JPH0570570B2 - - Google Patents

Info

Publication number
JPH0570570B2
JPH0570570B2 JP61203186A JP20318686A JPH0570570B2 JP H0570570 B2 JPH0570570 B2 JP H0570570B2 JP 61203186 A JP61203186 A JP 61203186A JP 20318686 A JP20318686 A JP 20318686A JP H0570570 B2 JPH0570570 B2 JP H0570570B2
Authority
JP
Japan
Prior art keywords
polyurethane
film
molecular weight
screw extruder
prepolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61203186A
Other languages
Japanese (ja)
Other versions
JPS6359512A (en
Inventor
Harumasa Yamazaki
Yutaka Kanamaru
Yasutoshi Isayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP61203186A priority Critical patent/JPS6359512A/en
Publication of JPS6359512A publication Critical patent/JPS6359512A/en
Publication of JPH0570570B2 publication Critical patent/JPH0570570B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/355Conveyors for extruded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリウレタンフイルムの製造法に関す
るものである。更に詳しくはウレタン化反応/フ
イルム化の工程を一体化させ、簡素化されたポリ
ウレタンフイルムの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a polyurethane film. More specifically, the present invention relates to a simplified method for producing a polyurethane film by integrating the urethanization reaction/film formation steps.

〔従来の技術及び問題点〕[Conventional technology and problems]

一般にポリウレタンフイルムは高強度、耐摩耗
性に優れること及び透湿性を有することから衣料
分野、衛生材料分野及び各種エラステツクフイル
ム分野に利用されている。しかるに従来のポリウ
レタンフイルムの製造法は、ポリオールとポリイ
ソシアネートから熱可塑性ポリウレタンを合成
し、ペレツト化した後押出成形法により、フイル
ム化を行うという方法をとつている。このため製
造工程は煩雑となり、コスト高の原因となつてい
る。又、従来法はポリウレタンを溶融押出成形す
る方法を採つている為、ポリウレタンとしては熱
可塑性タイプのものに限定され、より高強度、耐
摩耗性に優れる熱硬化タイプのポリウレタンフイ
ルムを作ることが出来ないと云う欠点を有してい
る。
Generally, polyurethane films have high strength, excellent abrasion resistance, and moisture permeability, and are therefore used in the fields of clothing, sanitary materials, and various elastic films. However, the conventional method for producing polyurethane film is to synthesize thermoplastic polyurethane from polyol and polyisocyanate, pelletize it, and then form it into a film by extrusion molding. This makes the manufacturing process complicated and causes high costs. In addition, since the conventional method uses a method of melt extrusion molding polyurethane, the polyurethane used is limited to thermoplastic types, and it is not possible to make thermosetting polyurethane films with higher strength and excellent abrasion resistance. It has the disadvantage that it is not.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記欠点を解決することを目的として
鋭意検討を行つた結果、ウレタン化反応/フイル
ム化の工程を一体化できることを見い出し本発明
に到達した。
As a result of extensive research aimed at solving the above-mentioned drawbacks, it was discovered that the urethanization reaction/film formation steps could be integrated, and the present invention was achieved.

即ち本発明はポリウレタンの原料であるポリオ
ール成分とポリイソチアネート化合物を混合撹拌
し、このものを二軸押出機に注入、重合させ、定
量ポンプを介して二軸押出機に取りつけたダイを
通してフイルム化することを特徴とするポリウレ
タンフイルムの製造法を提供するものである。
That is, in the present invention, a polyol component and a polyisocyanate compound, which are raw materials for polyurethane, are mixed and stirred, the mixture is injected into a twin-screw extruder, polymerized, and the film is passed through a die attached to the twin-screw extruder via a metering pump. The present invention provides a method for producing a polyurethane film characterized by the following.

