたり
多層構造体の一構成物であるEVOH組成物層の
含水率については、特に限定するものではない
が、0.01〜10%以内である事が好適である。
Further, in the present invention, the moisture content of the EVOH composition layer, which is a component of the multilayer structure, is not particularly limited when it is heated and stretched, but it is preferably within 0.01 to 10%.

このようにして得られた本発明の加熱高速延伸
多層構造体は、EVOH組成物層にピンホール、
クラツク、偏肉がみられず、またガスバリアー性
がきわめて良く、さらにガスバリアー性のバラツ
キも少なく、食品包装用容器あるいは化粧品など
の保香性を要求される容器などに有効である。
The heated, high-speed stretched multilayer structure of the present invention thus obtained has no pinholes in the EVOH composition layer.
There are no cracks or uneven thickness, and it has extremely good gas barrier properties, with little variation in gas barrier properties, making it effective for food packaging containers and containers for cosmetics that require fragrance retention.

以下実施例により本発明をさらに説明するが、
本発明はこれによつてなんら限定を受けるもので
はない。
The present invention will be further explained below with reference to Examples.
The present invention is not limited in any way by this.

G 実施例 実施例 1 エチレン含有量31モル%、けん化度99.4%、
MI1.3g/10分のEVOH(クラレ製EVAL−EP−
F101)100重量部にカプロアミド含有率49重量%
の6,9−ナイロン(m.p.140℃、MI=4g/10
分)(a)7重量部、またラウリンラクタム含有率45
重量%の12−ナイロン系ポリエーテル・ポリアミ
ドエラストマー(ポリオキシテトラメチレン含量
55%、m.p.160℃、MI=2g/10分)(b)7重量部
を配合し、二軸スクリユータイプベント式40φ押
出機にてN2下、200℃で押出しペレツト化を行な
つた。得られたペレツトを80℃8時間乾燥した。
このペレツトを用いてフイードブロツク型3種5
層共押出装置にかけ、シートを作成した。シート
の構成は両最外層ポリプロピレン(三菱ノーブレ
ンMA−6)が800μまたは接着性樹脂層(三菱油
化モデツクP−300F無水マレイン酸変性ポリプ
ロピレン)が各50μ、さらに最内層(中央)は上
記EVOH層50μである。得られたシートを真空圧
空成形機にかけ(延伸速度9×105%/分)、155
℃で熱成形(SPPF成形)を行なつた。得られた
成形物は、透明性、外見が良好であり、クラツ
ク、偏肉はなかつた。この容器の20℃・65%RH
でのガスバリアー性を測定した所、酵素透過率
(モコン社製10/50型)0.7c.c.・20μ/m2・24hr・
atmと非常に良好なガスバリアー性を示すだけで
なく、10サンプル測定した時の酸素透過率の測定
値のバラツキ(R−最大値−最小値)は0.1c.c.・
20μ/m2・24hr・atmと非常に小さく良好なバリ
アー容器であつた。
G Examples Example 1 Ethylene content 31 mol%, saponification degree 99.4%,
MI1.3g/10min EVOH (Kuraray EVAL-EP-
F101) Caproamide content 49% by weight per 100 parts by weight
6,9-nylon (mp140℃, MI=4g/10
min) (a) 7 parts by weight, and laurin lactam content 45
Weight% of 12-nylon polyether polyamide elastomer (polyoxytetramethylene content
55%, mp 160°C, MI=2g/10min) (b) (7 parts by weight) was blended and pelletized by extrusion at 200°C under N 2 in a twin screw type vent type 40φ extruder. The obtained pellets were dried at 80°C for 8 hours.
Use this pellet to make feedblock molds of 3 types and 5 types.
A sheet was prepared by applying it to a layer coextrusion device. The sheet is composed of both outermost layers of polypropylene (Mitsubishi Noblen MA-6) of 800 μm or adhesive resin layers (Mitsubishi Yuka Models P-300F maleic anhydride modified polypropylene) of 50 μm each, and the innermost layer (center) is the above EVOH layer. It is 50μ. The obtained sheet was applied to a vacuum-pressure forming machine (stretching speed 9 x 10 5 %/min),
Thermoforming (SPPF molding) was performed at ℃. The obtained molded product had good transparency and appearance, and had no cracks or uneven thickness. 20℃・65%RH of this container
When gas barrier properties were measured at
Not only does it exhibit very good gas barrier properties compared to atm, but the variation in oxygen permeability measurements (R - maximum value - minimum value) when measuring 10 samples is 0.1 cc.
It was a very small and good barrier container of 20 μ/m 2 / 24 hr / atm.

