JPH0570103A - Production of inorganic dielectric thin film - Google Patents

Production of inorganic dielectric thin film

Info

Publication number
JPH0570103A
JPH0570103A JP24529291A JP24529291A JPH0570103A JP H0570103 A JPH0570103 A JP H0570103A JP 24529291 A JP24529291 A JP 24529291A JP 24529291 A JP24529291 A JP 24529291A JP H0570103 A JPH0570103 A JP H0570103A
Authority
JP
Japan
Prior art keywords
thin film
dielectric thin
inorganic dielectric
film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24529291A
Other languages
Japanese (ja)
Inventor
Hitoshi Tabata
仁 田畑
Osamu Murata
修 村田
Junzo Fujioka
順三 藤岡
Shunichi Namikata
俊一 南方
Tomoji Kawai
知二 川合
Nanao Kawai
七雄 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP24529291A priority Critical patent/JPH0570103A/en
Priority to GB9118246A priority patent/GB2250751B/en
Publication of JPH0570103A publication Critical patent/JPH0570103A/en
Priority to US08/051,817 priority patent/US5395663A/en
Priority to GB9407946A priority patent/GB2276393B/en
Priority to US08/353,293 priority patent/US5532504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the deviation of composition caused by the difference of equilibrium vapor pressure between target elements and to decrease the film-forming temperature in a process for producing an inorganic dielectric thin film by laser beam evaporation process. CONSTITUTION:The objective film is formed in an oxygen atmosphere of >=0.06Torr. When the film-forming substance is PbTiO3, a substance having a lattice constant close to that of the film, e.g. SrTiO3 is used as the substrate substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はPb含有ペロブスカイ
ト等の無機誘電体薄膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an inorganic dielectric thin film such as Pb-containing perovskite.

【0002】[0002]

【従来の技術】センサヘッド部分、磁気記録媒体等に使
用されているPb含有ペロブスカイト等の無機誘電体薄
膜は、従来は、マグネトロンスパッタリング法、高周波
スパッタリング法、あるいはCVD(化学気相蒸着法)
等によって成膜されている。
2. Description of the Related Art Inorganic dielectric thin films such as Pb-containing perovskites used in sensor heads, magnetic recording media, etc. have hitherto been magnetron sputtering, high frequency sputtering, or CVD (chemical vapor deposition).
And the like.

【0003】[0003]

【発明が解決しようとする課題】ところで上記従来の成
膜方法では、装置あるいは原理上の制約から、0.01
Torr以下という低い酸素圧下で成膜が行われている
のが実情であるが、低酸素圧であることに起因して、次
のような不具合が生じている。
However, in the above-mentioned conventional film forming method, 0.01
Actually, the film formation is performed under a low oxygen pressure of Torr or less, but the following problems occur due to the low oxygen pressure.

【0004】それは従来の成膜方法では、ターゲット元
素間での平衡蒸気圧の差により組成ずれが生じて充分結
晶化した薄膜が得られず、そのためターゲット組成の補
正を行う必要があるということである。
This is because the conventional film forming method cannot obtain a sufficiently crystallized thin film due to a composition shift due to a difference in equilibrium vapor pressure between target elements, and therefore it is necessary to correct the target composition. is there.

【0005】また従来の成膜方法によって作成された無
機誘電体薄膜は、上記ターゲット組成の補正を行っても
ランダム配向し易い傾向にあり、そのためアズ・デポ状
態でC軸配向した結晶化膜を得ようとすれば、基板温度
を600℃以上の高温にする必要があり、Si−CC
D、MOS−FET等のデバイスへの直接成膜が不可能
であった。
Further, the inorganic dielectric thin film formed by the conventional film forming method tends to be randomly oriented even if the above target composition is corrected. Therefore, a crystallized film oriented in the C-axis in the as-depo state is formed. In order to obtain it, it is necessary to raise the substrate temperature to a high temperature of 600 ° C. or higher.
Direct film formation on devices such as D and MOS-FET was impossible.

