JPH0570724B2 - - Google Patents

Info

Publication number
JPH0570724B2
JPH0570724B2 JP62147465A JP14746587A JPH0570724B2 JP H0570724 B2 JPH0570724 B2 JP H0570724B2 JP 62147465 A JP62147465 A JP 62147465A JP 14746587 A JP14746587 A JP 14746587A JP H0570724 B2 JPH0570724 B2 JP H0570724B2
Authority
JP
Japan
Prior art keywords
bellows
pipes
movement
moving
moving mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62147465A
Other languages
Japanese (ja)
Other versions
JPS63312502A (en
Inventor
Etsuro Myamoto
Kyofumi Myagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14746587A priority Critical patent/JPS63312502A/en
Publication of JPS63312502A publication Critical patent/JPS63312502A/en
Publication of JPH0570724B2 publication Critical patent/JPH0570724B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ベローズを用いて軸移動、管移動
等のシール状の伸縮移動を効率的に働かせること
によつて、円滑に、且つ安全に移動させる移動機
構に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention uses bellows to efficiently perform seal-like expansion and contraction movements such as shaft movement and pipe movement, thereby smoothly and safely. This invention relates to a moving mechanism for moving.

(従来の技術) 従来のベローズを用いたシール状移動機構は、
ベローズ管を直列に配設して伸縮移動量を吸収し
ていた。そのためベローズ部に介在物が入りやす
く、且つ伸縮移動を均一に働かせることが困難で
あり、ことに、大きな伸縮移動には軸方向にそれ
に相応する極めて大きなスペースを必要とする重
大な弱点があり、これらが永い使用におする伸縮
移動およびシール状態の信頼性を低いものにして
いた。
(Prior art) A seal-like moving mechanism using a conventional bellows is
Bellows tubes were arranged in series to absorb the amount of expansion and contraction movement. As a result, inclusions tend to get into the bellows portion, and it is difficult to make the expansion and contraction movement work uniformly.In particular, large expansion and contraction movements require an extremely large space in the axial direction, which is a serious drawback. These make the telescopic movement and sealing condition unreliable over long periods of use.

また、複数のベローズ管を単に同位に多重配設
して順次連結した軸移動機構はあるが、大小口径
の異なるベローズ管のベローズ加工過程におい
て、加工前の管肉厚と加工後のベローズ部の山の
高さおよびピツチが同一であれば、 加工平均肉厚=肉厚(ベローズ谷径/ベローズ
平均径)0.5、即ち tp=t(dr/dp)0.5 の管肉厚の加工による減肉計算から、ベローズ部
の肉厚は、 tp1<tp2<tp3 と口径が小さくなるほど薄くなり、口径が大きく
なるにつれて次第に厚くなる肉厚の違いからくる
抵抗定数の差異によつて、同位多重構成では内外
ベローズ管の抵抗定数に相応する均等した移動量
の負荷が働かないため、各ベローズ管間での滑ら
かな軸移動が得られないと共に、一部のベローズ
管が疲労し易い問題があつた。
In addition, although there is an axial movement mechanism in which multiple bellows pipes are simply arranged multiplexed at the same position and connected sequentially, in the bellows processing process of bellows pipes with different large and small diameters, the difference between the pipe wall thickness before processing and the bellows portion after processing is known. If the height and pitch of the peaks are the same, then the processing average wall thickness = wall thickness (bellows valley diameter/bellows average diameter) 0.5 , i.e. tp = t (dr/dp) 0.5 , calculate the wall thickness reduction due to processing of the pipe wall thickness. Therefore, the wall thickness of the bellows becomes thinner as the aperture becomes smaller, and becomes thicker as the aperture becomes larger, as tp 1 < tp 2 < tp 3 . In this case, a load with an equal amount of movement corresponding to the resistance constant of the inner and outer bellows tubes is not applied, so smooth axial movement between each bellows tube cannot be obtained, and there is a problem that some bellows tubes are easily fatigued. .

ここで抵抗定数とは、ベローズに伸縮変移を与
えたときに、発生する単位長さ当りの弾性力を示
すものである。
Here, the resistance constant indicates the elastic force generated per unit length when the bellows is subjected to expansion and contraction.