実施例 2 実施例1において両最外層をポリプロピレンか
らポリスチレン(出光スチロールET−61)に、
また接着性樹脂層をモデツクP・300Fからメル
センM−5420(東洋曹達製無水マレイン酸変性エ
チレン−酢酸ビニル樹脂)に変更した以外は実施
例1と同様に行ない、130℃で真空圧空成形(延
伸速度9×105%/分)を実施した。得られた成
形物の外見は良好であり、クラツク、偏肉はなか
つた。この容器のガスバリアー性を測定したとこ
ろ、酸素透過率0.6c.c.・20μ/m2・24hr・atm(20
℃・65%RH)であり、かつ10サンプルのバリア
ー性のバラツキ(R)は0.2c.c.・20μ/m2・24hr・atm
と小さく、良好なバリアー容器であつた。
Example 2 In Example 1, both outermost layers were changed from polypropylene to polystyrene (Idemitsu styrene ET-61),
In addition, the same procedure as in Example 1 was carried out except that the adhesive resin layer was changed from MODETSUKU P・300F to MERSEN M-5420 (maleic anhydride-modified ethylene-vinyl acetate resin manufactured by Toyo Soda). The test was carried out at a speed of 9×10 5 %/min). The appearance of the obtained molded product was good, with no cracks or uneven thickness. When we measured the gas barrier properties of this container, we found that the oxygen permeability was 0.6cc・20μ/ m2・24hr・atm(20
℃・65%RH), and the variation (R) in barrier properties of 10 samples is 0.2cc・20μ/m 2・24hr・atm
It was a small and good barrier container.

比較例 1 実施例2においてポリアミドブレンド量{(a)と
(b)の合計量}14重量部を4重量部{(a)2重量部+
(b)2重量部}に変更し、実施例2と同様に行なつ
た。その結果、クラツク、偏肉が多く、またガス
バリアー性も、酸素透過率5c.c.・20μ/m2
24hr・atmと大きく使用に耐えなかつた。
Comparative Example 1 In Example 2, the amount of polyamide blend {(a) and
Total amount of (b)} 14 parts by weight {2 parts by weight of (a) + 4 parts by weight
(b) 2 parts by weight}, and the same procedure as in Example 2 was carried out. As a result, there are many cracks and uneven thickness, and the gas barrier properties are reduced to an oxygen permeability of 5c.c.・20μ/m 2
It was too long to withstand use at 24hr/ATM.

比較例 2 実施例2において、ポリアミドとして、ラウリ
ンラクタム含有率45重量%の12−ナイロン系ポリ
エーテル・ポリアミドエラストマー(b)のみを14重
量部添加(6,9−ナイロン(a)は0)して、実施
例2と同様にテストを実施した。その結果、多層
シートは良好であり、また加熱高速延伸した容器
にもクラツク、偏肉等は外見上認められなかつ
た。しかし、ガスバリアー性を測定した所、酸素
透過率0.95c.c.・20μ/m2・24hr・atmと高目であ
るばかりでなく、20サンプル測定したガスバリア
ー測定値のバラツキ(R)が4.1c.c.・20μ/m2・24hr・
atmと高く、ガスバリアー性容器としての信頼性
にかける事より実用には供しえないものであつ
た。
Comparative Example 2 In Example 2, only 14 parts by weight of 12-nylon polyether polyamide elastomer (b) with a laurin lactam content of 45% by weight was added as the polyamide (6,9-nylon (a) was 0). A test was conducted in the same manner as in Example 2. As a result, the multilayer sheet was in good condition, and no cracks, uneven thickness, etc. were visually observed in the container that had been heated and stretched at high speed. However, when gas barrier properties were measured, not only was the oxygen permeability 0.95cc/20μ/ m2 /24hr/atm, which was high, but the variation (R) of the gas barrier measurements measured on 20 samples was 4.1cc/m2/24hr/atm. 20μ/ m2・24hr・
ATM, which is high, made it impossible to put it to practical use due to its reliability as a gas barrier container.

