JPH06168878A - Method and system for depositing dielectric thin film - Google Patents

Method and system for depositing dielectric thin film

Info

Publication number
JPH06168878A
JPH06168878A JP32157392A JP32157392A JPH06168878A JP H06168878 A JPH06168878 A JP H06168878A JP 32157392 A JP32157392 A JP 32157392A JP 32157392 A JP32157392 A JP 32157392A JP H06168878 A JPH06168878 A JP H06168878A
Authority
JP
Japan
Prior art keywords
thin film
substrate
deposition
depositing
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32157392A
Other languages
Japanese (ja)
Other versions
JP3124849B2 (en
Inventor
Shigenori Hayashi
重徳 林
Kazuki Komaki
一樹 小牧
Takeshi Kamata
健 鎌田
Masatoshi Kitagawa
雅俊 北川
Takashi Deguchi
隆 出口
Ryoichi Takayama
良一 高山
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP04321573A priority Critical patent/JP3124849B2/en
Priority to DE69331538T priority patent/DE69331538T2/en
Priority to EP93118535A priority patent/EP0600303B1/en
Publication of JPH06168878A publication Critical patent/JPH06168878A/en
Priority to US08/483,873 priority patent/US5674366A/en
Priority to US08/483,835 priority patent/US5672252A/en
Application granted granted Critical
Publication of JP3124849B2 publication Critical patent/JP3124849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To deposite s dielectric thin film stably and uniformly with high reproducibity by alternately repeating a step for depositing a thin film on a substrate and a step not depositing the thin film on the substrate while sustaining the temperature of substrate at a level allowing formation of perovskite-type thin crystal film with respect to a perovskite-type thin composite compound film composed of ABO3. CONSTITUTION:Targets 2, 3, 4 are sintered to deposite a ferroelectric oxide (Pb0.9La0.1TiO3+0.2PbO) by 2-3mum thick on a substrate, i.e., (100) face of magnsium oxide MgO. Temperature of the substrate is appropriately set in the range of 55 to 650 deg.C. Ratio of Ar to O2 is preferably set in the range of Ar/O2=20-5 and the pressure is set in the range of 0.1 to 0.5Pa. The targets 2, 3 are then sputtered while rotating a substrate holder 6 thus repeating deposition-non-deposition (stabilization)-deposition-non-deposition(stabilization)...periodically.a

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜の製造方法と装置
に関するものである。特に、誘電体薄膜の製造に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film manufacturing method and apparatus. In particular, it relates to the production of dielectric thin films.

【0002】[0002]

【従来の技術】薄膜化技術は、エレクトロニクス分野、
特に、半導体製造プロセスを中心に発展し、新材料の開
発と共に進歩してきた。これらの薄膜は、単体元素の場
合はごくまれで、一般に合金あるいは化合物である場合
が多く、形成方法により著しく特性が変化する。これら
新材料の創成およびそのデバイス化は、人工格子材料な
どに代表されるように、薄膜化技術の向上によるところ
が多い。
2. Description of the Related Art Thin film technology is used in the electronics field,
In particular, it has been developed mainly in the semiconductor manufacturing process and has progressed along with the development of new materials. These thin films are extremely rare in the case of a simple element, and in many cases, they are generally alloys or compounds, and their characteristics remarkably change depending on the forming method. The creation of these new materials and their deviceization are mostly due to the improvement of thin film technology, as represented by artificial lattice materials.

【0003】近年注目されている薄膜材料に、ABO3
で構成されるペロブスカイト型構造を有する誘電体材料
がある。ここで、Aサイトは、Pb、Ba、Srまたは
Laの少なくとも1種、Bサイトは、TiおよびZrの
うち少なくとも1種の元素を含む。(Pb1-x Lax
(Zry Ti1-y 1-x/4 3 系、BaTiO3 系に代
表される強誘電体は、優れた強誘電性、圧電性、焦電
性、電気光学特性等を示し、これを利用した種々の機能
デバイスが検討されている。特に、半導体ICの分野に
おいては、新しいデバイス”不揮発性メモリー”への応
用が期待されている。また、SrTiO3 系は強誘電性
こそ示さないものの、高誘電率材料として超高密度DR
AMのキャパシタ絶縁膜への応用が期待されている。
ABO 3 is a thin-film material that has been receiving attention in recent years.
There is a dielectric material having a perovskite structure composed of Here, the A site contains at least one element of Pb, Ba, Sr, or La, and the B site contains at least one element of Ti and Zr. (Pb 1-x La x )
Ferroelectric materials typified by (Zr y Ti 1-y ) 1-x / 4 O 3 series and BaTiO 3 series exhibit excellent ferroelectricity, piezoelectricity, pyroelectricity, electro-optical characteristics, etc. Various functional devices utilizing the are being studied. In particular, in the field of semiconductor IC, application to a new device "nonvolatile memory" is expected. In addition, although SrTiO 3 system does not show ferroelectricity, it is an ultra high density DR as a high dielectric constant material.
The application of AM to capacitor insulating films is expected.

【0004】これらの材料の特性の向上あるいは集積化
のためには、その薄膜化が非常に重要である。その高性
能化を考えた場合、単結晶薄膜あるいは配向膜であるこ
とが望ましく、ヘテロエピタキシャル成長技術の開発が
重要である。これらに関する研究は、様々な薄膜堆積法
に基づいて、多くの研究機関で行われ、特定の系につい
ては、すでに実験室段階では達成されたといってよいも
のもあるが、実用化・量産化段階において、組成・結晶
構造等を制御して所望の特性を有する薄膜を再現性良く
得ることは、一般には容易ではなかった。
To improve the characteristics of these materials or to integrate them, it is very important to make them thin. From the viewpoint of high performance, it is desirable that it is a single crystal thin film or an oriented film, and development of a heteroepitaxial growth technique is important. Research on these has been carried out by many research institutes based on various thin film deposition methods, and although it can be said that some specific systems have already been achieved in the laboratory stage, practical and mass production stage In general, it was not easy to obtain a thin film having desired characteristics with good reproducibility by controlling the composition, crystal structure and the like.

【0005】[0005]

【発明が解決しようとする課題】薄膜の結晶性は、基本
的に基板材料・化学組成・形成温度で制御される。一般
に、基板との格子不整合を少なくし、活性度の高い堆積
方法を用いて、化学組成を合致させれば、結晶化温度で
結晶性の薄膜が得られる。
The crystallinity of a thin film is basically controlled by the substrate material, the chemical composition and the forming temperature. In general, a crystalline thin film can be obtained at the crystallization temperature if the lattice mismatch with the substrate is reduced and the chemical composition is matched by using a highly active deposition method.

【0006】酸化物誘電体の薄膜化において従来最も一
般的に用いられていたスパッタリング法では、結晶性の
薄膜を得るには600 ℃前後の高い基板温度と酸化性雰囲
気が必要である。しかしながら、構成元素の蒸気圧やス
パッタ率の違いによって、ターゲット材料である酸化物
焼結体と形成された薄膜とのあいだに化学組成のずれが
生じ易く、さらに、微妙なスパッタリング条件の違いに
よって、組成・結晶性・モフォロジー等が著しく影響を
受ける。これらは、均一性・再現性が要求される量産段
階において、大きな障害であった。
In the sputtering method which has been most commonly used in the past for thinning the oxide dielectric, a high substrate temperature of about 600 ° C. and an oxidizing atmosphere are required to obtain a crystalline thin film. However, due to the difference in vapor pressure and sputtering rate of the constituent elements, a difference in chemical composition easily occurs between the oxide sintered body that is the target material and the formed thin film, and further due to a slight difference in sputtering conditions, The composition, crystallinity, morphology, etc. are significantly affected. These are major obstacles in the mass production stage where uniformity and reproducibility are required.

【0007】本発明は、前記従来の問題を解決するた
め、ペロブスカイト型酸化物誘電体を安定性・均一性・
再現性良く実現する方法と装置を提供することを目的と
する。
In order to solve the above-mentioned conventional problems, the present invention provides a perovskite type oxide dielectric with stability, uniformity and
It is an object of the present invention to provide a method and a device that can be realized with good reproducibility.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の誘電体薄膜の製造方法は、ABO3 で構成
されるペロブスカイト型複合化合物薄膜に対し、基板温
度をペロブスカイト型の結晶性薄膜が得られる温度に保
ったまま、基板上に薄膜を堆積させる堆積工程と堆積さ
せない非堆積工程とを交互に繰り返すことからなるとい
う構成を備えたものである。ここで、Aサイトは、P
b、Ba、SrまたはLaの少なくとも1種、Bサイト
は、TiおよびZrのうち少なくとも1種の元素を含
む。
In order to achieve the above object, a method of manufacturing a dielectric thin film according to the present invention is directed to a perovskite type complex compound thin film composed of ABO 3 at a substrate temperature of a perovskite type crystalline thin film. While maintaining the temperature at which is obtained, a deposition process of depositing a thin film on the substrate and a non-deposition process of not depositing the thin film are alternately repeated. Here, A site is P
At least one element selected from b, Ba, Sr, and La and the B site contains at least one element selected from Ti and Zr.

【0009】前記構成においては、薄膜の堆積方法とし
てスパッタ法を用い、基板を周期的にターゲット上を通
過させ、ターゲット上の堆積工程と非堆積工程とを周期
的に繰り返すことが好ましい。
In the above structure, it is preferable that a sputtering method is used as a method for depositing the thin film, the substrate is periodically passed over the target, and the deposition step and the non-deposition step on the target are periodically repeated.

【0010】次に本発明の誘電体薄膜の製造装置は、A
BO3 で構成されるペロブスカイト型複合化合物薄膜に
対し、基板温度をペロブスカイト型の結晶性薄膜が得ら
れる温度に保つ手段と、基板上に薄膜を堆積させる堆積
手段と堆積させない非堆積手段とを交互に繰り返す機構
を含むという構成を備えたものである。ここで、Aサイ
トは、Pb、Ba、SrまたはLaの少なくとも1種、
Bサイトは、TiおよびZrのうち少なくとも1種の元
素を含む。
Next, an apparatus for producing a dielectric thin film of the present invention is
For a perovskite-type composite compound thin film composed of BO 3 , a means for maintaining the substrate temperature at a temperature at which a perovskite-type crystalline thin film is obtained, and a depositing means for depositing a thin film on the substrate and a non-depositing means for not depositing the thin film are alternated. It is equipped with a structure that includes a mechanism for repeating. Here, the A site is at least one of Pb, Ba, Sr, or La,
The B site contains at least one element of Ti and Zr.

【0011】前記構成においては、薄膜の堆積手段がス
パッタ法であり、基板を周期的にターゲット上を通過さ
せる手段と、ターゲット上の堆積工程と非堆積工程とを
周期的に繰り返す手段を備えたことが好ましい。
In the above structure, the thin film deposition means is a sputtering method, and means for periodically passing the substrate over the target and means for periodically repeating the deposition process and the non-deposition process on the target are provided. It is preferable.

【0012】[0012]

【作用】前記本発明の構成によれば、ABO3 で構成さ
れるペロブスカイト型複合化合物薄膜に対し、基板温度
をペロブスカイト型の結晶性薄膜が得られる温度に保っ
たまま、基板上に薄膜を堆積させる堆積工程と堆積させ
ない非堆積工程とを交互に繰り返すことにより、安定性
・均一性・再現性良く製造することができる。
According to the structure of the present invention, a thin film is deposited on a substrate for a perovskite-type composite compound thin film composed of ABO 3 while keeping the substrate temperature at a temperature at which a perovskite-type crystalline thin film is obtained. By alternately repeating the deposition process that allows and the non-deposition process that does not allow deposition, it is possible to manufacture with good stability, uniformity, and reproducibility.

【0013】堆積速度の向上は、量産段階ではスループ
ットを上げる上で好ましいが、非熱平衡状態において高
速で形成された薄膜は、結晶粒の大きさが小さいなど、
モフォロジーが悪くなる、安定性を欠くなどの問題が生
じやすい。本発明にかかる薄膜の製造方法においては、
高い堆積速度の条件下で、基板温度を形成温度付近に保
ったまま堆積しない工程を間欠的に導入すことにより、
堆積した薄膜を逐次安定化させ、誘電体薄膜の高品質化
を図ろうとするものである。特にその方法として、複数
の基板を用意し蒸着源上を周期的に通過させ、堆積−安
定化−堆積−安定化・・・・と周期的に繰り返す工程を実現
すれば、スループットの点でも優れたものとなる。本発
明者らは、このような薄膜形成装置を開発し、これを用
いて、従来、形成温度が高く組成制御・結晶性制御が困
難で、量産化技術の開発が全くなされていなかったペロ
ブスカイト型酸化物誘電体を安定性・均一性・再現性良
く実現できる。
The improvement of the deposition rate is preferable for increasing the throughput in the mass production stage, but the thin film formed at a high speed in the non-thermal equilibrium state has a small crystal grain size.
Problems such as poor morphology and lack of stability are likely to occur. In the method for producing a thin film according to the present invention,
By intermittently introducing the process of not depositing while keeping the substrate temperature near the formation temperature under the condition of high deposition rate,
The aim is to improve the quality of the dielectric thin film by sequentially stabilizing the deposited thin films. In particular, as a method, if a plurality of substrates are prepared, they are periodically passed over an evaporation source, and a process of repeating deposition-stabilization-deposition-stabilization ... It becomes a thing. The present inventors have developed such a thin film forming apparatus, and using the thin film forming apparatus, the perovskite type, which has been difficult to control composition and crystallinity at a high forming temperature, has not been developed for mass production. Realizes oxide dielectrics with high stability, uniformity, and reproducibility.

【0014】本発明にかかる薄膜製造方法および装置に
おいては、複数の基板を用意し蒸着源上を周期的に通過
させ、堆積−安定化−堆積−安定化・・・・と周期的に繰り
返すことにより、堆積した薄膜を逐次安定化させ、スル
ープットの点でも優れた工程を実現している点に大きな
特色がある。
In the thin film manufacturing method and apparatus according to the present invention, a plurality of substrates are prepared, periodically passed over the vapor deposition source, and periodically repeated deposition-stabilization-deposition-stabilization .... Therefore, the deposited thin film is sequentially stabilized, and the excellent process is realized in terms of throughput.

【0015】[0015]

【実施例】以下本発明の一実施例を図面と共に説明す
る。図1に本発明にかかる薄膜形成装置の一実施例を示
す。本形成装置は、ペロブスカイト型酸化物誘電体薄膜
を作製する際最も一般的に用いられるマグネトロンスパ
ッタ法を用いている。スパッタチャンバー1内には、焼
結した酸化物強誘電体材料をスパッタターゲット2、
3、4として同一円周上の対象な位置に設置してあり、
最大3元の同時スパッタ蒸着が可能である。基板5は、
基板ホルダ−6の回転によって、ターゲット2、3、4
の直上を通過するように、基板ホルダ−6の上に放射状
に配置されている。基板加熱の機構としては、光源7に
よるランプ加熱方式を用いている。本構成により、Ar
とO2 の混合ガス雰囲気で各ターゲットをスパッタリン
グしながら、基板ホルダ−を回転させれば、基板温度が
一定の状態で、基板とターゲットとの位置関係によって
薄膜の堆積速度が周期的に変化することになる。その周
期は、基板ホルダ−6の回転速度および使用ターゲット
数によって変えることができ、薄膜の堆積速度の最大値
は、スパッタリング電力等のスパッタリング条件の調整
によって最適な値にすることができる。また、スリット
板8には、組成の均一性等薄膜の基本的特性が確保でき
る適切な形状の穴が開いており、基板ホルダ−6は、プ
ラズマからの電子およびイオンの衝撃を抑制するために
電位的には浮かせてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a thin film forming apparatus according to the present invention. This forming apparatus uses a magnetron sputtering method which is most commonly used for producing a perovskite type oxide dielectric thin film. In the sputtering chamber 1, a sintered oxide ferroelectric material is used as the sputtering target 2,
3 and 4 are installed at the target positions on the same circumference,
Simultaneous sputter deposition of up to 3 elements is possible. The substrate 5 is
By rotating the substrate holder-6, the targets 2, 3, 4
Are radially arranged on the substrate holder 6 so as to pass directly above. A lamp heating method using the light source 7 is used as a substrate heating mechanism. With this configuration, Ar
If the substrate holder is rotated while sputtering each target in a mixed gas atmosphere of H 2 and O 2 , the deposition rate of the thin film periodically changes depending on the positional relationship between the substrate and the target while the substrate temperature is constant. It will be. The cycle can be changed depending on the rotation speed of the substrate holder 6 and the number of targets used, and the maximum value of the deposition rate of the thin film can be optimized by adjusting the sputtering conditions such as sputtering power. Further, the slit plate 8 is provided with a hole having an appropriate shape capable of ensuring the basic characteristics of the thin film such as the uniformity of the composition, and the substrate holder 6 is provided for suppressing the impact of electrons and ions from plasma. The potential is floating.

【0016】次に、本発明の具体的一実施例として、P
0.9 La0.1 Ti0.975 3 膜を形成する場合につい
て説明する。ターゲット2、3、4に、焼結した酸化物
強誘電体[Pb0.9 La0.1 TiO3 +0.2PbO]
(直径6インチ)を、基板5としては、酸化マグネシウ
ムMgOの(100) 面を用い、2 〜3 μm の膜厚の薄膜を
形成した。
Next, as a specific embodiment of the present invention, P
A case of forming a b 0.9 La 0.1 Ti 0.975 O 3 film will be described. Sintered oxide ferroelectrics [Pb 0.9 La 0.1 TiO 3 +0.2 PbO] on the targets 2, 3 and 4.
(6 inches in diameter) was used as the substrate 5, and a (100) plane of magnesium oxide MgO was used to form a thin film having a thickness of 2 to 3 μm.

【0017】本発明者らは、結晶性の高いペロブスカイ
ト構造の薄膜を形成させるためには、基板の温度範囲と
して550 〜650 ℃が適当であることを確認した。また、
ArとO2 の混合比としては、Ar/O2 =20〜5 、圧
力としては、0.1 〜0.5Pa が適当であった。また、堆積
速度は、ターゲット−基板間距離80〜90mmにおいて、タ
ーゲット1個当り、200 〜400 Wの入力パワーで0.5 〜
2.5 オングストローム/sが得られた。薄膜の結晶性・モ
フォロジー等は、これらスパッタリング条件と共に変化
し、誘電率、焦電係数等の電気特性が変化する。これら
の様相は、材料組成によって異なり、個別に最適化する
必要がある。
The inventors of the present invention have confirmed that a substrate temperature range of 550 to 650 ° C. is suitable for forming a thin film having a perovskite structure with high crystallinity. Also,
Ar / O 2 = 20 to 5 was suitable as the mixing ratio of Ar and O 2 , and 0.1 to 0.5 Pa was suitable as the pressure. In addition, the deposition rate is 0.5 to 0.5 at an input power of 200 to 400 W per target at a target-substrate distance of 80 to 90 mm.
2.5 angstrom / s was obtained. The crystallinity, morphology, etc. of the thin film change with these sputtering conditions, and the electric properties such as the dielectric constant and the pyroelectric coefficient change. These aspects depend on the material composition and need to be individually optimized.

【0018】上記スパッタリング条件を設定することに
より各ターゲット直上での薄膜の堆積速度は決まるが、
薄膜の堆積速度の時間変化および平均形成速度は、使用
ターゲット数と基板ホルダ−の回転速度により異なる。
Although the deposition rate of the thin film immediately above each target is determined by setting the above sputtering conditions,
The time change of the deposition rate of the thin film and the average formation rate depend on the number of targets used and the rotation speed of the substrate holder.

【0019】まず、基板ホルダーを回転させずにターゲ
ット直上に設置した基板に対し、堆積速度と形成される
薄膜の特性を調べた。この場合、勿論、平均形成速度=
堆積速度である。堆積速度は、主にターゲットへの入力
パワーによって制御し、ターゲットを損傷しない安定し
た状態で、最大2.5 オングストローム/sまで変化させる
ことができた。
First, the deposition rate and the characteristics of the thin film to be formed on the substrate placed directly on the target without rotating the substrate holder were examined. In this case, of course, the average forming speed =
It is the deposition rate. The deposition rate was controlled mainly by the input power to the target, and could be changed up to 2.5 angstrom / s in a stable state without damaging the target.

【0020】プラズマ発光分光法で分析した結果、形成
された薄膜の金属元素組成比は、化学量論比Pb:La:Ti
=0.9 :0.1 :0.975 に対し、Pbが10%程度変化する程
度でほぼ一致することが確認された。また、薄膜の結晶
性は、X線回折法で分析した結果、図2に示す様に、ペ
ロブスカイト構造を有し、回折ピーク(001) 、(100)、
(002) および(200) より見積られる格子定数はa=3.94
オングストローム、b=4.09オングストロームと文献値
とよく一致していることが確認できた。また、回折ピー
ク(001) および(002) が際だって強く、分極軸であるc
軸方向に強く配向していることがわかる。電気的特性
は、結晶性に優れc軸配向性の高いものほど、大きな焦
電係数γと適度に小さい誘電率εを有し、赤外線センサ
として高い感度(γ/εに比例)が期待でき、また、不
揮発性メモリ媒体としても優れた特性が期待できる。X
線回折デ−タから読み取れる結晶性に関する指標とし
て、回折ピーク(001) の半値幅FWHMとc軸配向率α=I
(001)/[I(001) +I(100)] 、(I(001)およびI(100)は
ピーク(001) および(100) の回折強度)がある。堆積速
度0.5 〜2.5 オングストローム/sの範囲で作製した薄膜
について評価した結果、FWHM=0.2 ゜、α=96〜100 %
が得られ、これらのデ−タから見る限りは、堆積速度に
かかわらず優れた結晶性の薄膜ができていると考えられ
る。
As a result of analysis by plasma emission spectroscopy, the metal element composition ratio of the formed thin film was found to be the stoichiometric ratio Pb: La: Ti.
= 0.9: 0.1: 0.975, it was confirmed that there was almost a match when Pb changed by about 10%. The crystallinity of the thin film was analyzed by X-ray diffraction, and as a result, as shown in FIG. 2, it had a perovskite structure and diffraction peaks (001), (100),
The lattice constant estimated from (002) and (200) is a = 3.94.
It was confirmed that the values agree with the literature values, which is angstrom and b = 4.09 angstrom. Also, the diffraction peaks (001) and (002) are remarkably strong, and the polarization axis c
It can be seen that it is strongly oriented in the axial direction. As for the electrical characteristics, the higher the crystallinity and the higher the c-axis orientation, the larger the pyroelectric coefficient γ and the reasonably small dielectric constant ε, and the higher the sensitivity (proportional to γ / ε) as an infrared sensor, Also, excellent characteristics can be expected as a nonvolatile memory medium. X
The FWHM of the diffraction peak (001) and the c-axis orientation rate α = I were used as indices for crystallinity that can be read from the line diffraction data.
(001) / [I (001) + I (100)], (I (001) and I (100) are the diffraction intensities of peaks (001) and (100)). As a result of evaluating a thin film prepared at a deposition rate of 0.5 to 2.5 angstrom / s, FWHM = 0.2 °, α = 96 to 100%
From these data, it is considered that a thin film having excellent crystallinity is formed regardless of the deposition rate.

【0021】次に、MgO 基板をエッチングして薄膜を遊
離させ、その表裏に電極をつけて膜厚方向の電気的性
質、おもに焦電特性を評価した。誘電率εおよび焦電係
数γを評価した結果、ε〜170 、γ〜5 ×10-8C/cm2
K 程度の高いセンサ感度が期待できる堆積速度には上限
があり、1.8 オングストローム/s以下の場合に限られ
た。1.8 オングストローム/s以上の堆積速度で形成した
薄膜については、例えば、2.5 オングストローム/sでε
〜400 、γ〜4 ×10-8C/cm2 ・K のようにセンサ感度が
低くなる傾向が見られた。これらは、結晶粒の成長状態
などのモフォロジーあるいは安定性に起因する問題と考
えられる。このような堆積速度の上限値は、化合物薄膜
の組成および成膜条件によって異なるが、1.0 〜2.0 オ
ングストローム/sの範囲にあることを本発明者らは確認
した。
Next, the MgO substrate was etched to release a thin film, and electrodes were attached to the front and back of the film to evaluate the electrical properties in the film thickness direction, mainly the pyroelectric property. As a result of evaluating the dielectric constant ε and the pyroelectric coefficient γ, ε to 170, γ to 5 × 10 −8 C / cm 2 ·
There is an upper limit to the deposition rate at which a sensor sensitivity as high as K can be expected, and it was limited to cases below 1.8 Å / s. For thin films formed at a deposition rate of 1.8 Å / s or higher, for example, ε at 2.5 Å / s
There was a tendency for the sensor sensitivity to decrease, such as ~ 400 and γ ~ 4 x 10 -8 C / cm 2 · K. It is considered that these are problems caused by morphology or stability such as the growth state of crystal grains. The present inventors have confirmed that such an upper limit of the deposition rate is in the range of 1.0 to 2.0 angstrom / s, although it depends on the composition of the compound thin film and the film forming conditions.

【0022】本発明者らは、堆積速度が大きい状態でも
結晶粒の十分な成長と安定化を確保するために、非堆
積、すなわち薄膜を堆積しない、安定化工程を間欠的・
周期的に導入することを検討した。図1において、ター
ゲット2、3のみスパッタリングし、基板ホルダ−6を
回転させると、図3に示すように、ターゲット上での堆
積工程と堆積速度〜0オングストローム/sの非堆積工程
を周期的に繰り返すことになり、平均形成速度はターゲ
ット上での堆積速度の約1/3 となる。ターゲット上での
堆積速度を、先ほどの基板ホルダ−を回転せず低いセン
サ感度しか得られなかった、2.5 オングストローム/sに
した状態で、基板ホルダ−を4rpmで回転させ、非堆積工
程を周期的に取り入れることの効果を検討した。ただし
この場合、同程度の膜厚を得るために形成時間を3倍と
した。形成された薄膜のX線回折からみた結晶性は、FW
HM=0.2 ゜、α=98%と良好で、焦電特性もε〜170 、
γ〜5 ×10-8C/cm2 ・K 程度と、堆積速度が低い(本実
施例の場合、1.8 オングストローム/s以下)場合と同等
の高いセンサ感度が期待できる結果が得られた。
The inventors of the present invention intermittently carry out a stabilizing process of not depositing, that is, not depositing a thin film, in order to ensure sufficient growth and stabilization of crystal grains even in a state where the deposition rate is high.
We considered introducing it periodically. In FIG. 1, when only the targets 2 and 3 are sputtered and the substrate holder 6 is rotated, as shown in FIG. 3, the deposition process on the target and the non-deposition process at a deposition rate of 0 Å / s are periodically performed. Again, the average formation rate is about 1/3 of the deposition rate on the target. The deposition rate on the target was set to 2.5 angstroms / s, at which low sensor sensitivity was obtained without rotating the substrate holder, and the substrate holder was rotated at 4 rpm to periodically perform the non-deposition process. I examined the effect of incorporating it into. However, in this case, the formation time was tripled in order to obtain the same film thickness. The crystallinity of the formed thin film as seen from X-ray diffraction is FW
HM = 0.2 °, α = 98%, good, and pyroelectric characteristics ε ~ 170,
γ to 5 × 10 -8 C / cm 2 · K or so was obtained, which is expected to have the same high sensor sensitivity as when the deposition rate is low (1.8 angstrom / s or less in this example).

【0023】この結果は、堆積−非堆積(安定化)−堆
積−非堆積(安定化)・・・・と周期的に繰り返すことによ
り、高速で堆積した薄膜に対し、十分な結晶粒の成長と
安定化を確保する工程が逐次与えられたことによるとお
もわれる。また、本発明により形成された薄膜は十分な
安定化が施されており、長期安定性、信頼性の面でも優
れていると考えられる。
This result is obtained by repeating deposition-non-deposition (stabilization) -deposition-non-deposition (stabilization) ... It is believed that this is due to the fact that the steps to ensure stabilization and stabilization were given one after another. Further, the thin film formed by the present invention is sufficiently stabilized, and is considered to be excellent in terms of long-term stability and reliability.

【0024】さらに、この際、複数の基板を用意しター
ゲット上を連続的・周期的に通過させれば、同一のター
ゲット上で堆積を繰り返す場合にくらべて、基板の取り
付け・昇温・降温等に要する時間を削減できるので、ス
ループットの点でも優れている。また、すべての基板に
同時に堆積できるような、大きなターゲットを1つ使用
する構成を用いても、均一性が確保できる基板設置範囲
はむしろ少なく、本発明にかかる方法は、量産性の点に
おいても優れている。
Further, at this time, if a plurality of substrates are prepared and continuously and periodically passed over the target, attachment of the substrate, temperature increase, temperature decrease, etc., as compared with the case where deposition is repeated on the same target. It is also excellent in throughput because it can reduce the time required for. In addition, even if a structure that uses one large target is used so that it can be deposited on all substrates at the same time, the substrate installation range where uniformity can be ensured is rather small, and the method according to the present invention is also advantageous in terms of mass productivity. Are better.

【0025】本発明のように、非堆積工程を間欠的に取
り入れて薄膜の高品質化をはかる試みは実験室レベルで
は検討されていたが、主にシャッターや蒸着源の制御に
よる場合が多く、スループット点で劣り、また、いずれ
も蒸着源の擾乱が懸念される。上記実施例では、堆積速
度0 オングストローム/sの非堆積工程を安定化工程とし
ているが、原理的には、低堆積速度(上記実施例の場
合、1.8 オングストローム/s以下)であれば、高速堆積
時に形成された薄膜を安定させながらその上に堆積して
も問題ない。また、高堆積速度で連続形成される時間が
長すぎるとそれに続く安定化工程の効果が十分発揮され
ない恐れがあり、堆積速度を変化させる周期や高速堆積
時間の割合についてはさらに検討する必要がある。
An attempt to improve the quality of a thin film by intermittently incorporating a non-deposition process as in the present invention has been studied at the laboratory level, but it is mainly controlled by a shutter or a vapor deposition source. It is inferior in throughput, and there is a concern that the evaporation source may be disturbed. In the above example, the non-deposition process with a deposition rate of 0 Å / s is used as the stabilization process, but in principle, if the deposition rate is low (1.8 Å / s or less in the above example), high-speed deposition is possible. There is no problem in depositing a thin film formed on it while stabilizing it. Further, if the time for continuous formation at a high deposition rate is too long, the effect of the stabilization process that follows may not be fully exerted, and the period for changing the deposition rate and the ratio of high-speed deposition time need to be further examined. .

【0026】本発明にかかる薄膜製造装置は、ペロブス
カイト型酸化物誘電体の他、高温超電導体等類似の多元
系の酸化物の薄膜化に有効である。これらの材料の実用
化にあたっては、量産性・安定性・均一性・再現性を確
立する必要がある。その点で、複数の基板を用意し蒸着
源上を周期的に通過させ、高速堆積−安定化−高速堆積
−安定化・・・・と周期的に繰り返すことにより、安定性と
量産性を両立させた優れた工程を実現している本製造装
置はきわめて有効である。
The thin film manufacturing apparatus according to the present invention is effective for thinning perovskite type oxide dielectrics and similar multi-element oxides such as high temperature superconductors. To put these materials into practical use, it is necessary to establish mass productivity, stability, uniformity, and reproducibility. In that respect, both stability and mass productivity can be achieved by preparing multiple substrates, periodically passing them over the evaporation source, and repeating the sequence of high-speed deposition-stabilization-high-speed deposition-stabilization ... The present manufacturing apparatus that realizes the excellent process described above is extremely effective.

【0027】[0027]

【発明の効果】以上説明した通り、本発明によれば、酸
化物誘電体を薄膜化する製造装置およびプロセスが提供
され、工業上極めて大きな価値を有するものである。用
いられる誘電体は、多元系の酸化物でその化学組成や結
晶性のみならずモフォロジーによってもその特性が大き
く影響されるが、本発明により非常に高精度の薄膜が実
現できる。
As described above, according to the present invention, a manufacturing apparatus and process for making an oxide dielectric into a thin film are provided, which is of great industrial value. The dielectric used is a multi-element oxide, and its characteristics are greatly affected not only by its chemical composition and crystallinity but also by its morphology, but the present invention can realize a highly precise thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜製造装置の基本構成断
面図である。
FIG. 1 is a cross-sectional view of a basic configuration of a thin film manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例の誘電体薄膜の結晶性をあら
わすX線回折パターンを示す図である。
FIG. 2 is a diagram showing an X-ray diffraction pattern showing crystallinity of a dielectric thin film of one example of the present invention.

【図3】本発明の一実施例の誘電体薄膜の堆積工程を示
す図である。
FIG. 3 is a diagram showing a process of depositing a dielectric thin film according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 スパッタチャンバー 2 ターゲット 3 ターゲット 4 ターゲット 5 基板 6 基板ホルダー 7 光源 8 スリット板 1 Sputter Chamber 2 Target 3 Target 4 Target 5 Substrate 6 Substrate Holder 7 Light Source 8 Slit Plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 雅俊 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 出口 隆 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 高山 良一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masatoshi Kitagawa 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Takashi, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co. 72) Inventor Ryoichi Takayama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Takashi Hirao 1006 Kadoma, Kadoma City Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ABO3 で構成されるペロブスカイト型
複合化合物薄膜に対し、基板温度をペロブスカイト型の
結晶性薄膜が得られる温度に保ったまま、基板上に薄膜
を堆積させる堆積工程と堆積させない非堆積工程とを交
互に繰り返すことからなる誘電体薄膜の製造方法。ここ
で、Aサイトは、Pb、Ba、SrまたはLaの少なく
とも1種、Bサイトは、TiおよびZrのうち少なくと
も1種の元素を含む。
1. A deposition step of depositing a thin film on a substrate and a deposition step of depositing the thin film on a perovskite-type composite compound thin film composed of ABO 3 while keeping the substrate temperature at a temperature at which a perovskite-type crystalline thin film is obtained. A method of manufacturing a dielectric thin film, which comprises alternately repeating a deposition process. Here, the A site contains at least one element of Pb, Ba, Sr, or La, and the B site contains at least one element of Ti and Zr.
【請求項2】 薄膜の堆積方法としてスパッタ法を用
い、基板を周期的にターゲット上を通過させ、ターゲッ
ト上の堆積工程と非堆積工程とを周期的に繰り返すこと
からなる請求項1記載の誘電体薄膜の製造方法。
2. The dielectric according to claim 1, wherein a sputtering method is used as a method for depositing the thin film, the substrate is periodically passed over the target, and a deposition process on the target and a non-deposition process are periodically repeated. Body thin film manufacturing method.
【請求項3】 ABO3 で構成されるペロブスカイト型
複合化合物薄膜に対し、基板温度をペロブスカイト型の
結晶性薄膜が得られる温度に保つ手段と、基板上に薄膜
を堆積させる堆積手段と堆積させない非堆積手段とを交
互に繰り返す機構を含む誘電体薄膜の製造装置。ここ
で、Aサイトは、Pb、Ba、SrまたはLaの少なく
とも1種、Bサイトは、TiおよびZrのうち少なくと
も1種の元素を含む。
3. For a perovskite-type composite compound thin film composed of ABO 3 , a means for maintaining the substrate temperature at a temperature at which a perovskite-type crystalline thin film is obtained, a deposition means for depositing the thin film on the substrate, and a non-depositing means. An apparatus for manufacturing a dielectric thin film, which includes a mechanism for alternately repeating deposition means. Here, the A site contains at least one element of Pb, Ba, Sr, or La, and the B site contains at least one element of Ti and Zr.
【請求項4】 薄膜の堆積手段がスパッタ法であり、基
板を周期的にターゲット上を通過させる手段と、ターゲ
ット上の堆積工程と非堆積工程とを周期的に繰り返す手
段を備えた請求項3記載の誘電体薄膜の製造装置。
4. The thin film depositing means is a sputtering method, and is provided with means for periodically passing the substrate over the target, and means for periodically repeating a depositing step and a non-depositing step on the target. An apparatus for producing a dielectric thin film as described above.
JP04321573A 1992-12-01 1992-12-01 Method and apparatus for manufacturing dielectric thin film Expired - Lifetime JP3124849B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04321573A JP3124849B2 (en) 1992-12-01 1992-12-01 Method and apparatus for manufacturing dielectric thin film
DE69331538T DE69331538T2 (en) 1992-12-01 1993-11-18 Process for producing an electrical thin film
EP93118535A EP0600303B1 (en) 1992-12-01 1993-11-18 Method for fabrication of dielectric thin film
US08/483,873 US5674366A (en) 1992-12-01 1995-06-07 Method and apparatus for fabrication of dielectric thin film
US08/483,835 US5672252A (en) 1992-12-01 1995-06-15 Method and apparatus for fabrication of dielectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04321573A JP3124849B2 (en) 1992-12-01 1992-12-01 Method and apparatus for manufacturing dielectric thin film

Publications (2)

Publication Number Publication Date
JPH06168878A true JPH06168878A (en) 1994-06-14
JP3124849B2 JP3124849B2 (en) 2001-01-15

Family

ID=18134074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04321573A Expired - Lifetime JP3124849B2 (en) 1992-12-01 1992-12-01 Method and apparatus for manufacturing dielectric thin film

Country Status (1)

Country Link
JP (1) JP3124849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265651A (en) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd Film of composite perovskite type compound, method for forming the film, and method for producing liquid discharge head using the same
KR100922487B1 (en) * 2001-11-02 2009-10-20 가부시키가이샤 알박 Thin film forming apparatus and method
JP2011195925A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Film deposition method using ion plating method, and apparatus used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922487B1 (en) * 2001-11-02 2009-10-20 가부시키가이샤 알박 Thin film forming apparatus and method
JP2006265651A (en) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd Film of composite perovskite type compound, method for forming the film, and method for producing liquid discharge head using the same
JP2011195925A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Film deposition method using ion plating method, and apparatus used therefor

Also Published As

Publication number Publication date
JP3124849B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
US5674366A (en) Method and apparatus for fabrication of dielectric thin film
KR100313425B1 (en) Chemical Vapor Deposition Method for Fabricating Layered Superlattice Materials
KR100321561B1 (en) Method of Manufacturing Ferroelectric Thin Film of Mixed Oxides Containing Volatile Components
JP3124849B2 (en) Method and apparatus for manufacturing dielectric thin film
KR100530404B1 (en) Vapor phase growth method of oxide dielectric film
JP3589354B2 (en) Manufacturing method of dielectric thin film
JPH06290983A (en) Thin dielectric film and manufacture thereof
JP3224293B2 (en) Manufacturing method of dielectric thin film
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
US5976624A (en) Process for producing bismuth compounds, and bismuth compounds
JPH09282943A (en) Manufacture of ferroelectric crystal thin film and ferroelectric capacitor
JPH07331432A (en) Production of dielectric thin film and apparatus for production therefor
TWI730965B (en) Sputtering device, film manufacturing method, ferroelectric ceramic manufacturing method
JPH0665715A (en) Formation of ground surface electrode for forming dielectric thin film
KR100219834B1 (en) Manufacturing method of ferroelectric thin film having a preferred orientation
JPH07111107A (en) Manufacture of thin film of ferroelectric substance
JPH06349811A (en) Manufacture of dielectric thin film and manufacturing apparatus
JP3195827B2 (en) Method for producing a ferroelectric bismuth titanate layer on a substrate
JP3315737B2 (en) Ferroelectric thin film and method of manufacturing the same
JPH0757535A (en) Manufacture for ferroelectric thin film
JPH0781183B2 (en) Method for producing oriented metal thin film
JPH0670920B2 (en) Method for forming ferroelectric thin film
JPH10324598A (en) Production of dielectric thin film
JPH0849061A (en) Production of dielectric thin film and device therefor
JPH05263240A (en) Production of dielectric thin film and its device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081027

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091027

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091027

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111027

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121027

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13