【0006】そこでこの発明の第1の目的は、従来のよ
うにターゲット組成の補正を行う必要のない無機誘電体
薄膜の製造方法を提供することにある。
Therefore, a first object of the present invention is to provide a method for producing an inorganic dielectric thin film which does not require correction of the target composition as in the conventional case.

【0007】またこの発明の第2の目的は、低温でもっ
てC軸配向度が高く、結晶性の良い無機誘電体薄膜を形
成することが可能な無機誘電体薄膜の製造方法を提供す
ることにある。
A second object of the present invention is to provide a method for producing an inorganic dielectric thin film, which can form an inorganic dielectric thin film having a high degree of C-axis orientation and good crystallinity even at a low temperature. is there.

【0008】[0008]

【課題を解決するための手段及び作用】そこで本発明者
等は、ターゲットの組成ずれについての検討を種々行
い、その結果、請求項1のように、0.06Torr以
上の酸素雰囲気下、好ましくは0.1Torr以上の酸
素雰囲気下で蒸着を行えば、組成ずれ(特に低融点元素
のずれ)を防止し得ることを知見した。
Therefore, the inventors of the present invention have conducted various studies on the compositional deviation of the target, and as a result, as described in claim 1, in an oxygen atmosphere of 0.06 Torr or more, preferably. It has been found that composition deviation (especially, deviation of low melting point element) can be prevented by performing vapor deposition in an oxygen atmosphere of 0.1 Torr or more.

【0009】また請求項2のように、蒸着法として、レ
ーザビームを利用した蒸着法を採用すれば、堆積する原
子に高いエネルギを与えることが可能となり、この結
果、基板温度を従来よりも低温にしながらも、充分なC
軸配向をした結晶化膜が得られることになる。
When the vapor deposition method using a laser beam is adopted as the vapor deposition method as described in claim 2, it becomes possible to give high energy to the atoms to be deposited, and as a result, the substrate temperature is lower than that of the conventional one. It's enough C
A crystallized film having an axial orientation will be obtained.

【0010】さらに請求項3のように成膜物質と基板物
質との格子定数を近接させれば一段と低い基板温度にお
いても、結晶化の良好なC軸配向した無機誘電体薄膜を
形成することが可能となる。
Further, if the film formation substance and the substrate substance are made close to each other in lattice constant as in the third aspect, a C-axis oriented inorganic dielectric thin film having good crystallization can be formed even at a further lower substrate temperature. It will be possible.

【0011】また格子定数の合致した基板を使用し得な
いような場合には、請求項4のように、ミスマッチを緩
和するための中間層を形成すれば、上記請求項3と同様
に成膜温度の低温化が図れる。
When it is impossible to use a substrate having a matched lattice constant, an intermediate layer for relaxing the mismatch is formed as in claim 4, and the film is formed in the same manner as in claim 3. The temperature can be lowered.

【0012】なお本発明の請求項1の蒸着法は、レーザ
スパッタリング法等に限定されず、請求項5のように変
更し得るものである。
The vapor deposition method according to the first aspect of the present invention is not limited to the laser sputtering method or the like and can be modified as the fifth aspect.

【0013】[0013]

【実施例】次にこの発明の無機誘電体蒲膜の製造方法の
具体的な実施例について、図面を参照しつつ詳細に説明
する。
EXAMPLES Next, specific examples of the method for producing an inorganic dielectric film according to the present invention will be described in detail with reference to the drawings.

【0014】図1に実施装置の一例の概略構成を示す。
同図において、1は成膜容器(真空チャンバ)、2はレ
ーザ発振器、3はターゲット、4は基板、5は酸素ガス
導入路をそれぞれ示している。この場合、レーザ発振器
2からは、紫外光であるArFエキシマレーザ(193
nm)が発振されるようなされており、このレーザビー
ム6は、レンズ7及び成膜容器1に設けたレーザ導入口
8をそれぞれ通過してターゲット3に照射される。そし
てターゲット3から生成する励起種等が、上記ターゲッ
ト3と相対向して配置された基板4に蒸着し、これによ
り成膜が行われる。この成膜装置は、エネルギ源(レー
ザ)2と成膜容器(真空チャンバ)1とが分離している
ところに特徴があり、このため広範囲のガス圧力(10
−10Torr〜常圧)下での成膜が可能となる。
FIG. 1 shows a schematic structure of an example of the embodying apparatus.
In the figure, 1 is a film forming container (vacuum chamber), 2 is a laser oscillator, 3 is a target, 4 is a substrate, and 5 is an oxygen gas introduction path. In this case, from the laser oscillator 2, an ArF excimer laser (193
The laser beam 6 passes through the lens 7 and the laser introduction port 8 provided in the film forming container 1 and is applied to the target 3. Then, the excited species and the like generated from the target 3 are vapor-deposited on the substrate 4 arranged so as to face the target 3 to form a film. This film forming apparatus is characterized in that the energy source (laser) 2 and the film forming container (vacuum chamber) 1 are separated from each other. Therefore, a wide range of gas pressure (10
It becomes possible to form a film under −10 Torr to normal pressure.

【0015】実施例1 レーザ強度 :1〜3J/cm 繰返し周波数 :5〜30Hz 基板温度(Ts):550℃ ターゲット :PbTiO Example 1 Laser intensity: 1-3 J / cm 2 Repetition frequency: 5-30 Hz Substrate temperature (Ts): 550 ° C. Target: PbTiO 3

【0016】上記成膜条件において、酸素分圧を変化
(0.1Torr、0.01Torr、0.001To
rr)させて作製した薄膜において、簿膜中のPb量を
測定した。その結果を図2に示すが、同図からターゲッ
トの組成ずれ(特に融点の低い元素のずれ)を防止する
ためには、0.06Torr以上、好ましくは0.1T
orr以上の酸素分圧下で成膜する必要のあることが明
らかである。
Under the above film forming conditions, the oxygen partial pressure was changed (0.1 Torr, 0.01 Torr, 0.001 Tor).
The amount of Pb in the book film was measured for the thin film produced by rr). The results are shown in FIG. 2. From the figure, in order to prevent compositional deviation of the target (especially deviation of elements having a low melting point), 0.06 Torr or more, preferably 0.1 T
It is clear that it is necessary to form a film under an oxygen partial pressure of or or higher.

【0017】また上記において作製したPbTiO
膜のX線回折パターンを図3(a)(b)に示す。同図
(a)は酸素分圧0.1Torrの場合のもの、また同
図的は酸素分圧0.001Torrの場合のものである
が、同図(b)においては、C軸配向を示す指数(00
1)(002)のX線強度がいずれも低く、同図(b)
のように低い酸素分圧下で成膜した場合には、組成ずれ
のために充分結晶化した薄膜を形成し得ないことが明ら
かとなった。
The X-ray diffraction patterns of the PbTiO 3 thin film produced above are shown in FIGS. 3 (a) and 3 (b). The figure (a) shows the case where the oxygen partial pressure is 0.1 Torr, and the figure shows the case where the oxygen partial pressure is 0.001 Torr. However, in the figure (b), the index indicating the C-axis orientation is shown. (00
1) The X-ray intensities of (002) are all low, and FIG.
It was revealed that when a film was formed under such a low oxygen partial pressure as described above, a sufficiently crystallized thin film could not be formed due to compositional deviation.

【0018】実施例2 従来の成膜方法(マグネトロンスパッタリング法)によ
り作製した無機誘電体薄膜(PbTiO)のX線回折
パターンと、レーザスパッタリング法により作製した簿
膜のX線回折パターンを図4(a)(b)的に示す。レ
ーザスパッタリング法により作製した薄膜は、同図
(b)のように強くC軸配向しており高い電気的特性が
期待される。しかし従来の成膜法で作製した無機誘電体
薄膜は、同図(a)のようにランダム配向であり、この
ままでは高い電気特性は期待できない。このようにレー
ザスパッタリング法では1光子当たりのエネルギが大き
いために、堆積する原子に高いエネルギを与えることが
可能となり、充分なC軸配向をした結晶化膜が得られ
る。なおこの図4(b)でのレーザスパッタリング法で
の成膜条件は、基板温度が600℃、酸素分圧が10
−1Torrであり、それ以外は実施例1と同様であ
る。
Example 2 An X-ray diffraction pattern of an inorganic dielectric thin film (PbTiO 3 ) prepared by a conventional film forming method (magnetron sputtering method) and an X-ray diffraction pattern of a book film formed by a laser sputtering method are shown in FIG. (A) and (b) are shown. The thin film produced by the laser sputtering method is strongly C-axis oriented as shown in FIG. 4B, and high electrical characteristics are expected. However, the inorganic dielectric thin film produced by the conventional film forming method has a random orientation as shown in FIG. 4A, and high electrical characteristics cannot be expected as it is. As described above, since the energy per photon is large in the laser sputtering method, high energy can be given to the deposited atoms, and a crystallized film having a sufficient C-axis orientation can be obtained. The film forming conditions by the laser sputtering method in FIG. 4B are as follows: substrate temperature 600 ° C., oxygen partial pressure 10
−1 Torr, and otherwise the same as Example 1.

【0019】一方従来法では、550℃以下の基板温度
ではアズ・デポ状態で結晶化した膜が得られない
On the other hand, in the conventional method, a crystallized film in an as-deposited state cannot be obtained at a substrate temperature of 550 ° C. or lower.

【0020】実施例3 成膜する物質の格子定数に近い基板を選択する例とし
て、例えばPbTiO(格子定数:3.90Å)を成
膜する際に基板として、MgO(4.20Å)とSrT
iO(3.91Å)を使用した(図5(a)(b)参
照)。格子定数のマッチングの良いSrTiO基板上
においては、MgO基板上より約100℃も低い基板温
度(380℃)まで結晶化の良好なC軸配向したPbT
iO薄膜を作製することが可能であった(図5
(b))。なお成膜条件は以下の通りである。
Example 3 As an example of selecting a substrate having a lattice constant close to that of the substance to be formed, for example, when forming PbTiO 3 (lattice constant: 3.90Å), MgO (4.20Å) and SrT are used as the substrate.
iO 3 (3.91Å) was used (see FIGS. 5 (a) and 5 (b)). On SrTiO 3 substrate with good lattice constant matching, C-axis oriented PbT with good crystallization up to a substrate temperature (380 ° C.) lower by about 100 ° C. than on MgO substrate.
It was possible to prepare an iO 3 thin film (FIG. 5).
(B)). The film forming conditions are as follows.

【0021】レーザ強度 :1〜3J/cm 繰返し周波数 :5〜30Hz 基板温度(Ts):380、450℃ 酸素分圧 :10−1Torr ターゲット :PbTiO Laser intensity: 1-3 J / cm 2 Repetition frequency: 5-30 Hz Substrate temperature (Ts): 380, 450 ° C. Oxygen partial pressure: 10 -1 Torr Target: PbTiO 3

【0022】なお上記各実施例においては、成膜物質と
してPbTiOを用いているが、これ以外のもの、例
えばPb(Zr,Ti)O、(Pb,La)(Zr,
Ti)O、(Pb,La)TiO、LiTaO
BaTiO、LiNbO等を使用することが可能で
ある。
In each of the above embodiments, PbTiO 3 is used as the film forming material, but other materials such as Pb (Zr, Ti) O 3 and (Pb, La) (Zr,
Ti) O 3 , (Pb, La) TiO 3 , LiTaO 3 ,
It is possible to use BaTiO 3 , LiNbO 3 or the like.

【0023】また上記成膜物質の格子定数に近い基板の
他の例としては、Pt、Pd、Ag、In、SnO
PbO、V、Fe、Nb、Ru
、ReO、IrO、TiO、Bi+W
ドープ、SrTiO+Nbドープ等で形成した基板を
挙げることができる。
Further, as another example of the substrate having a lattice constant close to that of the above film forming material, Pt, Pd, Ag, In, SnO 2 ,
PbO, V 2 O 3 , Fe 2 O 3 , Nb 2 O 5 , Ru
O 2 , ReO 3 , IrO 3 , TiO 2 , Bi 2 O 3 + W
A substrate formed by doping, SrTiO 3 + Nb doping, or the like can be given.

【0024】また蒸着用レーザはArFエキシマレーザ
に限らず、KF(249nm)、XeCl(308n
m)、XeF(351nm)等やYAG−THG(35
5nm)等の紫外光レーザが有効であると考えられる。
Further, the vapor deposition laser is not limited to the ArF excimer laser, but K 2 F (249 nm), XeCl (308 n).
m), XeF (351 nm), etc. and YAG-THG (35
It is considered that an ultraviolet laser such as 5 nm) is effective.

【0025】[0025]

【発明の効果】以上のように請求項1の無機誘電体薄膜
の製造方法によれば、成膜された無機誘電体薄膜の組成
ずれを防止し得るので、従来のターゲット組成の補正と
いう操作が不要になるという利点がある。
As described above, according to the method for manufacturing an inorganic dielectric thin film of the first aspect, composition deviation of the formed inorganic dielectric thin film can be prevented, so that the conventional operation of correcting the target composition can be performed. There is an advantage that it becomes unnecessary.

【0026】また請求項2の無機誘電体薄膜の製造方法
によれば、基板温度を従来よりも低温にしながらも、充
分なC軸配向をした結晶化膜が得られることになる。
According to the method for producing an inorganic dielectric thin film of claim 2, a crystallized film having a sufficient C-axis orientation can be obtained while the substrate temperature is lower than that of the conventional one.

【0027】さらに請求項3及び請求項4の無機誘電体
薄膜の製造方法によれば、C軸配向した結晶化膜が得ら
れる基板温度を一段と低下し得ることになる。
Further, according to the method for producing an inorganic dielectric thin film of claims 3 and 4, the substrate temperature at which a C-axis oriented crystallized film is obtained can be further lowered.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の無機誘電体薄膜の製造方法を実施に
使用する成膜装置の一例の説明図である。
FIG. 1 is an explanatory view of an example of a film forming apparatus used for carrying out the method for producing an inorganic dielectric thin film of the present invention.

【図2】酸素分圧と形成膜中のPb量との関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between oxygen partial pressure and the amount of Pb in the formed film.

【図3】異なる酸素分圧下で成膜されたPbTiO
膜のX線回折パターンを比較して示すグラフで、(a)
は酸素分圧が0.1Torr、(b)は酸素分圧が0.
001Torrの場合である。
FIG. 3 is a graph showing a comparison of X-ray diffraction patterns of PbTiO 3 thin films formed under different oxygen partial pressures, (a).
Has an oxygen partial pressure of 0.1 Torr, and (b) has an oxygen partial pressure of 0.
This is the case of 001 Torr.

【図4】従来法によって形成されたPbTiO薄膜と
実施例方法によって成膜されたPbTiO薄膜のX線
回折パターンを比較して示すグラフで、(a)は従来
法、(b)は実施例方法によるものである。
[4] by PbTiO 3 thin film as in Example methods formed by conventional methods in the graph comparing the X-ray diffraction pattern of the PbTiO 3 thin film formed, (a) shows the conventional method, (b) is carried out This is due to the example method.

