JPH0569619B2 - - Google Patents

Info

Publication number
JPH0569619B2
JPH0569619B2 JP17326186A JP17326186A JPH0569619B2 JP H0569619 B2 JPH0569619 B2 JP H0569619B2 JP 17326186 A JP17326186 A JP 17326186A JP 17326186 A JP17326186 A JP 17326186A JP H0569619 B2 JPH0569619 B2 JP H0569619B2
Authority
JP
Japan
Prior art keywords
resin
acid
aldehyde
composition
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17326186A
Other languages
Japanese (ja)
Other versions
JPS62104649A (en
Inventor
Shunsui Takahashi
Masuo Sawa
Kazuhiko Kiuchi
Yoji Myahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Quaker Co Ltd
Original Assignee
Kao Quaker Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Quaker Co Ltd filed Critical Kao Quaker Co Ltd
Publication of JPS62104649A publication Critical patent/JPS62104649A/en
Publication of JPH0569619B2 publication Critical patent/JPH0569619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はガス硬化性鋳型用粘結剤組成物に関す
るものである。更に詳しくは、本発明は耐火性粒
状物に酸硬化性樹脂と酸化剤を添加混練し、型枠
に成型後ガス状又はエロゾル状の二酸化硫黄を注
入して鋳型を製造する所謂酸硬化性コールドボツ
クスに使用する改良された粘結剤組成物に関する
ものである。 〔従来の技術〕 従来、中、高速で鋳型を製造するにはフエノー
ル樹脂を粒状耐火物に被覆した所謂コーテツドサ
ンドを加熱硬化して鋳型を製造するクローニング
法が巾広く使用されている。 しかし、鋳型製造時の省エネルギー、鋳型生産
速度、更に鋳型、鋳物の品質を改善するため、ガ
ス状又はエロゾル状物質で常温硬化させるコール
ドボツクス鋳型製造法が、クローニング法を代替
する鋳型の製造法として鋳物業界で真剣に導入が
試みられて来ている。 コールドボツクス法にはフラン系樹脂を代表と
する酸硬化性樹脂を過酸化物を酸化剤として二酸
化硫黄により硬化させる酸硬化コールドボツクス
と、ポリオールとポリイソシアネートとをエロゾ
ル状の第3級アミンを触媒として硬化するウレタ
ンコールドボツクスがある。 この中でウレタンコールドボツクスを使用した
鋳型は、鋳物製造時の鋳砂の崩壊性が悪いとか、
砂かみ、すくわれ、ピンホール、すす欠陥等の鋳
造欠陥が発生し易い等の欠点がある。 それに対して酸硬化コールドボツクスは前記の
難点を解決する方法として近年急速に注目を集め
ている。 〔発明が解決しようとする問題点〕 酸硬化性コールドボツクスは鋳型製造時省エネ
ルギーである、鋳型製速度が速い、製造された鋳
型の品質、鋳物の品質等が優れる等、従来のクロ
ーニング法、ウレタンコールドボツクスより優れ
た特徴を数々有する。一方、酸硬化性コールドボ
ツクスに用いられる酸硬化製樹脂としてはフラン
系樹脂、フエノール系樹脂、尿素系樹脂及びそれ
らの混合もしくは共縮合物が挙げられる。しか
し、実用上フラン系樹脂以外は酸硬化性コールド
ボツクス法において鋳型の初期強度が低いという
欠点がある。 一方、中、大量の鋳型の製造するには自動造型
機が使用されており、耐火性粒状材料に酸硬化性
樹脂と過酸化物が添加混練されて耐火性粒状材料
表面を被覆し、空気圧等によつて自動的に充填成
型、硬化、取り出しが1分以内のサイクルで連続
的に行われている為、鋳型の初期強度が低いこと
はコールドボツクス法において致命的な欠点とな
る。 それ故、酸硬化性コールドボツクス法において
は、フラン型樹脂以外の酸硬化性樹脂は未だ実用
化されるには至つていない。 本発明は酸硬化性コールドボツクス法におい
て、鋳型の初期強度を大幅に向上せしめ、鋳型の
生産性を著しく改善せしめたフエノール系樹脂又
はフエノール系樹脂を混合もくは共縮合せしめた
フラン系樹脂を主体とする鋳型用粘結剤組成物を
提供することを目的とするものである。 〔問題点を解決するための手段〕 本発明者らは、鋭意研究の結果、酸硬化性コー
ルドボツクス法において、特にフエノール系樹脂
又はフエノール系樹脂を混合もしくは共縮合せし
めたフラン系樹脂を主体とする酸硬化性樹脂の重
量平均分子量と鋳型の初期強度の間に密接な関係
があることを解明し、酸硬化性樹脂の重量平均分
子量を適正範囲内に調整せしめることにより、鋳
型の初期強度が大幅に改善され、鋳型の生産性が
著しく向上することを見出し、本発明を完成する
に至つた。 即ち、本発明は、酸硬化性樹脂を粘結剤とし、
過酸化物を酸化剤として二酸化硫黄により鋳型を
成型するガス硬化性鋳型製造法に用いられる粘結
剤組成物であつて、酸硬化性樹脂がフエノール系
樹脂又はフエノール系樹脂を混合もしくは共縮合
せしめたフラン系樹脂を主体とし、且つ、重量平
均分子量が300〜5000であることを特徴とする鋳
型用粘結剤組成物に係わるものである。 本発明の粘結剤組成物により、鋳型の初期強度
を大幅に改善し、鋳型の生産性を著しく向上せし
め、酸硬化性コールドボツクス法において実用的
にフエノール系樹脂を利用することが可能となつ
た。 酸硬化性コールドボツクス法の鋳型の初期強度
に対して酸硬化性樹脂の重量平均分子量は、硬化
速度、濡れ性、充填性、SO2の拡散性など、それ
ら相互作用を含めた複雑な要因のバランスと密接
に関係していると考えられる。それ故、酸硬化性
樹脂の重量平均分子量を適正な範囲、即ち、重量
平均分子量を300〜5000、好ましくは300〜3000に
することにより、鋳型の初期強度は大幅に向上す
る。重量平均分子量が上記範囲を外れると初期強
度は大幅に低下する。 尚、酸硬化性樹脂の重量平均分子量はGPC(ゲ
ルパーミエーシヨンクロマトグラフイー)により
求められる。但し、カラム条件、標準物質等の測
定条件の違いにより平均分子量は異なる数値を示
すこともあるので、その条件を規定しておくこと
は重要である。本発明における測定条件は下記の
実施例に示した。 又、酸硬化性樹脂中の反応物もしくはモノマー
の状態で含まれるアルデヒドのモル数、フラン環
の数、フエノール化合物のモル数及び反応点の数
と、鋳型の初期強度との間に密接な関係がある。
即ち、鋳型の初期強度は、濡れ性、充填性、硬化
反応速度、硬化過程における分子構造等、諸々の
要因の複合されたバランスによつて決定される。 条件式(A+B)/(3×B+k×C) 但し、 A:組成物100g中に反応物もしくはモノマーの
状態で含まれるアルデヒドのモル数 B:組成物100g中に含まれるフラン環の数 C:組成物100g中に含まれるフエノール性水酸
基の数 k:ホルムアルデヒドと付加反応可能な状態のオ
ルト及びパラ位の上記フエノール化合物一分子
中の合計数 は上記の要因の中でも硬化反応速度及び硬化過程
の分子構造と密接に関係していると思われ、鋳型
の初期強度に大きな影響を与える。その適正な範
囲は0.3〜1.0、好ましくは0.4〜0.7であり、この
範囲を外れた場合、極めて初期強度は低下する。 本発明におけるフエノール系樹脂及びフエノー
ル系樹脂と混合もしくは共縮合せしめたフラン系
樹脂は、フエノール化合物とアルデヒドとの縮合
物を主体とする樹脂であり、用いられるフエノー
ル化合物は、例えば、フエノール、クレゾール、
キシレノール、レゾルシン、メチレンビスフエノ
ール、カテコール等であり、好ましくはフエノー
ル、クレゾール、キシレノールから選ばれる少な
くとも一種である。 又、本発明におけるフエノール系樹脂に用いら
れるアルデヒドとしては、芳香族アルデヒド、脂
肪族アルデヒド等が挙げられるが、好ましくは脂
肪族アルデヒドである。脂肪族アルデヒドとして
好ましいものは、ホルムアルデヒド、パラホルム
アルデヒド、グリオキザール、アセトアルデヒド
の少なくとも一種であり、更に好ましいものは、
パラホルムアルデヒド、ホルムアルデヒドの少な
くとも一種又はそれらの一部をグリオキザール、
アセトアルデヒド等の他のアルデヒドで変性した
アルデヒドである。 本発明におけるフラン系樹脂とは、フルフリル
アルコール、フルフリルアルコール/アルデヒド
縮合物、フルフリルアルコール縮合物、フルフリ
ルアルコール/尿素/アルデヒド縮合物、フルフ
リルアルコール/メラミン/アルデヒド縮合物等
を主体とする酸硬化性樹脂であり、特に限定され
るものではない。 本発明の粘結剤組成物はフエノール系樹脂又は
フエノール系樹脂を混合もしくは共縮合せしめた
フラン系樹脂を主体とするが、変性剤として例え
ば、尿素や尿素/アルデヒド縮合物と混合もしく
は共縮合させることもできるし、また、従来公知
の変性剤の少なくとも一種を混合もしくは共縮合
させることもできる。従来公知の変性剤を具体的
に例示すれば、クマロン・インデン樹脂、石油樹
脂、ポリエステル、アルキツド樹脂、ポリビニル
アルコール、エポキシ樹脂、エチレン・ビニルア
セテート、ポリビニルアセテート、ポリブタジエ
ン、ポリエーテル、ポリエチレンイミン、ポリ塩
化ビニル、ポリアクリル酸エステル、ポリビニル
ブチラール、フエノキシ樹脂、酢酸セルロース、
キシレン樹脂、トルエン樹脂、ポリアミド、スチ
レン樹脂、ポリビニルホルマール、アクリル樹
脂、ウレタン樹脂、ナイロン等のポリマー及びオ
リゴマーや、リグニン、リグニンスルホン酸、ロ
ジン、エステルガム、植物油、ビチユーメン、重
油、カシユーナツト殻液、バニリン、タンニン類
等の天然物や、澱粉、コーンスターチ、グルコー
ス、デキストリン等の糖類及びその誘導体や、レ
ゾルシン残渣、クレゾール残渣、2,2,4−ト
リメチる−4−(ヒドロキシフエニル)クマロン
とイソプロペニルフエノールの反応副生物、テレ
フタル酸とエチレングリコールの反応副生物等の
反応残渣及び副生物や、ポリエチレングリコール
等の多価アルコールや、アセトン、シクロヘキサ
ノン、アセトフエノン等のケトン類及びアルデヒ
ドとの縮合物や、ジシアンジアミド、アクリルア