比較例 3 比較例2において真空圧空成形機の成形スピー
ドを大巾に低下させ、延伸スピードを105%/分
で成形した所、成形物の外見(ブツ、クラツク、
偏肉)は比較例2より多少改善される傾向にあ
り、また容器のガスバリアー性(平均値)は酸素
透過率0.7c.c.・20μ/m2・24hr・atmと多少改善さ
れ、さらに測定値のバラツキも0.9c.c.・20μ/m2
24hr・atmと低下する傾向にあつた。この事より
成形性及びガスバリアー性のバラツキは成形速度
(延伸速度)に大きく依存する事がわかる。すな
わち最近、成形速度の増加による成形品の品質の
安定性、信頼性がいかに重要であり、また大望さ
れているかが、この比較例からも明らかである。
Comparative Example 3 In Comparative Example 2, the molding speed of the vacuum-pressure forming machine was significantly lowered and the stretching speed was set to 10 5 %/min.
Thickness unevenness) tends to be slightly improved compared to Comparative Example 2, and the gas barrier properties of the container (average value) are slightly improved with an oxygen permeability of 0.7cc・20μ/m 2・24hr・atm, and the measured values The variation is 0.9cc・20μ/ m2
There was a tendency to decrease to 24hr/atm. This shows that variations in moldability and gas barrier properties largely depend on the molding speed (stretching speed). In other words, it is clear from this comparative example how important and highly desired the quality stability and reliability of molded products are in recent years due to increased molding speeds.

実施例 3 実施例2においてEVOHをエチレン含有量44
モル%、けん化度99.5%、MI5.4g/10分(クラ
レ製EVAL−EP・E105)に変更し、またポリア
ミドとして、カプロアミド含量30重量%の6,12
−ナイロン(m.p.160℃、MI=4g/10分)5重
量部及びラウリンラクタム含量30重量%の6,12
−ナイロン(m.p.175℃、MI=4g/10分)10重
量部に変更し、実施例2と同様に実施した。その
結果、得られた成形物の外見は良好であり、クラ
ツク、偏肉はなかつた。この容器のガスバリアー
性は、酸素透過率1.5c.c.・20μ/m2・24hr・atm
(20℃−65%RH)であり、かつ20サンプル中の
アスバリアー測定値のバラツキ(R)は0.2c.c.・20μ/
m2・24hr・atmと小さく、良好なガスバリアー容
器であつた。
Example 3 In Example 2, EVOH has an ethylene content of 44
mol%, saponification degree 99.5%, MI 5.4g/10 min (EVAL-EP E105 manufactured by Kuraray), and as polyamide, 6,12 with a caproamide content of 30% by weight.
- 6,12 of 5 parts by weight of nylon (mp160°C, MI=4g/10min) and 30% by weight of laurinlactam content
- The same procedure as in Example 2 was carried out except that the amount was changed to 10 parts by weight of nylon (mp175°C, MI=4g/10min). As a result, the appearance of the obtained molded product was good, and there were no cracks or uneven thickness. The gas barrier properties of this container are: oxygen permeability 1.5cc・20μ/m 2・24hr・atm
(20℃-65%RH), and the variation (R) of asbarrier measurement values among 20 samples is 0.2cc・20μ/
It was a small container with a good gas barrier of m2 , 24 hours, and ATM.

比較例 4 実施例3において、ポリアミド15重量部{(a)と
(b)の合計量}の代りにカプロアミド含量57重量%
の6,12−ナイロン(m.p.150℃、MI=4g/10
分)15重量部を使用した以外は実施例3と同様に
実施した。その結果多層シート製膜時、ブツ、ゲ
ルの発生が認められ、また高速延伸成形時、ブ
ツ、ゲル部分にのびムラ及びEVOHブレンド層
の破れが認められた。さらにガスバリアー性を測
定した所、酸素透過率2.3c.c.・20μ/m2・24hr・
atmと高目であり、かつ20サンプル中のガスバリ
アー測定値のバラツキ(R)が4.8c.c.・20μ/m2
24hr・atmと大きく、使用に耐えなかつた。
Comparative Example 4 In Example 3, 15 parts by weight of polyamide {(a) and
caproamide content of 57% by weight instead of (total amount of (b))
6,12-nylon (mp150℃, MI=4g/10
Example 3 was carried out in the same manner as in Example 3, except that 15 parts by weight was used. As a result, the generation of bumps and gels was observed during the production of the multilayer sheet, and uneven spread in the bumps and gel portions and tearing of the EVOH blend layer were observed during high-speed stretching. Furthermore, when gas barrier properties were measured, oxygen permeability was 2.3cc・20μ/ m2・24hr・
atm, and the variation (R) of gas barrier measurement values among 20 samples is 4.8cc・20μ/ m2
It was too large to be used at 24hr/ATM.