【図5】基板材質の異なる条件下で成膜されたPbTi
薄膜のX線回折パターンを比較して示すグラフで、
(a)はMgO基板、(b)はSrTiO基板を用い
た場合を示している。
FIG. 5: PbTi formed under different substrate materials
In graph comparing the X-ray diffraction pattern of the O 3 film,
(A) shows the case where a MgO substrate is used, and (b) shows the case where a SrTiO 3 substrate is used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/54 8520−4K 16/40 7325−4K (72)発明者 藤岡 順三 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 南方 俊一 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 川合 知二 大阪府箕面市小野原2494−615 (72)発明者 河合 七雄 大阪府吹田市千里山西五丁目47−20─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C23C 14/54 8520-4K 16/40 7325-4K (72) Inventor Junzo Fujioka Akashi City, Hyogo Prefecture Kawasaki-machi 1-1 Kawasaki Heavy Industries Ltd. Akashi Factory (72) Inventor Shunichi Minamikata 1-1 Kawasaki-cho Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries Ltd. Akashi Factory (72) Inventor Tomoji Kawai Onohara, Minoh City, Osaka Prefecture 2494-615 (72) Inventor Nanao Kawai 47-20 Senriyama Nishi 5-chome Suita City Osaka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高融点金属と低融点金属との複合酸化物
より成る無機誘電体薄膜を基板上に形成するための無機
誘電体薄膜の製造方法において、生成した励起種等を利
用した蒸着法により、0.06Torr以上の酸素雰囲
気下で成膜を行うことを特徴とする無機誘電体薄膜の製
造方法。
1. A method for producing an inorganic dielectric thin film for forming an inorganic dielectric thin film composed of a complex oxide of a high melting point metal and a low melting point metal on a substrate, a vapor deposition method utilizing the generated excited species or the like. The method for producing an inorganic dielectric thin film is characterized in that the film is formed in an oxygen atmosphere of 0.06 Torr or more.
【請求項2】 上記蒸着法が、レーザビームを利用した
蒸着法であることを特徴とする請求項1の無機誘電体薄
膜の製造方法。
2. The method for producing an inorganic dielectric thin film according to claim 1, wherein the vapor deposition method is a vapor deposition method using a laser beam.
【請求項3】 上記成膜物質と基板物質との格子定数の
相異を3%以内にすることを特徴とする請求項1又は請
求項2の無機誘電体薄膜の製造方法。
3. The method for producing an inorganic dielectric thin film according to claim 1, wherein the difference in lattice constant between the film forming material and the substrate material is within 3%.
【請求項4】 上記基板と無機誘電体薄膜との間に、格
子定数が両物質の格子定数の間にあり、かつ立方晶構造
を有する導電性又は誘電性の中間層を介設することを特
徴とする請求項1又は請求項2の無機誘電体薄膜の製造
方法。
4. An electrically conductive or dielectric intermediate layer having a cubic crystal structure and having a lattice constant between the lattice constants of both substances is interposed between the substrate and the inorganic dielectric thin film. 3. The method for producing an inorganic dielectric thin film according to claim 1 or 2.
【請求項5】 蒸着法が、マグネトロンスパッタリング
法、高周波スパッタリング法、化学気相蒸着法、分子線
エピタキシー法、電子ビーム法のいずれかであることを
特徴とする請求項1、請求項3又は請求項4の無機誘電
体薄膜の製造方法。
5. The vapor deposition method is any one of a magnetron sputtering method, a high frequency sputtering method, a chemical vapor deposition method, a molecular beam epitaxy method, and an electron beam method. Item 4. A method for producing an inorganic dielectric thin film according to item 4.
JP24529291A 1990-08-24 1991-06-18 Production of inorganic dielectric thin film Pending JPH0570103A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24529291A JPH0570103A (en) 1990-08-24 1991-06-18 Production of inorganic dielectric thin film
GB9118246A GB2250751B (en) 1990-08-24 1991-08-23 Process for the production of dielectric thin films
US08/051,817 US5395663A (en) 1990-08-24 1993-04-26 Process for producing a perovskite film by irradiating a target of the perovskite with a laser beam and simultaneously irradiating the substrate upon which the perovskite is deposited with a laser beam
GB9407946A GB2276393B (en) 1990-08-24 1994-04-21 Pyroelectric type of sensor
US08/353,293 US5532504A (en) 1990-08-24 1994-12-05 Process for the production of dielectric thin films

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-222884 1990-08-24
JP22288490 1990-08-24
JP24529291A JPH0570103A (en) 1990-08-24 1991-06-18 Production of inorganic dielectric thin film

Publications (1)

Publication Number Publication Date
JPH0570103A true JPH0570103A (en) 1993-03-23

Family

ID=26525143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24529291A Pending JPH0570103A (en) 1990-08-24 1991-06-18 Production of inorganic dielectric thin film

Country Status (1)

Country Link
JP (1) JPH0570103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571495A (en) * 1994-08-11 1996-11-05 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Dielectric thin film of substituted lead titanate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252506A (en) * 1988-02-18 1989-10-09 Kernforschungsanlage Juelich Gmbh Production of thin layer of oxide high temperature superconductor
JPH0217685A (en) * 1988-05-11 1990-01-22 Siemens Ag Manufacture of metal oxide superconducting material layer using laser vaporization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252506A (en) * 1988-02-18 1989-10-09 Kernforschungsanlage Juelich Gmbh Production of thin layer of oxide high temperature superconductor
JPH0217685A (en) * 1988-05-11 1990-01-22 Siemens Ag Manufacture of metal oxide superconducting material layer using laser vaporization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571495A (en) * 1994-08-11 1996-11-05 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Dielectric thin film of substituted lead titanate

Similar Documents

Publication Publication Date Title
US5395663A (en) Process for producing a perovskite film by irradiating a target of the perovskite with a laser beam and simultaneously irradiating the substrate upon which the perovskite is deposited with a laser beam
US6613585B2 (en) Ferroelectric thin film device and method of producing the same
US5674366A (en) Method and apparatus for fabrication of dielectric thin film
JP2974006B2 (en) Method of forming preferentially oriented platinum thin film using oxygen and device manufactured by the method
EP0795898A2 (en) Ferroelectric element and method of producing the same
JPH0855967A (en) Manufacture of ferroelectric thin film capacitor
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JPH06290983A (en) Thin dielectric film and manufacture thereof
JP2651784B2 (en) Ferroelectric thin film having superlattice structure and infrared sensor / pressure sensor provided with the thin film
JPH0570103A (en) Production of inorganic dielectric thin film
JP2834355B2 (en) Method of manufacturing ferroelectric thin film construct
JP3224293B2 (en) Manufacturing method of dielectric thin film
CN1453832A (en) Gas phase growth method of oxidative dielectric thin film
JPH05251351A (en) Formation method of ferroelectric thin film
JPH04133369A (en) Dielectric thin-film, thin-film device and manufacture thereof
JPH07172996A (en) Production of thin film of dielectric material and production device therefor
JPH0665715A (en) Formation of ground surface electrode for forming dielectric thin film
JPH06350046A (en) Method and apparatus for manufacturing dielectric thin film
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
JPH05230632A (en) Production of inorganic dielectric thin film
JP2762019B2 (en) Manufacturing method of ferroelectric thin film
US6921671B1 (en) Buffer layers to enhance the C-axis growth of Bi4Ti3O12 thin film on high temperature iridium-composite electrode
KR100219834B1 (en) Manufacturing method of ferroelectric thin film having a preferred orientation
JPH07331432A (en) Production of dielectric thin film and apparatus for production therefor
JPH06168878A (en) Method and system for depositing dielectric thin film