本発明の方法においては、ポリオール成分とし
て数平均分子量500〜5000、平均官能基数(f)が2
≦f<4の高分子量ポリオール及び鎖延長剤及
び/又は架橋剤を含むものを使用することが必要
である。分子量が500未満では粘度が低すぎて操
作性が悪い。又得られたポリウレタンの最終物性
も良くない。一方分子量が5000を超えると粘度が
高すぎて混合が困難となる。平均官能基数(f)はf
=1ではモノオールとなり重合せず、一方f≧5
では多官能でありすぎ、重合物の粘度が増大して
物性が低下するので好ましくない。
In the method of the present invention, the polyol component has a number average molecular weight of 500 to 5000 and an average number of functional groups (f) of 2.
It is necessary to use high molecular weight polyols with ≦f<4 and those containing chain extenders and/or crosslinkers. When the molecular weight is less than 500, the viscosity is too low and operability is poor. Moreover, the final physical properties of the obtained polyurethane are also not good. On the other hand, when the molecular weight exceeds 5000, the viscosity is too high and mixing becomes difficult. The average number of functional groups (f) is f
= 1, it becomes a monol and does not polymerize, while f≧5
However, it is not preferable because it is too polyfunctional and the viscosity of the polymer increases and the physical properties deteriorate.

本発明に係るポリウレタン製造のための成分と
しては従来公知のものが使用出来る。高分子量ポ
リオールとしては、ポリエチレングリコール、ポ
リプロピレングリコール、ポリオキシテトラメチ
レングリコール等のポリオキシアルキレングリコ
ール類あるいは、ビスフエノールA、グリセリン
のエチレンオキシド、プロピレンオキシド等のア
ルキレンオキシド付加物類のポリエーテル型ポリ
オール、及びアジピン酸、無水フタル酸、イソフ
タル酸、マレイン酸、フマール酸、コハム酸等の
二塩基酸とエチレングリコール、ジエチレングリ
コール、プロピレングリコール、1,4−ブタン
ジオール、ネオペンチルグリコール、1,6−ヘ
キサンジオール、トリメチロールプロパン等のグ
リコール類との重縮合反応により得られるポリエ
ステル型ポリオール、並びにポリカプロラクトン
ジオール、ポリカーボネートジオール等を挙げる
ことが出来る。
Conventionally known components can be used for producing the polyurethane according to the present invention. Examples of high molecular weight polyols include polyoxyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polyoxytetramethylene glycol, and polyether type polyols such as alkylene oxide adducts such as bisphenol A and glycerin with ethylene oxide and propylene oxide; Dibasic acids such as adipic acid, phthalic anhydride, isophthalic acid, maleic acid, fumaric acid, succinic acid and ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, Examples include polyester type polyols obtained by polycondensation reaction with glycols such as trimethylolpropane, polycaprolactone diol, polycarbonate diol, and the like.

これら高分子量ポリオールの数平均分子量は
500〜5000、特に好ましくは1000〜3000の範囲で
ある。
The number average molecular weight of these high molecular weight polyols is
The range is from 500 to 5000, particularly preferably from 1000 to 3000.

又、ポリイソシアネート化合物としては、トリ
レンジイソシアネート、ジフエニルメタンジイソ
シアネート、キシリレンジイソシアネート、ヘキ
サメチレンジイソシアネート、2,2,4−又は
2,4,4−トリメチルヘキサメチメンジイソシ
アネート、1,4−シクロヘキサンジイソシアネ
ート、イソホロンジイソシアネート、4,4′−ジ
シクロヘキシルメタンジイソシアネート等を挙げ
ることができる。
Further, as polyisocyanate compounds, tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, 2,2,4- or 2,4,4-trimethylhexamethylene diisocyanate, 1,4-cyclohexane diisocyanate , isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate and the like.

これらのポリオール及びポリイソシアネート化
合物は従来のポリウレタン製造方法に採用されて
いるワンシヨツト法、擬プレポリマー法、及びプ
レポリマー法の何れによつて反応させてもよい
が、擬プレポリマー法或いはポレポリマー法を使
用した方が得られる製品の性状がよくなる。
These polyols and polyisocyanate compounds may be reacted by any of the one-shot method, pseudo-prepolymer method, and prepolymer method employed in conventional polyurethane production methods, but the pseudo-prepolymer method or polypolymer method may be used. The properties of the product obtained will be better when used.

更に鎖延長剤としては、エチレングリコール、
1,4−ブタンジオール、ジエチレングリコー
ル、1,6−ヘキサンジオール、ネオペンチルグ
リコール、N−メチルジエタノールアミン等の低
分子量ジオール並びにエチレンジアミン、ヘキサ
メチレンジアミン、イソホロンジアミン等のジア
ミンを挙げることができる。望ましくは低分子量
ジオールが用いられる。
Furthermore, as a chain extender, ethylene glycol,
Mention may be made of low molecular weight diols such as 1,4-butanediol, diethylene glycol, 1,6-hexanediol, neopentyl glycol and N-methyldiethanolamine, and diamines such as ethylenediamine, hexamethylenediamine and isophoronediamine. Preferably, low molecular weight diols are used.

更に必要に応じて多官能成分としてトリメチロ
ールプロパン、トリエタノールアミン、グリセリ
ン、及びこれらのエチレンオキシド、プロピレン
オキシド付加物を添加しても良い。本発明のポリ
ウレタンの製造においてOH基/NCO基当量比は
生成するポリウレタンの物性から0.95〜1.05がよ
く、望ましくは0.98〜1.02の範囲である。
Furthermore, trimethylolpropane, triethanolamine, glycerin, and ethylene oxide and propylene oxide adducts thereof may be added as polyfunctional components if necessary. In the production of the polyurethane of the present invention, the OH group/NCO group equivalent ratio is preferably in the range of 0.95 to 1.05, preferably in the range of 0.98 to 1.02, in view of the physical properties of the polyurethane produced.

更に本発明においてはポリウレタンにのみ限定
されるものでなく、各種の熱可塑性樹脂及び/又
は無機及び有機フイラーを添加することも可能で
ある。
Furthermore, the present invention is not limited only to polyurethane, and it is also possible to add various thermoplastic resins and/or inorganic and organic fillers.

本発明に使用される二軸押出機としてはL/D
(長/径比)が30〜70の範囲のものであることが
必要である。又、回転数は30〜400rpmであるも
のが良い。市販の二軸押出機としては例えば
PCM−45(池貝鉄工(株))、ZSK−57(西独Werner
社)、TEM−50A(東芝機械(株))、BT−40−S(プ
ラスチツク工学研究所)、TEX44−30AW−2V
(日本製鋼所)等を挙げることが出来る 本発明においては、フイルム化における定量フ
イード性を上げる為に二軸押出機とダイの間に定
量ポンプが設置される。この定量ポンプを介する
ことにより、反応からフイルム化までの工程を一
体化出来、ポリウレタンの再溶融が不要となるた
め、副反応の進む恐れが少なくなり、ポリウレタ
ンの品質の安定性が大きく、しかも生産性も向上
する等の顕著な効果を奏する。又、ダイと二軸押
出機との間に一軸押出機を設けてもよい。ダイと
しては、装置の簡単さからT−ダイが好ましい。
The twin screw extruder used in the present invention is L/D
(length/diameter ratio) must be in the range of 30 to 70. Moreover, it is preferable that the rotation speed is 30 to 400 rpm. Examples of commercially available twin screw extruders include
PCM-45 (Ikegai Iron Works Co., Ltd.), ZSK-57 (West German Werner
), TEM-50A (Toshiba Machine Co., Ltd.), BT-40-S (Plastic Engineering Research Institute), TEX44-30AW-2V
(Japan Steel Works) etc. In the present invention, a metering pump is installed between the twin-screw extruder and the die in order to improve the metering feedability in film production. By using this metering pump, the process from reaction to film formation can be integrated, and there is no need to re-melt the polyurethane, so there is less risk of side reactions occurring, and the quality of polyurethane is highly stable. It has remarkable effects such as improving sexual performance. Further, a single screw extruder may be provided between the die and the twin screw extruder. As the die, a T-die is preferable because of the simplicity of the device.

ポリウレタンの合成に際しての反応時間との関
係上、二軸押出機のバレル温度は150°〜250℃に
設定するのが良い。
In view of the reaction time during polyurethane synthesis, the barrel temperature of the twin-screw extruder is preferably set at 150° to 250°C.

更に出来上がつてきたポリウレタンフイルム同
志がブロツキングするのを防止する目的で離型紙
又はアロエジルのような微粉末の離型剤を用いて
も良い。
Furthermore, in order to prevent the finished polyurethane film from blocking together, a release paper or a finely powdered mold release agent such as aloesil may be used.

以上述べてきた通り、本発明の方法によつて熱
可塑性ポリウレタンの熔融押出成形法によるフイ
ルム化でなく、ポリウレタンの原料から重合、フ
イルム化を同時に行うことが可能となつたことに
より、製造工程の簡略化並びに熱硬化タイプのポ
リウレタンフイルムの製造が可能となつた。
As described above, the method of the present invention makes it possible to simultaneously polymerize and form a film from polyurethane raw materials instead of forming a film by melt extrusion of thermoplastic polyurethane. It has become possible to manufacture a simplified and thermosetting type polyurethane film.

〔実施例〕〔Example〕

以下、本発明について実施例により詳しく説明
するが、本発明はこれに限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例1〜4に使用するポリオール成分、イソ
シアネート化合物の製造例を以下に示す。
Production examples of the polyol component and isocyanate compound used in Examples 1 to 4 are shown below.

製造例 1 (A) 数平均分子量が1000のポリブチレンアジペー
ト15Kg及び数平均分子量が2000のポリブチレン
アジペート30Kgと1,4−ブタンジオール4.24
Kgを50の反応釜に投入し、窒素気流中80℃で
撹拌混合した。得られたポリオール混合物の水
酸基価は175.7KOHmg/gであつた。
Production example 1 (A) 15 kg of polybutylene adipate with a number average molecular weight of 1000, 30 kg of polybutylene adipate with a number average molecular weight of 2000, and 4.24 kg of 1,4-butanediol
Kg was put into a 50 ml reaction vessel and stirred and mixed at 80°C in a nitrogen stream. The resulting polyol mixture had a hydroxyl value of 175.7 KOHmg/g.

(B) ジフエニルメタンジイソシアネート24.8Kgと
数平均分子量が1000のポリブチレンアジペート
9Kg及び数平均分子量が2000のポリブチレンア
ジペート18Kgを50の反応釜に投入し、窒素気
流中70℃で3時間撹拌しながら反応させてプレ
ポリマーを得た。得られたプレポリマーの遊離
のイソシアネート基は13.2%であつた。
(B) 24.8 kg of diphenylmethane diisocyanate, 9 kg of polybutylene adipate with a number average molecular weight of 1000, and 18 kg of polybutylene adipate with a number average molecular weight of 2000 were placed in a 50-liter reaction vessel and stirred at 70°C in a nitrogen stream for 3 hours. A prepolymer was obtained by the reaction. The free isocyanate groups of the obtained prepolymer was 13.2%.

製造例 2 (A) 数平均分子量が2000のポリオキシテトラメチ
レングリコール42Kg、1,4−ブタンジオール
5.05Kg及びトリメチロールプロパン0.83Kgを50
の反応釜に投入し、窒素気流中80℃で撹拌混
合した。得られたポリオール混合物の水酸基価
は202.5KOHmg/gであつた。
Production example 2 (A) 42 kg of polyoxytetramethylene glycol with a number average molecular weight of 2000, 1,4-butanediol
5.05Kg and 0.83Kg of trimethylolpropane 50
The mixture was added to a reaction vessel and stirred and mixed at 80°C in a nitrogen stream. The resulting polyol mixture had a hydroxyl value of 202.5 KOHmg/g.

(B) ジフエニルメタンジイソシアネート25Kgと数
平均分子量が2000のポリオキシテトラメチレン
グリコール23.8Kgを50の反応釜に投入し、窒
素気流中70℃で3時間撹拌しながら反応させて
プレポリマーを得た。得られたプレポリマーの
遊離のイソシアネート基は15.2%であつた。
(B) 25Kg of diphenylmethane diisocyanate and 23.8Kg of polyoxytetramethylene glycol with a number average molecular weight of 2000 were placed in a 50mm reactor and reacted with stirring at 70℃ for 3 hours in a nitrogen stream to obtain a prepolymer. . The free isocyanate groups of the obtained prepolymer was 15.2%.

製造例 3 (A) 数平均分子量1000のポリオキシテトラメチレ
ングリコール31Kg、N−メチルジエタノールア
ミン18.1Kgを50反応釜に投入し、窒素気流中
80℃で撹拌混合した。得られたポリオール混合
物の水酸基価は414.4KOHmg/gであつた。
Production Example 3 (A) 31 kg of polyoxytetramethylene glycol with a number average molecular weight of 1000 and 18.1 kg of N-methyldiethanolamine were placed in a 50-liter reaction vessel and heated in a nitrogen stream.
The mixture was stirred and mixed at 80°C. The resulting polyol mixture had a hydroxyl value of 414.4 KOHmg/g.

(B) イソホロンジイソシアネート43Kg、数平均分
子量1000のポリオキシテトラメチレングリコー
ル7.09Kgを50の反応釜に投入し、窒素気流中
80℃で5時間撹拌しながら反応させて、プレポ
リマーを得た。得られたプレポリマーの遊離の
イソシアネート基は31.3%であつた。
(B) 43 kg of isophorone diisocyanate and 7.09 kg of polyoxytetramethylene glycol with a number average molecular weight of 1000 were charged into a 50-liter reaction vessel and heated in a nitrogen stream.
A prepolymer was obtained by reacting at 80°C for 5 hours with stirring. The free isocyanate groups of the obtained prepolymer was 31.3%.

製造例 4 (A) 数平均分子量1000のポリオキシテトラメチレ
ングリコール33.0Kg、N−メチルジエタノール
アミン11.8Kg、トリエタノールアミン43Kgを50
反応釜に投入し、窒素気流中80℃で撹拌混合
した。得られたポリオール混合物の水酸基価は
399.7KOHmg/gであつた。
Production example 4 (A) 50 kg of polyoxytetramethylene glycol with a number average molecular weight of 1000, 11.8 kg of N-methyldiethanolamine, and 43 kg of triethanolamine
The mixture was added to a reaction vessel and stirred and mixed at 80°C in a nitrogen stream. The hydroxyl value of the obtained polyol mixture is
It was 399.7KOHmg/g.

(B) メチレンビス(シクロヘキシルイソシアネー
ト)47.0Kg、数平均分子量1000のポリオキシテ
トラメチレングリコール2.58Kgを50反応釜に
投入し、窒素気流中80℃で5時間撹拌しながら
反応させて、プレポリマーを得た。得られたプ
レポリマーの遊離のイソシアネート基は30.0%
であつた。
(B) 47.0 kg of methylene bis(cyclohexyl isocyanate) and 2.58 kg of polyoxytetramethylene glycol with a number average molecular weight of 1000 were placed in a 50-liter reaction vessel and reacted with stirring at 80°C for 5 hours in a nitrogen stream to obtain a prepolymer. Ta. The free isocyanate groups of the obtained prepolymer were 30.0%
It was hot.

上記のポリオール成分とポリイソシアネート化
合物を用い、図1に示す製造工程で実施例1〜4
の様にポリウレタンフイルムの製造を行つた。図
1において、1はポリオールタンク、2はプレポ
リマータンク、3は定量混合機である。4の二軸
押出機を通して重合を行い、次いで定量フイード
ポンプ5を介し、T−ダイ6を通してフイルム化
する。7は加圧ロール、8は冷却ロールであり、
フイルム9は巻取りロール10に巻きとられる。
Examples 1 to 4 were prepared using the above polyol component and polyisocyanate compound, and by the manufacturing process shown in Figure 1.
Polyurethane film was manufactured in the same way. In FIG. 1, 1 is a polyol tank, 2 is a prepolymer tank, and 3 is a quantitative mixer. Polymerization is carried out through a twin-screw extruder (No. 4), followed by a metering feed pump (5) and a T-die (6) to form a film. 7 is a pressure roll, 8 is a cooling roll,
The film 9 is wound onto a take-up roll 10.

実施例 1 製造例1Aで得られたポリオール混合物と製造
例1Bで得られたプレポリマーをギア車型ポンプ
を通して、両液それぞれ毎分150gの速度でミキ
シング装置に送り、均一に混合された状態で、毎
分200回転で同じ間隔で回転している2本の軸を
有する二軸スクリユー型押出機(L/D=45)の
入口管内に注入する。
Example 1 The polyol mixture obtained in Production Example 1A and the prepolymer obtained in Production Example 1B were sent to a mixing device at a rate of 150 g per minute through a gear wheel type pump, and in a uniformly mixed state, It is injected into the inlet tube of a twin screw extruder (L/D=45) with two shafts rotating at the same interval at 200 revolutions per minute.

押出機のバレル温度は入口側で160℃、出口側
で、200℃であつた。
The barrel temperature of the extruder was 160°C at the inlet and 200°C at the outlet.

押出機出口に定量ポンプを介して接続されたT
−ダイを通して生成したフイルムは二軸延伸装置
により延伸し、膜厚50μmのフイルムとした。
T connected to the extruder outlet via a metering pump
- The film produced through the die was stretched using a biaxial stretching device to form a film with a thickness of 50 μm.

実施例 2 製造例2A及び製造例2BBから得られた生成物
を用いて実施例1と同じ方法でフイルムを製造し
た。
Example 2 A film was produced in the same manner as in Example 1 using the products obtained from Production Example 2A and Production Example 2BB.

フイルムは膜厚50μmで、400Kg/cm2の引張強
度と350%の引裂変形度を有していた。又、得ら
れたフイルムは熱硬化性であり、ジメチルホルム
アミド等の溶剤にも不溶であつた。
The film had a thickness of 50 μm, a tensile strength of 400 Kg/cm 2 and a tear deformation of 350%. Furthermore, the obtained film was thermosetting and insoluble in solvents such as dimethylformamide.

実施例 3 製造例3A及び製造例3Bから得られた生成物を
用いて実施例1と同じ方法でフイルムを製造し
た。
Example 3 A film was produced in the same manner as in Example 1 using the products obtained from Production Example 3A and Production Example 3B.

フイルムは膜厚50μmで、350Kg/cm2の引張強
度と600%の引裂変形度を有していた。
The film had a thickness of 50 μm, a tensile strength of 350 Kg/cm 2 and a tear deformation of 600%.

実施例 4 製造例4A及び製造例4Bから得られた生成物を
用いて実施例1と同じ方法でフイルムを製造し
た。
Example 4 A film was produced in the same manner as in Example 1 using the products obtained from Production Example 4A and Production Example 4B.

フイルムは膜厚50μmで、300Kg/cm2の引張強
度と350%の引裂変形度を有していた。又、得ら
れたフイルムは熱硬化性であり、ジメチルホルム
アミド等の溶剤にも不溶であつた。
The film had a thickness of 50 μm, a tensile strength of 300 Kg/cm 2 and a tear deformation of 350%. Furthermore, the obtained film was thermosetting and insoluble in solvents such as dimethylformamide.

〔発明の効果〕〔Effect of the invention〕

実施例及び製造概略図から明らかな様に、製造
が合理化され、更に従来の熱可塑性ポリウレタン
のみならず、熱硬化性ポリウレタンフイルムの製
造も可能となり、その工業的価値は極めて大なる
ものである。
As is clear from the examples and manufacturing schematic diagrams, the manufacturing process is streamlined and it becomes possible to manufacture not only conventional thermoplastic polyurethane but also thermosetting polyurethane films, and its industrial value is extremely large.

本発明の方法によれば、架橋度の高いポリウレ
タンフイルムも容易に連続的に生産できる。
According to the method of the present invention, polyurethane films with a high degree of crosslinking can be easily and continuously produced.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の製造工程の一例を示す概略図で
ある。 1……ポリオールタンク、2……プレポリマー
タンク、4……二軸押出機、5……定量フイード
ポンプ、6……T−ダイ。
FIG. 1 is a schematic diagram showing an example of the manufacturing process of the present invention. 1... Polyol tank, 2... Prepolymer tank, 4... Twin screw extruder, 5... Metering feed pump, 6... T-die.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリウレタンの原料成分のポリオール成分と
ポリイソシアネート化合物を、二軸押出機を通し
て重合し、次いで定量ポンプを介して接続された
ダイを通してフイルム化することからなり、ポリ
オール成分が、数平均分子量500〜5000、平均官
能基数(f)が2≦f<4の高分子量ポリオール及び
鎖延長剤及び/又は架橋剤を含ものであり、又二
軸押出機のL/D(長/径比)が30〜70であるこ
とを特徴とするポリウレタンフイルムの製造法。
1 The polyol component and the polyisocyanate compound, which are raw materials for polyurethane, are polymerized through a twin-screw extruder, and then formed into a film through a die connected via a metering pump, so that the polyol component has a number average molecular weight of 500 to 5000. , containing a high molecular weight polyol with an average number of functional groups (f) of 2≦f<4, a chain extender and/or a crosslinking agent, and a twin screw extruder having an L/D (length/diameter ratio) of 30 to 70. A method for producing a polyurethane film.
JP61203186A 1986-08-29 1986-08-29 Manufacture of polyurethane film Granted JPS6359512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203186A JPS6359512A (en) 1986-08-29 1986-08-29 Manufacture of polyurethane film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203186A JPS6359512A (en) 1986-08-29 1986-08-29 Manufacture of polyurethane film

Publications (2)

Publication Number Publication Date
JPS6359512A JPS6359512A (en) 1988-03-15
JPH0570570B2 true JPH0570570B2 (en) 1993-10-05

Family

ID=16469882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203186A Granted JPS6359512A (en) 1986-08-29 1986-08-29 Manufacture of polyurethane film

Country Status (1)

Country Link
JP (1) JPS6359512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686471A2 (en) 1994-06-07 1995-12-13 Bando Kagaku Kabushiki Kaisha Method and apparatus for producing cleaning blades

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948859A (en) * 1988-10-28 1990-08-14 Minnesota Mining And Manufacturing Company Extruder polymerization of polyurethanes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230895A (en) * 1974-11-12 1977-03-08 Ato Chimie Method of anionnpolymerizing lactam in extruder and apparatus thereof
JPS54139995A (en) * 1978-04-21 1979-10-30 Bayer Ag Method of continuously making theremoplastic polyurethane
JPS565244A (en) * 1979-06-27 1981-01-20 Isuzu Motors Ltd Preventing method for left-hand turn accident of vehicle
JPS57108490A (en) * 1980-11-04 1982-07-06 Union Carbide Corp Low energy extruder-pump assembly system
JPS5846246A (en) * 1981-09-16 1983-03-17 Ishikawajima Harima Heavy Ind Co Ltd Stepless speed change gear
JPS59129130A (en) * 1983-01-14 1984-07-25 Furukawa Electric Co Ltd:The Manufacture of silane-bridged linear ethylene copolymer molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230895A (en) * 1974-11-12 1977-03-08 Ato Chimie Method of anionnpolymerizing lactam in extruder and apparatus thereof
JPS54139995A (en) * 1978-04-21 1979-10-30 Bayer Ag Method of continuously making theremoplastic polyurethane
JPS565244A (en) * 1979-06-27 1981-01-20 Isuzu Motors Ltd Preventing method for left-hand turn accident of vehicle
JPS57108490A (en) * 1980-11-04 1982-07-06 Union Carbide Corp Low energy extruder-pump assembly system
JPS5846246A (en) * 1981-09-16 1983-03-17 Ishikawajima Harima Heavy Ind Co Ltd Stepless speed change gear
JPS59129130A (en) * 1983-01-14 1984-07-25 Furukawa Electric Co Ltd:The Manufacture of silane-bridged linear ethylene copolymer molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686471A2 (en) 1994-06-07 1995-12-13 Bando Kagaku Kabushiki Kaisha Method and apparatus for producing cleaning blades

Also Published As

Publication number Publication date
JPS6359512A (en) 1988-03-15

Similar Documents

Publication Publication Date Title
US4245081A (en) Process for the production of thermoplastic polyurethane elastomers
JPH06206963A (en) Continuous control of convertion of polyurethane prepolymer by partially mixing prepolymer with monomer
JPH11254432A (en) Continuous manufacture of granular thermoplastic polyurethane elastomer
CN106536587A (en) Tpu pneumatic hose
JP4725937B2 (en) Nonrigid thermoplastic molding composition
JPH08337627A (en) Thermoplastic polyurethane urea elastomers
JPH0570570B2 (en)
JP3650403B2 (en) Polyurethane
JPH0827256A (en) High-molecular lactic acid copolymer and its production
JPH1143529A (en) Production of thermoplastic polyurethane
JPH0467499B2 (en)
JP3308369B2 (en) Polyurethane and method for producing the same
JPH09221640A (en) Hot melt film adhesive and its production
CN113227185A (en) Continuous preparation of PPG-based TPUs
JP3495060B2 (en) Continuous polymerization method of polyurethane
JP2758670B2 (en) Polyurethane, production method thereof, and polyester diol used therefor
JP3073915B2 (en) Method for producing thermoplastic silicone-modified polyurethane resin
JPH0349284B2 (en)
JP2000038434A (en) Production of thermoplastic resin
JP3079711B2 (en) Film formed using polyester containing urethane bond
JPS6357447B2 (en)
JP2860183B2 (en) Method for producing polyester containing urethane bond
JPS6114221A (en) Production of thermoplastic polyurethane of excellent mold resistance
JPH09316164A (en) Composition for thermoplastic polyurethane resin excellent in solubility, production of resin therefrom, and molded item made therefrom
JPH0354966B2 (en)