比較例 5 実施例2においてポリアミドブレンド量{(a)と
(b)の合計量}14重量部を40重量部{(a)20重量部+
(b)20重量部}に変更し、他は実施例2と同様に行
なつた。その結果容器のガスバリアー性は、4.5
c.c.・20μ/m2・24hr・atmと大きく使用に耐えな
かつた。
Comparative Example 5 In Example 2, the amount of polyamide blend {(a) and
Total amount of (b)} 14 parts by weight 40 parts by weight {(a) 20 parts by weight +
(b) 20 parts by weight}, and the rest was carried out in the same manner as in Example 2. As a result, the gas barrier property of the container was 4.5
cc, 20μ/ m2 , 24hr, ATM, it was too large to withstand use.

比較例 6 実施例3において、ポリアミドとして、カプロ
アミド含量30重量%の6,12−ナイロン(m.
p.160℃、MI=4g/10分)(a)のみを15重量部使
用した以外は実施例3と同様に実施した。その結
果、多層シート製膜時、ブツ、ゲルの発生が認め
られた。さらにガスバリアー性を測定したとこ
ろ、酸素透過率2.2c.c.・20μ/m2・24hr・atmと高
く、かつ20アンプル中の、ガスバリアー性のバラ
ツキ(R)は4.2c.c.・20μ/m2・24hr・atmと大きく、
使用に耐えなかつた。
Comparative Example 6 In Example 3, 6,12-nylon (m.
p.160°C, MI=4g/10min) The same procedure as in Example 3 was carried out except that 15 parts by weight of (a) alone was used. As a result, it was observed that spots and gels were generated during the production of the multilayer sheet. Furthermore, when gas barrier properties were measured, the oxygen permeability was as high as 2.2 cc/20 μ/m 2/24 hr/atm, and the variation (R) in gas barrier properties among 20 ampoules was 4.2 cc/20 μ/m 2/24 hr .・Big as ATM,
It was unusable.

Claims (1)

【特許請求の範囲】 1 エチレン含有量25〜60モル%、けい化度90%
以上のエチレン−ビニルアルコール共重合体100
重量部およびポリアミド5〜30重量部よりなり、
かつ該ポリアミドがカプロアミド単位を5〜50重
量%含有するポリアミド(a)とラウリンラクタム単
位を5〜49重量%含有するポリアミド(b)とからな
り、かつ該ポリアミド(a)および(b)の重量比が a:b=5:95乃至95:5 であり、さらに該ポリアミド(a)および(b)のそれぞ
れの融点が110〜180℃、溶融粘性指数の比がa/
b=0.1〜10である樹脂組成物。 2 (a)および(b)のそれぞれの融点が120〜170℃で
ある特許請求の範囲第1項記載の樹脂組成物。 3 ポリアミドの溶融粘性指数が0.5〜9g/10
分である特許請求の範囲第1項記載の樹脂組成
物。
[Claims] 1. Ethylene content 25 to 60 mol%, silicification degree 90%
More than 100 ethylene-vinyl alcohol copolymers
parts by weight and 5 to 30 parts by weight of polyamide,
and the polyamide consists of a polyamide (a) containing 5 to 50% by weight of caproamide units and a polyamide (b) containing 5 to 49% by weight of laurin lactam units, and the weight of the polyamides (a) and (b) The ratio of a:b is 5:95 to 95:5, and the melting points of polyamides (a) and (b) are 110 to 180°C, and the ratio of melt viscosity index is a/b.
A resin composition in which b=0.1 to 10. 2. The resin composition according to claim 1, wherein each of (a) and (b) has a melting point of 120 to 170°C. 3 Melt viscosity index of polyamide is 0.5-9g/10
The resin composition according to claim 1, which is
JP7002486A 1986-03-27 1986-03-27 Resin composition and thermally drawn multi-layer structure using same Granted JPS62225543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002486A JPS62225543A (en) 1986-03-27 1986-03-27 Resin composition and thermally drawn multi-layer structure using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002486A JPS62225543A (en) 1986-03-27 1986-03-27 Resin composition and thermally drawn multi-layer structure using same