(発明が解決しようとする問題点) この発明は、同じ長さのベローズを用いたシー
ル状移動機構における伸縮移動を効率的に且つ確
実に増大させるについて、ベローズによる伸縮移
動を従来の直列機構にかえて多重入れ子式に連着
すると共に、内外各ベローズへの負荷が各抵抗定
数に相応して働くべくすることによつて、従来の
技術における問題を解決するものである。
(Problems to be Solved by the Invention) This invention aims to efficiently and reliably increase the telescopic movement in a seal-like moving mechanism using bellows of the same length. Rather, the problem in the prior art is solved by connecting the bellows in a multiple nested manner and by making the loads on the inner and outer bellows work in accordance with each resistance constant.

(問題点を解決するための手段) この発明は上記目的を達成するため、径を異に
するベローズ管を相互間に連結管を介挿して多重
入れ子式に挿嵌配列し、最内側と最外側のベロー
ズ管の相対する外端部以外の各ベローズ管の移動
端部を交互に連結端部に順次連着して成る移動機
構において、同じ山の高さおよびピツチのベロー
ズを有する径を異にする複数のベローズ管の前記
加工肉減によるベローズ部の肉厚の違いからくる
抵抗定数の差異で、移動量に対するベローズの抵
抗定数を小径のベローズ管が大径のベローズ管に
かけて順次大きくなるようにし、小径から大径に
かけて負荷する移動量が各々の抵抗定数に相応し
て順次小さくなるよう一方向にずらせて配したこ
とを特徴とする多重シールベローズによる移動機
構を、さらに、この多重シールベローズを利用し
て、シリンダー内に挿入した移動軸の先端にシリ
ンダー室を可変に分割する移動壁を固着し、シリ
ンダー口部に固着した固定壁で移動軸を軸方向に
進退可能に軸受けして形成したシリンダー室内の
移動軸に、多重に連着した前記ベローズを挿嵌し
て最内側と最外側のベローズ管の相対する外端部
を各外端方向に位置する移動壁と固定壁にそれぞ
れ固着して、移動壁で可変に仕切られたシリンダ
ー室内に交互に圧力をかけて移動軸を進退させ、
あるいは進退移動には移動軸に外力を与えて作動
させるなどして移動軸をシール状態で進退運動さ
せることを特徴とする多重シールベローズによる
移動機構を提案する。
(Means for Solving the Problems) In order to achieve the above object, the present invention arranges bellows pipes having different diameters in a multiple nested manner by inserting connecting pipes between them, and the innermost and the outermost bellows pipes are arranged in a multiple nested manner. In a moving mechanism in which the moving end of each bellows pipe other than the opposing outer end of the outer bellows pipe is sequentially connected to a connecting end, bellows of the same height and pitch have different diameters. Due to the difference in the resistance constant due to the difference in wall thickness of the bellows part due to the aforementioned processing thickness reduction of the plurality of bellows pipes, the resistance constant of the bellows with respect to the amount of movement increases sequentially from the small diameter bellows pipe to the large diameter bellows pipe. Furthermore, a movement mechanism using multiple seal bellows is provided, which is characterized in that the movement amount of the load from the small diameter to the large diameter is shifted in one direction so that the amount of movement to be applied becomes smaller sequentially in accordance with the resistance constant of each. A movable wall that variably divides the cylinder chamber is fixed to the tip of a movable shaft inserted into the cylinder, and a fixed wall fixed to the cylinder mouth supports the movable shaft so that it can move forward and backward in the axial direction. The multiple bellows are inserted into the movable shaft in the cylinder chamber, and the opposing outer ends of the innermost and outermost bellows tubes are fixed to the movable wall and the fixed wall located toward each outer end, respectively. Then, pressure is applied alternately to the cylinder chamber, which is variably partitioned by a moving wall, to move the moving shaft forward and backward.
Alternatively, we propose a moving mechanism using multiple seal bellows, which is characterized by moving the moving shaft forward and backward in a sealed state by applying an external force to the moving shaft.

(作用) 千鳥状に連着された内外ベローズ管は、連結管
を介して各々同一方向に相応して伸縮移動して、
大きな移動量が得られる。
(Function) The inner and outer bellows pipes connected in a staggered manner expand and contract in the same direction via the connecting pipes,
A large amount of movement can be obtained.

入れ子式に挿嵌した各ベローズ管を小径から大
径にかけて負荷する移動量が各々の抵抗定数に相
応して順次小さくなるよう一方向にずらせて配し
て連着することで、外力にる負荷を小径から大径
にかけて移動抵抗定数が順次大きくなる各ベロー
ズ管の抵抗定数に相応して及ばせることができる
ため、各ベローズ管の抵抗定数を充分活用するこ
とができ、しかも互いの抵抗定数が重合する域で
負荷を均等に吸収し合つて、一部のベローズ管の
みに必要以上の大きな移動力が加わる虞れがな
い。
By arranging and connecting bellows tubes inserted in a nested manner so that the amount of movement applied from the small diameter to the large diameter becomes smaller in sequence according to the resistance constant of each bellows tube, the load caused by external force can be reduced. can be made to extend in proportion to the resistance constant of each bellows tube whose moving resistance constant increases successively from the small diameter to the large diameter, so the resistance constant of each bellows tube can be fully utilized, and each other's resistance constant is Since the load is evenly absorbed in the polymerization region, there is no possibility that an unnecessarily large moving force will be applied to only some of the bellows pipes.

多重ベローズの移動壁と固定壁で、各ベローズ
管の抵抗定数に相応した移動負荷を与え及ばせ、
全体に安定した移動応力として働いて、二つの室
を円滑に可変する。
The moving and fixed walls of the multiple bellows apply a moving load commensurate with the resistance constant of each bellows tube,
It acts as a stable moving stress on the whole and smoothly changes the two chambers.

(実施例) 次に、この発明に係る多重シールベローズによ
る移動機構の具体的実施例を図面を用いて説明す
る。
(Example) Next, a specific example of a moving mechanism using multiple seal bellows according to the present invention will be described with reference to the drawings.

第1図はこの発明を実施させる移動機構の多重
ベローズの一部切欠き側面図で、1は多重シール
ベローズで、口径および抵抗定数を異にす同じ山
高およびピツチのベローズ部を有する三本のベロ
ーズ管2,3,4を相互に連結管6,7を介挿し
て順次入れ子式に多重に挿嵌し、このベローズ管
2,3,4を小径側から大径側へ負荷する移動量
が各々の抵抗定数に相応して順次小さくなるよう
一方向にずらせて区間規制し、最内側のベローズ
管2と最外側のベローズ管4の互いに相対する外
端2a,4a以外の各ベローズ管2,3,4の移
動端部2b,3a,3b,4bに遊動板5,5を
固着介在させて連結管6,7の端部6a,6b,
7a,7bに交互に順次連着して成る。第2図は
この発明を実施させる多重ベローズを利用した軸
移動機構を示すシリンダー要部の一部切欠き側面
図、第3図は同上の軸移動後の一部切欠き側面図
で、前後にそれぞれ給排口16,17および1
8,19を設け、盲蓋9を施した有底のシリンダ
ー8内に挿入した移動軸13の先端に移動壁10
を固着10aし、このシリンダー8内の移動軸1
3に三本のベローズ管2,3,4、遊動板5,
5、連結管6,7を連着して成る前記多重シール
ベローズ管1を挿嵌して、最内側のベローズ管2
の外端部2aを移動壁10に固着シールし、シリ
ンダー8の口部8aに固着12した固定壁11に
最外側のベローズ管4の外端部4aを固着シール
して移動軸13を軸受部14で支持して、シリン
ダー8内を移動壁10で可変の二室A,Bに分割
して成る。15は移動壁10の周縁に装着したO
リングで、シリンダー8の内壁面との気密性を図
る。20,21,22,23は鞘管で、移動壁1
0および固定壁11にそれぞれ内向きに設けて各
ベローズ管2,3,4の遊動板5,5の移動をガ
イドするもので、移動時での遊動板5の偏心移動
を規制して、円滑、軽快な移動が駆られる効果が
あり、一部の鞘管20,22の内端に突起部20
a,22aを設けることにより、ベローズ管3,
4の遊動板5,5が必要以上に伸展移動すること
を掛止して、ベローズ管2,3,4のオーバーワ
ークを防ぐ点で効果がある。
FIG. 1 is a partially cutaway side view of a multiple bellows of a moving mechanism for carrying out the present invention. 1 is a multiple seal bellows, and three bellows parts having the same height and pitch and different diameters and resistance constants are shown in FIG. The bellows pipes 2, 3, and 4 are inserted into each other in a nested manner multiple times by inserting the connecting pipes 6 and 7, and the amount of movement of the bellows pipes 2, 3, and 4 is loaded from the small diameter side to the large diameter side. Each bellows tube 2, other than the mutually opposing outer ends 2a and 4a of the innermost bellows tube 2 and the outermost bellows tube 4, is regulated by shifting in one direction so as to be gradually smaller in accordance with the respective resistance constants. The movable plates 5, 5 are fixedly interposed to the movable ends 2b, 3a, 3b, 4b of the connecting pipes 6, 7, and the ends 6a, 6b,
7a and 7b are successively connected to each other alternately. Fig. 2 is a partially cutaway side view of the main part of the cylinder showing an axis movement mechanism using multiple bellows that embodies the present invention, and Fig. 3 is a partially cutaway side view of the same cylinder after the axis has moved. Supply/discharge ports 16, 17 and 1 respectively
A movable wall 10 is attached to the tip of a movable shaft 13 inserted into a bottomed cylinder 8 with a blind lid 9.
is fixed 10a, and the moving shaft 1 in this cylinder 8 is fixed.
3, three bellows tubes 2, 3, 4, floating plate 5,
5. Insert the multi-sealed bellows pipe 1 formed by connecting the connecting pipes 6 and 7 to form the innermost bellows pipe 2.
The outer end 2a of the outermost bellows tube 4 is firmly sealed to the movable wall 10, and the outer end 4a of the outermost bellows tube 4 is firmly sealed to the fixed wall 11 fixed to the mouth 8a of the cylinder 8, so that the movable shaft 13 is fixed to the bearing part. The interior of the cylinder 8 is divided into two variable chambers A and B by a movable wall 10. 15 is an O mounted on the periphery of the moving wall 10.
The ring ensures airtightness with the inner wall surface of the cylinder 8. 20, 21, 22, 23 are sheath tubes, and the movable wall 1
0 and the fixed wall 11 to guide the movement of the floating plates 5, 5 of each bellows pipe 2, 3, 4, and to restrict eccentric movement of the floating plates 5 during movement, thereby ensuring smooth operation. , has the effect of promoting light movement, and has projections 20 on the inner ends of some of the sheath tubes 20 and 22.
By providing a, 22a, the bellows pipe 3,
This is effective in preventing overwork of the bellows pipes 2, 3, and 4 by preventing the floating plates 5, 5 of No. 4 from extending and moving more than necessary.

第4図は他の実施例を示すシリンダー要部の拡
大縦断面図で、この移動機構では、シリンダー8
の室Bには給排口を設けないで、進出した移動軸
13の後退移動を移動軸13にかかる外部からの
負荷によりシール状に行わせるものである。
FIG. 4 is an enlarged vertical sectional view of the main part of the cylinder showing another embodiment. In this moving mechanism, the cylinder 8
The chamber B is not provided with a supply/discharge port, and the retracting movement of the advanced moving shaft 13 is performed in a sealed manner by an external load applied to the moving shaft 13.

この発明に係る移動機構は、多重シールベロー
ズ1により全体に負荷する圧力を各ベローズ管
2,3,4が各々の抵抗定数に相応して分割負担
して伸縮移動させるもので、口径の異なる同一肉
厚のベローズ用素管をベローズ管に形成加工する
場合、ベローズの肉厚は一様に加工肉減を生じる
が、ベローズ断面形状の山の深さおよびピツチが
同一であれば、口径が小さくなる程ベローズの加
工肉減が順次大きくなり、移動量に対する抵抗定
数が小さくなる。この原理を利用して最小口径の
最内側ベローズ管に最も大きな分割移動量を負荷
し、口径が大きくなるにつれてこの分割移動量が
順次小さくなるよう各ベローズ管2,3,4を抵
抗定数分づつ順次ずらせ規制して配列することに
より、各ベローズ管2,3,4の抵抗定数に応じ
た移動量に相応する負荷がかかるので、各ベロー
ズ管の抵抗定数が互いに重合する渡りの域で吸収
し合つて、段差のない円滑な移動が得られて、ベ
ローズ管の伸縮移動にも容易に亀裂の生じること
なく永い使用に耐え得る点で効果がある。
The moving mechanism according to the present invention is such that each bellows pipe 2, 3, 4 expands and contracts by dividing the pressure applied to the entire body by a multi-seal bellows 1 according to their respective resistance constants. When forming a thick bellows material pipe into a bellows pipe, the wall thickness of the bellows will be uniformly reduced due to processing, but if the depth and pitch of the peaks in the bellows cross section are the same, the diameter will be smaller. As you can see, the thickness reduction of the bellows increases gradually, and the resistance constant against the amount of movement decreases. Using this principle, the largest amount of divided movement is applied to the innermost bellows tube with the smallest diameter, and each bellows tube 2, 3, and 4 is divided by the resistance constant so that the amount of divided movement becomes smaller as the diameter increases. By sequentially regulating and arranging the bellows tubes, a load corresponding to the amount of movement corresponding to the resistance constant of each bellows tube 2, 3, and 4 is applied, so that the load is absorbed in the transition area where the resistance constant of each bellows tube overlaps with each other. In addition, smooth movement without steps can be obtained, and the bellows tube is effective in that it can withstand long-term use without easily cracking during expansion and contraction movement.

このような構成から、この発明の移動機構の作
動を第2,3図について説明すると、多重シール
ベローズ1の各ベローズ管2,3,4でそれぞれ
X1,X2,X3の負荷移動量に規制すべくずらせて
連結管6,7を連着し、シリンダー8の盲蓋9側
室Aの排出口17のバルブを閉じて給入口16か
ら高圧ガスを送入することにより、固定壁11側
の室Bの排出口19のバルブを開け各ベローズ管
2,3,4を縮小させて移動壁10を固定壁11
側へ全体の負荷移動量Yを移動させて軸受部14
で受支せる移動軸13を外方に押し出し、この移
動軸13の移動力を利用して所定の作用として機
能させ、次に、固定壁11側の室Bの排出口19
のバルブを閉じ、給入口18から高圧ガスを送入
し、盲蓋9側の排出口17のバルブを開けること
により、移動壁10を押し戻して各ベローズ2,
3,4の負荷移動量X1,X2,X3をそれぞれ伸展
させて復帰させる。この伸縮移動を順次繰り返し
て移動軸13を進退移動させることにより、所定
の作用を為さしめるものである。
Based on this configuration, the operation of the moving mechanism of the present invention will be explained with reference to FIGS. 2 and 3.
Connecting pipes 6 and 7 are connected in a staggered manner in order to regulate the amount of load movement of X 1 , By supplying gas, the valve of the outlet 19 of the chamber B on the fixed wall 11 side is opened, and each bellows pipe 2, 3, 4 is contracted, and the movable wall 10 is moved to the fixed wall 11.
By moving the entire load movement amount Y to the side, the bearing part 14
The moving shaft 13 supported by the moving shaft 13 is pushed outward, and the moving force of the moving shaft 13 is used to function as a predetermined action, and then the discharge port 19 of the chamber B on the fixed wall 11 side
The moving wall 10 is pushed back by supplying high pressure gas from the supply port 18 and opening the valve of the discharge port 17 on the blind lid 9 side.
The load transfer amounts X 1 , X 2 , and X 3 of No. 3 and 4 are expanded and returned to normal. By sequentially repeating this expansion and contraction movement and moving the moving shaft 13 forward and backward, a predetermined action is achieved.

以上この発明の一実施例として説明したが、そ
の他この多重シールベローズ1による移動機構を
伸縮継手管、バルブ等のシールベローズとして使
用することにより、所期の作用効果を奏すること
ができる。
Although the above description has been made as one embodiment of the present invention, by using the moving mechanism using the multi-seal bellows 1 as a seal bellows for expansion joint pipes, valves, etc., desired effects can be achieved.

(発明の効果) この発明は、口径の異なる複数のベローズ管を
移動量に対するベローズの抵抗定数を小径のベロ
ーズ管から大径のベローズ管にかけて順次大きく
なるようにして順次入れ子式に挿嵌配列し、各ベ
ローズ管を小径から大径にかけて負荷する移動量
が各々の抵抗定数に相応して順次小さくなるよう
一方向にずらせて配し、ベローズ管相互間に介挿
した連結管の端部にベローズ管の移動端部を交互
に連着して成る多重シールベローズによる移動機
構を特徴とし、入れ子式の多重に配列形成した複
数のベローズ管を交互に千鳥状に連着すること
で、各々の分割移動量を空間利用して立体的に組
み合わせ移動力が同じ状態で均等に及ぶようにし
た。
(Effects of the Invention) The present invention sequentially inserts and arranges a plurality of bellows pipes having different diameters in a nested manner so that the resistance constant of the bellows with respect to the amount of movement increases from a small diameter bellows pipe to a large diameter bellows pipe. The bellows pipes are arranged so that they are shifted in one direction so that the amount of movement applied to them gradually decreases from the small diameter to the large diameter according to the resistance constant of each bellows pipe, and the bellows is placed at the end of the connecting pipe inserted between the bellows pipes. It is characterized by a moving mechanism using multiple seal bellows, which are formed by alternately connecting the movable end portions of tubes, and each division is The amount of movement is utilized in space and combined three-dimensionally so that the movement force is evenly distributed in the same state.

従つて、各ベローズ管による移動量を小さな立
体的空間スペースで大きく増幅させることが容易
にでき、この種シール状移動機構を長さ方向に大
きなスペースを費やすことなく、短く小型にする
ことが容易となる。
Therefore, it is easy to greatly amplify the amount of movement by each bellows tube in a small three-dimensional space, and it is easy to make this type of seal-like movement mechanism short and compact without consuming a large space in the length direction. becomes.

ことに、各ベローズ管をそれぞれの抵抗定数に
相応して同じ方向に移動量をずらせて連着するこ
とによつて、外力による負荷は小径から大径にか
けて移動量が順次小さくなるよう各ベローズ管の
抵抗定数に相応して各自の抵抗定数を充分活用し
て働くため、一層大きな移動量が得られること勿
論であるが、各ベローズ管の抵抗定数が重合する
渡りの域で負荷を吸収し合つて段差のない滑らか
な移動が得られて、一部のベローズ管のみに必要
以上の大きな移動力の加わる虞れがなく丈夫とな
ると共に、移動時において厳密なシール性能と全
体で安定した円滑な伸縮移動が得られ、永い使用
にもこの作用効果が損なわれることのない耐久性
をも兼ね備えている。
In particular, by connecting the bellows tubes with their displacements shifted in the same direction according to their respective resistance constants, the load due to external force is applied to each bellows tube so that the displacement decreases from the small diameter to the large diameter. Since the resistance constant of each bellows tube is fully utilized in accordance with the resistance constant of Smooth movement with no steps can be obtained, and there is no risk of excessive movement force being applied to only a part of the bellows pipe, making it durable. Also, during movement, strict sealing performance and stable and smooth movement can be achieved throughout the pipe. It has the ability to expand and contract, and is durable enough to maintain its effectiveness even after long periods of use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施させる移動機構を示す
多重シールベローズの一部切欠き側面図、第2図
はこの発明の多重シールベローズを利用した軸移
動機構を示す要部の一部切欠き側面図、第3図は
同上の軸移動後の一部切欠き側面図、第4図は他
の実施例を示す軸移動機構要部の拡大縦断面図で
ある。 図中、1は多重シールベローズ、2,3,4は
ベローズ管、2a,4aは外端部、2b,3a,
3b,4bは移動端部、5は遊動板、6,7は連
結管、6a,6b,7a,7bは端部、8はシリ
ンダー、8aは口部、10は移動壁、10aは固
着部、11は固定壁、12は固着部、13は移動
軸、14は軸受部、20,21,22,23は鞘
管、20a,22aは突起部、A,Bはシリンダ
ー室を示す。
FIG. 1 is a partially cut-away side view of a multiple seal bellows showing a moving mechanism for carrying out the present invention, and FIG. 2 is a partially cut-away side view of a main part showing a shaft moving mechanism using the multiple seal bellows of this invention. 3 is a partially cutaway side view after the shaft has been moved, and FIG. 4 is an enlarged vertical cross-sectional view of the main parts of the shaft moving mechanism showing another embodiment. In the figure, 1 is a multi-seal bellows, 2, 3, 4 are bellows tubes, 2a, 4a are outer ends, 2b, 3a,
3b, 4b are moving ends, 5 is a floating plate, 6, 7 are connecting pipes, 6a, 6b, 7a, 7b are ends, 8 is a cylinder, 8a is a mouth part, 10 is a moving wall, 10a is a fixed part, 11 is a fixed wall, 12 is a fixed portion, 13 is a moving shaft, 14 is a bearing portion, 20, 21, 22, 23 are sheath tubes, 20a, 22a are protrusions, and A, B are cylinder chambers.

Claims (1)

【特許請求の範囲】 1 径を異にする複数のベローズ管を相互間に連
結管を介挿して多重に挿嵌配列し、最内側と最外
側のベローズ管の相対する外端部以外の各ベロー
ズ管の移動端部を交互に連結端部に順次連着して
成る移動機構において、移動量に対するベローズ
抵抗定数を小径のベローズ管から大径のベローズ
管にかけて順次大きくなるようにし、小径から大
径にかけて負荷する移動量が各々の抵抗定数に相
応して順次小さくなるよう一方向にずらせて配し
たことを特徴とする多重シールベローズによる移
動機構。 2 前記ベローズ管は、移動端部に各々遊動板を
固着介在させて連結管端部に連着した特許請求の
範囲第1項記載の多重シールベローズによる移動
機構。 3 前記遊動板は、鞘管でガイドして偏心移動を
規制するようにした特許請求の範囲第2項記載の
多重シールベローズによる移動機構。 4 前記鞘管は、最小径ベローズ管の外端部側の
内端部に突起を設けてベローズ管の伸長を制限す
るようにした特許請求の範囲第3項記載の多重シ
ールベローズによる移動機構。 5 シリンダー内に挿入した移動軸の先端に移動
壁を固着し、シリンダー口部に固着した固定壁で
軸受けして可変に分割するシリンダー室を形成
し、このシリンダー内の移動軸に、移動量に対す
るベローズの抵抗定数を小径のベローズ管から大
径のベローズ管にかけて順次大きくなるようにし
た径を異にする複数のベローズ管を、相互間に連
結管を介挿して多重に挿嵌配列して、小径から大
径にかけて負荷する移動量が各々の抵抗定数に相
応して順次小さくなるよう一方向にずらせて配
し、最内側と最外側のベローズ管の相対する外端
部を移動壁と固定壁にそれぞれ固着し、それ以外
の各ベローズ管の移動端部を交互に連結管端部に
順次連着して成る多重シールベローズによる移動
機構。 6 前記ベローズ管は、移動端部に各々遊動板を
固着介在させて連結管端部に連着した特許請求の
範囲第5項記載の多重シールベローズによる移動
機構。 7 前記移動壁および固定壁は、内側に移動方向
に設けた鞘管で各遊動板をガイドして偏心移動を
規制するようにした特許請求の範囲第6項記載の
多重シールベローズによる移動機構。 8 前記鞘管は、最小径ベローズ管の外端部側の
内端部にそれぞれ突起を設けてベローズ管の伸長
を制限するようにした特許請求の範囲第7項記載
の多重シールベローズによる移動機構。
[Scope of Claims] 1. A plurality of bellows pipes having different diameters are inserted and arranged in multiples with connecting pipes interposed between them, and each of the bellows pipes other than the opposing outer ends of the innermost and outermost bellows pipes is In a moving mechanism in which moving ends of bellows pipes are connected to connecting ends in turn, the bellows resistance constant with respect to the amount of movement is made to increase sequentially from small diameter bellows pipes to large diameter bellows pipes. A moving mechanism using multiple seal bellows, characterized in that the bellows are shifted in one direction so that the amount of movement applied to the diameter becomes smaller in sequence in accordance with the respective resistance constants. 2. The moving mechanism using a multi-seal bellows according to claim 1, wherein the bellows pipe is connected to the connecting pipe end with a floating plate fixedly interposed at each moving end. 3. The moving mechanism using multiple seal bellows according to claim 2, wherein the floating plate is guided by a sheath tube to restrict eccentric movement. 4. The movement mechanism using a multi-seal bellows according to claim 3, wherein the sheath tube is provided with a protrusion at the inner end on the outer end side of the smallest diameter bellows tube to limit extension of the bellows tube. 5 A movable wall is fixed to the tip of the movable shaft inserted into the cylinder, and a cylinder chamber is variably divided by being supported by a fixed wall fixed to the cylinder mouth, and the movable wall is fixed to the movable shaft inside the cylinder. A plurality of bellows pipes with different diameters are arranged such that the resistance constant of the bellows increases sequentially from a small diameter bellows pipe to a large diameter bellows pipe, and are inserted and arranged in multiples with connecting pipes interposed between them. The opposing outer ends of the innermost and outermost bellows tubes are connected to a moving wall and a fixed wall, so that the amount of movement applied to the pipes decreases from the small diameter to the large diameter in order according to the respective resistance constants. A moving mechanism using a multi-seal bellows, in which the moving ends of the other bellows pipes are alternately connected to the ends of the connecting pipes. 6. The moving mechanism using a multi-seal bellows according to claim 5, wherein the bellows pipe is connected to the connecting pipe end with a floating plate fixedly interposed at each moving end. 7. The moving mechanism using multiple seal bellows according to claim 6, wherein the movable wall and the fixed wall are arranged so that eccentric movement is restricted by guiding each movable plate by a sheath tube provided inside in the direction of movement. 8. The movement mechanism using multiple seal bellows according to claim 7, wherein the sheath tube is provided with a protrusion at each inner end on the outer end side of the smallest diameter bellows tube to limit extension of the bellows tube. .
JP14746587A 1987-06-12 1987-06-12 Movable mechanism by multiple seal bellows Granted JPS63312502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14746587A JPS63312502A (en) 1987-06-12 1987-06-12 Movable mechanism by multiple seal bellows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14746587A JPS63312502A (en) 1987-06-12 1987-06-12 Movable mechanism by multiple seal bellows

Publications (2)

Publication Number Publication Date
JPS63312502A JPS63312502A (en) 1988-12-21
JPH0570724B2 true JPH0570724B2 (en) 1993-10-05

Family

ID=15430990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14746587A Granted JPS63312502A (en) 1987-06-12 1987-06-12 Movable mechanism by multiple seal bellows

Country Status (1)

Country Link
JP (1) JPS63312502A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792095B2 (en) * 1989-07-27 1995-10-09 東京精密測器株式会社 Air actuator
JP2548062B2 (en) * 1992-11-13 1996-10-30 日本エー・エス・エム株式会社 Load lock chamber for vertical heat treatment equipment
FR2846726B1 (en) * 2002-10-30 2005-02-18 Claude Bresso SEAL JOINT ARRANGEMENT FOR PARTS WHICH MAY MAKE RELATIVE REAL-TIME MOVEMENT AND TUNNEL SYSTEM USING SUCH AN ARRANGEMENT
JP6043535B2 (en) * 2012-08-01 2016-12-14 株式会社豊田自動織機 Solar collector tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241908B2 (en) * 1982-06-08 1987-09-04 Nissan Motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137248U (en) * 1984-02-24 1985-09-11 トヨタ自動車株式会社 air spring
JPH0523841Y2 (en) * 1985-09-03 1993-06-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241908B2 (en) * 1982-06-08 1987-09-04 Nissan Motor

Also Published As

Publication number Publication date
JPS63312502A (en) 1988-12-21

Similar Documents

Publication Publication Date Title
US3318335A (en) Torsional pipe coupling
JP6709972B2 (en) Actuator body, control method thereof, and gripping hand using the same
JPH0148091B2 (en)
EP3569891B1 (en) Hydraulic damper with a hydraulic stop arrangement
US4471944A (en) Telescopic jack
JPH0570724B2 (en)
GB2122727A (en) Valve and stem seal therefor
IE43353B1 (en) Shaping thermoplastic pipes to form a bell end
JPS6321034B2 (en)
CN211682100U (en) Soft muscle
US2833330A (en) Fluid pressure mechanism for spirally corrugating tubing
JPH0585763B2 (en)
US3375689A (en) Manufacture of corrugated metal tubes or bellows
US3279392A (en) Sealing arrangement for use in connection with rotary displacement means, especiallyfor hydrostatic converters
CN211333192U (en) Driving device based on soft muscle
JPH04194406A (en) Actuator
US3036472A (en) Multiple actuator assembly
ITBS20060011A1 (en) ACTUATOR DEVICE
JP7256528B2 (en) actuator
SU1260627A1 (en) Expansion-compensation arrangement
SU988506A1 (en) Assembling and welding arrangement
JPH01275964A (en) Bellows for rodless cylinder
KR20240001184A (en) Metal bellows and its manufacturing method
JPS5923842Y2 (en) Cylinder with cushion
TW202411542A (en) Multi-section cylinder and flow control method for the same