ミド、チオ尿素等のアミノもしくはイミノ化合物
及びそれらのアルデヒド縮合物や、フルフラー
ル、グリオキザール等のアルデヒド化合物や、イ
ソシアヌル酸エステル、不飽和脂肪酸エステル等
のエステル化合物などである。これら変性剤の変
性率は20%以下であることが好ましい。 更に、本発明における粘結剤組成物の粘度を反
応条件のコントロールや希釈剤により25℃で1〜
1000cpsにすることで尚一層鋳型の初期強度を向
上させることができる。粘度が小さすぎると砂粒
表面のミクロな孔中への樹脂の吸着のため、有効
に砂粒表面への樹脂のコーテイングが阻害され
る。粘度が大きすぎると鋳物砂への濡れ性や均一
分散性が低下する。 上記目的に使用できる希釈剤を具体的に例示す
れば、ベンゼン、キシレン等の芳香族炭化水素、
メタノール、エタノール、フルフリルアルコール
等のアルコール類、ジエチルエーテル、アニソー
ル、アセタール等のエーテル類、アセトン、メチ
ルエチルケトン等のケトン類、テトラヒドロフラ
ン、ジオキサン等の複素環炭化水素、酢酸メチ
ル、酢酸エチル等のエステル類、エチレングリコ
ール、グリセリン等の多価アルコール類、2−メ
トキシエタノール、2−エトキシエタノール等の
セロソルブ類、2−メトキシエチルアセテート、
2−エトキシエチルアセテート、2−ブトキシエ
チルアセテート、2−フエノキシエチルアセテー
ト等のセロソルブアセテート類、ジエチレングリ
コールモノエチルエーテルアセテート等のカルビ
トールアセテート類の少なくとも一種が挙げられ
る。尚、希釈剤は予め粘結剤組成物中へ混合して
も、鋳物砂混練直前に組成物中へ混合しても差支
えない。その配合量は組成物に対して20%以下で
あることが好ましい。 又、本発明における組成物中に含まれる水分の
量は10%以下であることが好ましい。それ以上の
水分を含む場合は、本発明の効果は著しく低下す
る。更に未反応物等として含まれるモノマーフエ
ノール化合物の量も10%以下であることが好まし
い。それ以上のモノマーフエノール化合物を含む
場合は、著しく初期強度が低下するか、もしくは
貯蔵安定性が悪化する。更に未反応物等として含
まれるモノマーアルデヒドの量も10%以下である
ことが好ましい。それ以上のモノマーアルデヒド
を含む場合は、モノマーアルデヒドに起因する臭
気により著しく作業性が悪化する。 更に、鋳型の強度をより向上させる目的でシラ
ンカツプリング剤を加えても差支えない。シラン
カツプリング剤としては、例えば、γ−(2−ア
ミノ)アミノプロピルメチルジメトキシシラン、
γ−アミノプロピルトリメトキシシラン、γ−ア
ミノプロピルトリエトキシシラン、γ−メルカプ
トプロピルトリメトキシシラン、γ−グリシドキ
シプロピルトリメトキシシラン等が挙げられる。 尚、本発明の粘結剤組成物を鋳物砂に混練添加
させる時期は、過酸化物添加混練より前でも後で
も特に差支えないが、混練砂の可使時間がより長
い点から、過酸化物添加混練前の方が好ましい。 鋳型を製造するには、本発明に係る粘結剤と共
に、耐火性粒状材料として、石英質を主成分とす
る硅砂の他、ジルコン砂、クロマイト砂、オリビ
ン砂等が使用されるが、特に限定されるものでは
ない。 又、過酸化物としては、ケトン系、芳香族系等
の有機過酸化物及び過酸化水素等の無機過酸化物
が使用されるが、特に限定されるものではない。 〔実施例〕 以下、実施例をもつて本発明の詳細を説明する
が、本発明は本実施例のみに限定されるものでは
ない。 尚、本発明における重量平均分子量とは、
GPCにより下記条件で測定し、水に起因する負
のピークより高分子側の領域における重量平均分
子量である。 (a) サンプル調製: 組成物を何ら特別な処理をすることなく
THF溶剤に溶解する。濃度;1%。不溶物;
シリンジに0.5μmのメンブランフイルター(テ
フロン製)を装着し、濾過。注入量;20μ。 (b) カラム: ガードカラムTSK(東洋曹達工業(株)製)
HXL(6.5mmφ×4cm)1本とTSK3000HXL
(7.8mmφ×30cm)1本とTSK2500H×L(7.8mm
φ×30cm)1本。注入口側よりガードカラム→
3000HXL→2500HXL接続。 (c) 標準物質: ポリスチレン((東洋曹達工業(株)製) (d) 溶出液: THF。流速;1ml/min(圧力40〜70Kg/
cm2)。 (e) カラム温度: 室温(20〜25℃) (f) 検出器: RI(示差屈折計) (g) 分子量計算の為の分割法: 時間分割(2秒) 但し、RI検出器の場合、第1図の如く水に起
因する負のピークが現れ、ホルムアルデヒド等の
低分子化合物のピークもこの負のピークに含まれ
てしまう。本発明における粘結剤組成物の重量平
均分子量とは、第1図に示す負のピーク(B領
域)を除いた、高分子側の正のピーク(A領域)
の重量平均分子量である。 尚、GPC測定に際し、使用した測定機器及び
接続法は第2図の通りである。図中、1は溶媒、
2はポンプ、3は試料注入バルブ、4は脈動・圧
力・流量制御回路、5はガードカラム、6は
3000HXLカラム、7は2500HXLカラム、8はRI
検出器、9はデーター処理装置、10は廃液であ
る。 実施例1〜5及び比較例1〜2 常法によりフエノール及びパラホルムアルデヒ
ドをNaOH塩基性触媒下、所定時間反応させ、
反応終了後パラトルエンスルホン酸水溶液で中和
し、メタノール10%を加え、上記の測定法により
重量平均分子量を求め、表−1に示す各種の粘結
剤組成物を得た。 得られた粘結剤組成物1.2重量部をオーストラ
リア産フラタリー硅砂100重量部に添加混練し、
これにMEKPO系過酸化物を0.4重量部添加混練
した混練砂を25×25×250m/mの型枠内へ加圧
空気と共に吹き込んで充填し、次いで二酸化硫黄
ガスを混練砂が充填された型枠内へ吹き込んで鋳
型テストピースを成型し、二酸化硫黄ガス吹き込
み後30秒後の鋳型曲げ強度を測定した。 結果を表1に示す。
[Industrial Field of Application] The present invention relates to a gas-curable binder composition for molds. More specifically, the present invention is a so-called acid-curing cold method in which a mold is manufactured by adding and kneading an acid-curing resin and an oxidizing agent to refractory granules, molding the mixture into a mold, and then injecting gaseous or aerosol sulfur dioxide into the mold. This invention relates to an improved binder composition for use in boxes. [Prior Art] Conventionally, in order to manufacture molds at medium to high speeds, a cloning method has been widely used in which a mold is manufactured by heating and curing so-called coated sand in which granular refractories are coated with phenolic resin. However, in order to save energy during mold manufacturing, mold production speed, and improve the quality of molds and castings, the cold box mold manufacturing method, which hardens at room temperature using gaseous or aerosol substances, has been introduced as a mold manufacturing method that replaces the cloning method. Serious attempts are being made to introduce it in the foundry industry. The cold box method involves curing acid-curing resins, typically furan-based resins, with sulfur dioxide using peroxide as an oxidizing agent, and curing polyols and polyisocyanates with an aerosol of tertiary amine as a catalyst. There is a urethane cold box that hardens as Among these, molds using urethane cold boxes have poor disintegration of casting sand during casting production.
It has drawbacks such as easy occurrence of casting defects such as sand trapping, scooping, pinholes, and soot defects. On the other hand, acid-curing cold boxes have been rapidly attracting attention in recent years as a method for solving the above-mentioned difficulties. [Problems to be solved by the invention] Acid-curable cold boxes save energy during mold production, are faster in mold production, and have superior quality of manufactured molds and castings, etc., compared to conventional cloning methods and urethane. It has many features superior to cold boxes. On the other hand, acid-curable resins used in acid-curable cold boxes include furan resins, phenol resins, urea resins, and mixtures or cocondensates thereof. However, in practical use, resins other than furan-based resins have a drawback in that the initial strength of the mold is low in the acid-curing cold box method. On the other hand, automatic molding machines are used to manufacture medium to large quantities of molds, in which acid-curing resin and peroxide are added and kneaded to the refractory granular material to coat the surface of the refractory granular material, and air pressure etc. Since filling, molding, curing, and ejection are automatically performed continuously in a cycle of less than one minute, the low initial strength of the mold is a fatal drawback in the cold box method. Therefore, in the acid-curable cold box method, acid-curable resins other than furan-type resins have not yet been put into practical use. The present invention uses a phenolic resin or a furan resin mixed or co-condensed with a phenolic resin, which greatly improves the initial strength of the mold and significantly improves mold productivity in the acid-curing cold box method. The object of the present invention is to provide a binder composition for molds based on the present invention. [Means for Solving the Problems] As a result of intensive research, the present inventors have found that, in the acid-curing cold box method, a phenol resin or a furan resin mixed or co-condensed with a phenol resin is used as the main ingredient. We found that there is a close relationship between the weight average molecular weight of the acid-curing resin and the initial strength of the mold, and by adjusting the weight-average molecular weight of the acid-curing resin within an appropriate range, we were able to increase the initial strength of the mold. The present inventors have discovered that the present invention is greatly improved and the productivity of molds is significantly improved, leading to the completion of the present invention. That is, the present invention uses an acid-curable resin as a binder,
A binder composition used in a gas-curing mold manufacturing method in which a mold is molded with sulfur dioxide using peroxide as an oxidizing agent, in which an acid-curing resin is mixed or co-condensed with a phenolic resin or a phenolic resin. The present invention relates to a binder composition for molds, which is mainly composed of a furan-based resin and has a weight average molecular weight of 300 to 5,000. The binder composition of the present invention significantly improves the initial strength of molds, significantly improves mold productivity, and makes it possible to practically use phenolic resins in acid-curing cold box methods. Ta. The weight average molecular weight of the acid-curing resin with respect to the initial strength of the acid-curing cold box mold is determined by the interaction of complex factors such as curing speed, wettability, filling properties, and SO 2 diffusivity. It is thought to be closely related to balance. Therefore, by adjusting the weight average molecular weight of the acid-curable resin to an appropriate range, that is, from 300 to 5,000, preferably from 300 to 3,000, the initial strength of the mold can be significantly improved. If the weight average molecular weight is outside the above range, the initial strength will decrease significantly. Note that the weight average molecular weight of the acid-curable resin is determined by GPC (gel permeation chromatography). However, the average molecular weight may show different values depending on the measurement conditions such as column conditions and standard substances, so it is important to specify the conditions. The measurement conditions in the present invention are shown in the Examples below. In addition, there is a close relationship between the number of moles of aldehyde, the number of furan rings, the number of moles of phenol compound, and the number of reaction points contained in the form of reactants or monomers in the acid-curing resin and the initial strength of the mold. There is.
That is, the initial strength of the mold is determined by a complex balance of various factors, such as wettability, fillability, curing reaction rate, and molecular structure during the curing process. Conditional formula (A + B) / (3 × B + k × C) However, A: Number of moles of aldehyde contained in 100 g of the composition in the form of a reactant or monomer B: Number of furan rings contained in 100 g of the composition C: Number of phenolic hydroxyl groups contained in 100 g of the composition k: The total number in one molecule of the above-mentioned phenolic compound at the ortho and para positions in a state capable of addition reaction with formaldehyde is determined by the curing reaction rate and curing process molecule among the above factors. It seems to be closely related to the structure and has a great influence on the initial strength of the mold. The appropriate range is 0.3 to 1.0, preferably 0.4 to 0.7, and if it is outside this range, the initial strength will be extremely low. The phenolic resin and the furan resin mixed or co-condensed with the phenolic resin in the present invention are resins mainly composed of a condensate of a phenol compound and an aldehyde, and the phenolic compound used is, for example, phenol, cresol,
These include xylenol, resorcinol, methylenebisphenol, and catechol, and preferably at least one selected from phenol, cresol, and xylenol. Furthermore, examples of the aldehyde used in the phenolic resin in the present invention include aromatic aldehydes and aliphatic aldehydes, but aliphatic aldehydes are preferred. Preferred aliphatic aldehydes are at least one of formaldehyde, paraformaldehyde, glyoxal, and acetaldehyde, and more preferred are:
Paraformaldehyde, at least one type of formaldehyde or a part thereof, glyoxal,
It is an aldehyde modified with other aldehydes such as acetaldehyde. In the present invention, the furan-based resin mainly includes furfuryl alcohol, furfuryl alcohol/aldehyde condensate, furfuryl alcohol condensate, furfuryl alcohol/urea/aldehyde condensate, furfuryl alcohol/melamine/aldehyde condensate, etc. It is an acid-curable resin that is not particularly limited. The binder composition of the present invention is mainly composed of a phenolic resin or a furan resin mixed or co-condensed with a phenolic resin, but it may be mixed or co-condensed with, for example, urea or a urea/aldehyde condensate as a modifier. Alternatively, at least one of conventionally known modifiers can be mixed or co-condensed. Specific examples of conventionally known modifiers include coumaron/indene resin, petroleum resin, polyester, alkyd resin, polyvinyl alcohol, epoxy resin, ethylene/vinyl acetate, polyvinyl acetate, polybutadiene, polyether, polyethyleneimine, and polychloride. Vinyl, polyacrylic acid ester, polyvinyl butyral, phenoxy resin, cellulose acetate,
Polymers and oligomers such as xylene resin, toluene resin, polyamide, styrene resin, polyvinyl formal, acrylic resin, urethane resin, nylon, lignin, lignin sulfonic acid, rosin, ester gum, vegetable oil, bitumen, heavy oil, cashew nut shell liquid, vanillin. , natural products such as tannins, saccharides and their derivatives such as starch, corn starch, glucose, dextrin, resorcin residues, cresol residues, 2,2,4-trimethyl-4-(hydroxyphenyl)coumarone and isopropenyl. Reaction residues and by-products such as reaction by-products of phenol, reaction by-products of terephthalic acid and ethylene glycol, polyhydric alcohols such as polyethylene glycol, condensates with ketones and aldehydes such as acetone, cyclohexanone, and acetophenone, These include amino or imino compounds such as dicyandiamide, acrylamide, and thiourea, and their aldehyde condensates; aldehyde compounds such as furfural and glyoxal; and ester compounds such as isocyanuric acid esters and unsaturated fatty acid esters. The modification rate of these modifiers is preferably 20% or less. Furthermore, the viscosity of the binder composition in the present invention can be adjusted to 1 to 1 at 25°C by controlling the reaction conditions and using a diluent.
By setting it to 1000 cps, the initial strength of the mold can be further improved. If the viscosity is too low, the resin will be adsorbed into the microscopic pores on the surface of the sand grains, which will prevent the resin from effectively coating the surface of the sand grains. If the viscosity is too high, the wettability and uniform dispersibility of the resin to foundry sand will decrease. Specific examples of diluents that can be used for the above purpose include aromatic hydrocarbons such as benzene and xylene;
Alcohols such as methanol, ethanol and furfuryl alcohol; ethers such as diethyl ether, anisole and acetal; ketones such as acetone and methyl ethyl ketone; heterocyclic hydrocarbons such as tetrahydrofuran and dioxane; esters such as methyl acetate and ethyl acetate. , polyhydric alcohols such as ethylene glycol and glycerin, cellosolves such as 2-methoxyethanol and 2-ethoxyethanol, 2-methoxyethyl acetate,
Examples include at least one of cellosolve acetates such as 2-ethoxyethyl acetate, 2-butoxyethyl acetate, and 2-phenoxyethyl acetate, and carbitol acetates such as diethylene glycol monoethyl ether acetate. The diluent may be mixed into the binder composition in advance or may be mixed into the composition immediately before kneading the foundry sand. It is preferable that the blending amount is 20% or less based on the composition. Further, the amount of water contained in the composition of the present invention is preferably 10% or less. If more water is contained, the effects of the present invention will be significantly reduced. Further, the amount of monomer phenol compounds contained as unreacted substances is preferably 10% or less. If more monomer phenol compounds are contained, the initial strength will be significantly lowered or the storage stability will be deteriorated. Further, the amount of monomer aldehyde contained as unreacted substances is also preferably 10% or less. If more monomer aldehyde is contained, workability will be significantly deteriorated due to the odor caused by the monomer aldehyde. Furthermore, a silane coupling agent may be added for the purpose of further improving the strength of the mold. Examples of the silane coupling agent include γ-(2-amino)aminopropylmethyldimethoxysilane,
Examples include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, and γ-glycidoxypropyltrimethoxysilane. The binder composition of the present invention may be kneaded and added to the foundry sand either before or after peroxide addition and kneading, but since the pot life of the kneaded sand is longer, peroxide It is preferable to use it before addition and kneading. In order to manufacture the mold, silica sand mainly composed of quartz, zircon sand, chromite sand, olivine sand, etc. are used as refractory granular materials together with the binder according to the present invention, but there are no particular limitations. It is not something that will be done. Further, as the peroxide, organic peroxides such as ketone type and aromatic type, and inorganic peroxides such as hydrogen peroxide are used, but are not particularly limited. [Example] Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples. In addition, the weight average molecular weight in the present invention is
Measured by GPC under the following conditions, it is the weight average molecular weight in the region on the polymer side from the negative peak due to water. (a) Sample preparation: The composition is prepared without any special treatment.
Soluble in THF solvent. Concentration: 1%. Insoluble matter;
Attach a 0.5μm membrane filter (made of Teflon) to the syringe and filter. Injection volume: 20μ. (b) Column: Guard column TSK (manufactured by Toyo Soda Kogyo Co., Ltd.)
1 HXL (6.5mmφ×4cm) and TSK3000HXL
(7.8mmφ×30cm) and TSK2500H×L (7.8mm
φ×30cm) 1 piece. Guard column from the inlet side →
3000HXL → 2500HXL connection. (c) Standard substance: Polystyrene (manufactured by Toyo Soda Kogyo Co., Ltd.) (d) Eluent: THF. Flow rate: 1 ml/min (pressure 40 to 70 kg/min)
cm2 ). (e) Column temperature: Room temperature (20-25℃) (f) Detector: RI (differential refractometer) (g) Division method for molecular weight calculation: Time division (2 seconds) However, in the case of an RI detector, As shown in FIG. 1, a negative peak due to water appears, and the peak of low molecular weight compounds such as formaldehyde is also included in this negative peak. The weight average molecular weight of the binder composition in the present invention refers to the positive peak (area A) on the polymer side excluding the negative peak (area B) shown in FIG.
is the weight average molecular weight of The measurement equipment and connection method used for GPC measurements are shown in Figure 2. In the figure, 1 is a solvent,
2 is a pump, 3 is a sample injection valve, 4 is a pulsation/pressure/flow control circuit, 5 is a guard column, and 6 is a
3000HXL column, 7 is 2500HXL column, 8 is RI
9 is a data processing device, and 10 is a waste liquid. Examples 1 to 5 and Comparative Examples 1 to 2 Phenol and paraformaldehyde were reacted for a predetermined time under a NaOH basic catalyst by a conventional method,
After the reaction was completed, the mixture was neutralized with an aqueous para-toluenesulfonic acid solution, 10% methanol was added, and the weight average molecular weight was determined by the above measurement method to obtain various binder compositions shown in Table 1. 1.2 parts by weight of the obtained binder composition was added to 100 parts by weight of Australian flattery silica sand, and kneaded.
Mixed sand mixed with 0.4 parts by weight of MEKPO peroxide was blown into a 25 x 25 x 250 m/m mold with pressurized air, and then sulfur dioxide gas was added to the mold filled with the mixed sand. A mold test piece was formed by blowing into the frame, and the mold bending strength was measured 30 seconds after the sulfur dioxide gas was blown into the frame. The results are shown in Table 1.

【表】 実施例6〜9及び比較例3〜4 常法によりフエノール、フルフリルアルコール
及びパラホルムアルデヒドをNaOH塩基性触媒
下、所定時間反応させ、反応終了後パラトルエン
スルホン酸水溶液で中和し、メタノール10%を加
え、表−2に示す重量平均分子量の粘結剤組成物
を得た。 得られた粘結剤組成物を用い、実施例1〜5に
示す方法により鋳型テストピースを成型し、30秒
後の鋳型曲げ強度を測定した。 結果を表−2に示す。
[Table] Examples 6 to 9 and Comparative Examples 3 to 4 Phenol, furfuryl alcohol, and paraformaldehyde were reacted for a predetermined time under a NaOH basic catalyst by a conventional method, and after the reaction was completed, neutralized with an aqueous solution of para-toluenesulfonic acid. 10% methanol was added to obtain a binder composition having the weight average molecular weight shown in Table 2. Using the obtained binder composition, a mold test piece was molded by the method shown in Examples 1 to 5, and the mold bending strength was measured after 30 seconds. The results are shown in Table-2.

【表】 実施例 10〜12 常法によりフエノールとパラホルムアルデヒド
をKOH触媒下反応させ、反応終了後パラトルエ
ンスルホン酸水溶液で中和し、25℃の粘度
4200cps、重量平均分子量560の粘結剤組成物を得
た。これを所定量のエチルセロソルブアセテート
により希釈し、表−3に示す粘度の組成物を得
た。 得られた粘結剤組成物を用い、実施例1〜5に
示すと同様の方法で鋳型テストピースを成型し、
曲げ強度を測定した。 結果を表−3に示す。
[Table] Examples 10 to 12 Phenol and paraformaldehyde were reacted in the presence of a KOH catalyst using a conventional method, and after the reaction was completed, the viscosity at 25°C was neutralized with an aqueous solution of paratoluenesulfonic acid.
A binder composition having a weight average molecular weight of 560 and a weight average molecular weight of 4200 cps was obtained. This was diluted with a predetermined amount of ethyl cellosolve acetate to obtain a composition having a viscosity shown in Table 3. Using the obtained binder composition, mold test pieces were molded in the same manner as shown in Examples 1 to 5,
Bending strength was measured. The results are shown in Table-3.

【表】 実施例 13〜18 常法により種々反応量のフエノール、フルフリ
ルアルコール、パラホルムアルデヒドを所定時間
反応させ、反応終了後パラトルエンスルホン酸水
溶液で中和し、メタノール5%を加え、重量平均
分子量及び条件式(A+B)/(3×B+k×
C)の値が表−4に示すような種々の粘結剤樹脂
組成物を得た。 得られた粘結剤組成物を用い、実施例1〜5に
示すと同様の方法で鋳型テストピースを成型し、
曲げ強度を測定した。 結果を表−4に示す。
[Table] Examples 13 to 18 Various reaction amounts of phenol, furfuryl alcohol, and paraformaldehyde were reacted for a predetermined time using a conventional method, and after the reaction was completed, the mixture was neutralized with an aqueous solution of paratoluenesulfonic acid, 5% methanol was added, and the weight average Molecular weight and conditional formula (A+B)/(3×B+k×
Various binder resin compositions having the values of C) shown in Table 4 were obtained. Using the obtained binder composition, mold test pieces were molded in the same manner as shown in Examples 1 to 5,
Bending strength was measured. The results are shown in Table 4.

【表】 実施例 19〜24 常法によりフエノール及びパラホルムアルデヒ
ドをNaOH塩基性触媒下反応させ、反応終了後
パラトルエンスルホン酸水溶液で中和し、メタノ
ール10%を加え、重量平均分子量及び条件式(A
+B)/(3×B+k×C)の値が表−5に示す
ような種々の粘結剤樹脂組成物を得た。 得られた粘結剤組成物を用い、実施例1〜5に
示すと同様の方法で鋳型テストピースを成型し、
曲げ強度を測定した。 結果を表−5に示す。
[Table] Examples 19 to 24 Phenol and paraformaldehyde were reacted under NaOH basic catalyst by a conventional method, and after the reaction was completed, neutralized with an aqueous solution of para-toluenesulfonic acid, 10% methanol was added, and the weight average molecular weight and conditional formula ( A
Various binder resin compositions having the values of +B)/(3×B+k×C) shown in Table 5 were obtained. Using the obtained binder composition, mold test pieces were molded in the same manner as shown in Examples 1 to 5,
Bending strength was measured. The results are shown in Table-5.

〔発明の効果〕〔Effect of the invention〕

本実施例で明白な様に、本発明により、粘結剤
としてフエノール系樹脂もしくはフエノールフラ
ン系樹脂を主体とする酸硬化性樹脂を用いる酸硬
化性コールドボツクス法において、特に他の性能
を低下させることなく、大幅に鋳型の初期強度を
向上させることができ、鋳型の生産性を著しく向
上させることができる。
As is clear from this example, in the acid-curing cold box method using an acid-curing resin mainly composed of a phenolic resin or a phenol-furan resin as a binder, the present invention particularly reduces other performances. It is possible to significantly improve the initial strength of the mold, and the productivity of the mold can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で用いた分子量測定法により得
られた本発明の粘結剤組成物の代表的なGPCチ
ヤートであり、第2図は本発明におけるGPCに
よる分子量測定の際使用した測定機器及び接続法
を示す工程図である。 尚、図中、1は溶媒、2はポンプ、3は試料注
入バルブ、4は脈動・圧力・流量制御回路、5は
ガードカラム、6は3000HXLカラム、7は
2500HXLカラム、8はRI検出器、9はデーター
処理装置、10は廃液である。
Figure 1 is a typical GPC chart of the binder composition of the present invention obtained by the molecular weight measuring method used in the Examples, and Figure 2 is the measuring equipment used in the molecular weight measurement by GPC in the present invention. and a process diagram showing a connection method. In the figure, 1 is the solvent, 2 is the pump, 3 is the sample injection valve, 4 is the pulsation/pressure/flow control circuit, 5 is the guard column, 6 is the 3000HXL column, and 7 is the
2500HXL column, 8 is an RI detector, 9 is a data processing device, and 10 is a waste liquid.

Claims (1)

【特許請求の範囲】 1 酸硬化性樹脂を粘結剤とし、過酸化物を酸化
剤として二酸化硫黄により鋳型を成型するガス硬
化性鋳型製造法に用いられる粘結剤組成物であつ
て、酸硬化性樹脂がフエノール系樹脂又はフエノ
ール系樹脂を混合もしくは共縮合せしめたフラン
系樹脂を主体とし、且つ、重量平均分子量が300
〜5000であることを特徴とする鋳型用粘結剤組成
物。 2 酸硬化性樹脂の重量平均分子量が300〜3000
である特許請求の範囲第1項記載の組成物。 3 酸硬化性樹脂が次の式に示す条件を満足する
ものである特許請求の範囲第1項記載の組成物。 (A+B)/(3×B+k×C)=0.3〜1.0 但し、 A:組成物100g中に反応物もしくはモノマーの
状態で含まれるアルデヒドのモル数 B:組成物100g中に含まれるフラン環の数 C:組成物100g中に含まれるフエノール性水酸
基の数 k:ホルムアルデヒドと付加反応可能な状態のオ
ルト及びパラ位の上記フエノール化合物一分子
中の合計数 4 フエノール系樹脂がフエノール、クレゾール
及びキシレノールからなる群から選ばれた少なく
とも一種とアルデヒドとの縮合物を主体とするも
のである特許請求の範囲第1項記載の組成物。 5 アルデヒドが脂肪族アルデヒドである特許請
求の範囲第4項記載の組成物。 6 脂肪族アルデヒドがホルムアルデヒド、パラ
ホルムアルデヒド、グリオキザール、アセトアル
デヒドの少なくとも一種である特許請求の範囲第
5項記載の組成物。
[Scope of Claims] 1. A binder composition used in a gas-curable mold manufacturing method in which a mold is formed using sulfur dioxide using an acid-curable resin as a binder and a peroxide as an oxidizing agent, which The curable resin is mainly composed of a phenol resin or a furan resin mixed or co-condensed with a phenol resin, and the weight average molecular weight is 300.
A binder composition for molds, characterized in that it has a molecular weight of 5000 to 5000. 2 The weight average molecular weight of the acid-curing resin is 300 to 3000
The composition according to claim 1. 3. The composition according to claim 1, wherein the acid-curable resin satisfies the conditions shown in the following formula. (A+B)/(3×B+k×C)=0.3-1.0 However, A: Number of moles of aldehyde contained in 100 g of the composition in the form of a reactant or monomer B: Number of furan rings contained in 100 g of the composition C: Number of phenolic hydroxyl groups contained in 100 g of composition k: Total number in one molecule of the above phenolic compound at ortho and para positions capable of addition reaction with formaldehyde 4 The phenolic resin consists of phenol, cresol and xylenol. The composition according to claim 1, which is mainly composed of a condensate of at least one selected from the group consisting of an aldehyde and an aldehyde. 5. The composition according to claim 4, wherein the aldehyde is an aliphatic aldehyde. 6. The composition according to claim 5, wherein the aliphatic aldehyde is at least one of formaldehyde, paraformaldehyde, glyoxal, and acetaldehyde.
JP17326186A 1985-07-29 1986-07-23 Binder composition for casting mold Granted JPS62104649A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-167262 1985-07-29
JP16726285 1985-07-29

Publications (2)

Publication Number Publication Date
JPS62104649A JPS62104649A (en) 1987-05-15
JPH0569619B2 true JPH0569619B2 (en) 1993-10-01

Family

ID=15846474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17326186A Granted JPS62104649A (en) 1985-07-29 1986-07-23 Binder composition for casting mold

Country Status (2)

Country Link
JP (1) JPS62104649A (en)
IT (1) IT1213465B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368091A (en) * 2018-08-16 2021-02-12 花王株式会社 Binder composition for mold making

Also Published As

Publication number Publication date
JPS62104649A (en) 1987-05-15
IT8621264A0 (en) 1986-07-25
IT1213465B (en) 1989-12-20

Similar Documents

Publication Publication Date Title
KR101183806B1 (en) Furan resin composition for producing mold
KR920004449B1 (en) Mould binding agents composition and mfg engineering
EP0388145B1 (en) Phenolic resin compositions
WO1995009892A1 (en) Ester cured no-bake foundry binder system
JPH0656949A (en) Dialdehyde-modified phenolic resin binder resin for sand casting core, production of said binder resin, production of casting core and mold from said binder resin
JPH066217B2 (en) Binder composition for castings
JP2665492B2 (en) Binder composition, composition for molding a mold containing the binder composition, and method for producing core or mold for casting using the binder composition
JPH0569619B2 (en)
JPS60223858A (en) Binder based on furfuryl alcohol, manufacture and manufacture of cast and core mold
JPS6228042A (en) Binder resin composition for casting mold
JPS6228043A (en) Binder resin composition for casting
JPS6216841A (en) Binder resin composition for molding sand
JP6627012B1 (en) Binder composition for mold making
JPH02302460A (en) Improved ester curing agent for phenolic resin binder system
JPS6216843A (en) Binder composition for molding sand
JPS6216842A (en) Binder composition for casting mold
JP2784715B2 (en) Binder composition for mold production, sand composition for mold production, and method for producing mold
JPS6216839A (en) Binder composition for casting mold
JPH04371343A (en) Binder composition for sand core for high-pressure casting
JPS6216840A (en) Binder resin composition for molding sand
JP2831830B2 (en) Binder composition for foundry sand
WO2023054430A1 (en) Mold composition
JP2810651B2 (en) Gas-curable mold making method
JPS62252633A (en) Binder composition for molding sand
JPH0225238A (en) Production of casting mold