Publications (2)

Publication Number Publication Date
JPS62225543A JPS62225543A (en) 1987-10-03
JPH0571052B2 true JPH0571052B2 (en) 1993-10-06

Family

ID=13419617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002486A Granted JPS62225543A (en) 1986-03-27 1986-03-27 Resin composition and thermally drawn multi-layer structure using same

Country Status (1)

Country Link
JP (1) JPS62225543A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301243A (en) * 1988-05-30 1989-12-05 Tokai Rubber Ind Ltd Hose for transporting refrigerant
JPH01308455A (en) * 1988-06-06 1989-12-13 Tokai Rubber Ind Ltd Gas-impermeable resin composition
JPH072403B2 (en) * 1988-06-06 1995-01-18 東海ゴム工業株式会社 Refrigerant transport hose
JP2002338767A (en) * 2001-05-16 2002-11-27 Nippon Synthetic Chem Ind Co Ltd:The Heat seal material
JP2003026887A (en) * 2001-07-17 2003-01-29 Nippon Synthetic Chem Ind Co Ltd:The Single-layer injection molded product
EP1974907A4 (en) * 2006-01-17 2012-04-04 Yokohama Rubber Co Ltd Low-permeable rubber laminate and pneumatic tire using same
EP3299174B1 (en) * 2015-05-20 2022-02-16 Hakko Corporation Ink supply tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232944A (en) * 1975-09-10 1977-03-12 Toray Ind Inc Polyamide composition
JPS5478750A (en) * 1977-12-06 1979-06-23 Toray Ind Inc Resin composition
JPS5478749A (en) * 1977-12-06 1979-06-23 Toray Ind Inc Resin composition
JPS60174626A (en) * 1983-10-28 1985-09-07 スタミカ−ボン・ベスロ−テム・ベンノツトシヤツプ Manufacture of single layer or multilayer film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232944A (en) * 1975-09-10 1977-03-12 Toray Ind Inc Polyamide composition
JPS5478750A (en) * 1977-12-06 1979-06-23 Toray Ind Inc Resin composition
JPS5478749A (en) * 1977-12-06 1979-06-23 Toray Ind Inc Resin composition
JPS60174626A (en) * 1983-10-28 1985-09-07 スタミカ−ボン・ベスロ−テム・ベンノツトシヤツプ Manufacture of single layer or multilayer film

Also Published As

Publication number Publication date
JPS62225543A (en) 1987-10-03

Similar Documents

Publication Publication Date Title
JPH0796636B2 (en) Resin composition
JPH0717806B2 (en) Resin composition
US5068077A (en) Process of vacuum-air pressure drawing of a laminate containing an evoh/polyamide copolymer
US5177138A (en) Resin composition including a saponified ethylene-vinyl acetate copolymer, polyolefin, a graft copolymer and hydrotalcite
JPH0571052B2 (en)
JP2652507B2 (en) Resin composition and biaxially stretched film, production method thereof, and food packaging material
JPS63264656A (en) Resin composition and multilayer structure prepared by using the same
JP2744283B2 (en) Compositions and multilayer structures
JPH0641197B2 (en) Heat-stretched multilayer structure
US5298334A (en) Saponified ethylene-vinyl acetate copolymer composition and the use thereof
JP2700750B2 (en) Laminated film for packaging
EP0659828B1 (en) Resin composition and melt-extruded article formed therefrom
JPH08259802A (en) Gas-barrier resin composition
JPH0735108B2 (en) Thermoformed product
JP2710825B2 (en) Multi-layer structure
JP3043060B2 (en) Resin composition and multilayer structure
JP2000264328A (en) Thermoforming multi-layer structure and thermoforming container
JPH06270345A (en) Multilayered structure
JPH0713164B2 (en) Molded product manufacturing method
JP2836899B2 (en) Multi-layer structure
JP3009234B2 (en) Resin composition and multilayer structure
JP3329940B2 (en) Multi-layer package
JP2974243B2 (en) Resin composition and multilayer structure
JP3357190B2 (en) Resin composition
JPH0569130B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees