JPH0569311A - Device for pressure-grinding wafer board - Google Patents

Device for pressure-grinding wafer board

Info

Publication number
JPH0569311A
JPH0569311A JP3229998A JP22999891A JPH0569311A JP H0569311 A JPH0569311 A JP H0569311A JP 3229998 A JP3229998 A JP 3229998A JP 22999891 A JP22999891 A JP 22999891A JP H0569311 A JPH0569311 A JP H0569311A
Authority
JP
Japan
Prior art keywords
pressure
top ring
wafer substrate
optical
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3229998A
Other languages
Japanese (ja)
Inventor
Tomotaka Marui
智敬 丸井
Takasane Shibayama
卓眞 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3229998A priority Critical patent/JPH0569311A/en
Publication of JPH0569311A publication Critical patent/JPH0569311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Optical Transform (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To provide a pressure-grinding device, which can measure pressurized pressure and surface temperature of a board at the time of pressure-grinding a wafer substrate. CONSTITUTION:A pressure sensor 11 and/or a temperature sensor 12 are/is arranged near the adhesion surface of a wafer substrate 3 of a rotary top ring 2, and a light transmitter 13 for converting electric signals from these sensors 11, 12 to light is fitted to the rotary top ring 2, and on the other hand, a light receiver 15 is arranged in a holder 16, which is fitted to a holding member 4, at a position opposite to the light transmitter 13 to receive the optical signal from the light transmitter 13 and convert it to an electric signal. Pressurized pressure and surface temperature of the wafer substrate 3 during the rotary grinding by a grinding level plate 1 can be thereby measured intermittently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ウェーハ基板の加圧研
磨装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure polishing apparatus for wafer substrates.

【0002】[0002]

【従来の技術】VLSIの製造に用いられるシリコンウ
ェーハなどのウェーハ基板は、製造上のデザインルール
(設計最小線幅)とほぼ同等の値の平坦度が必要とされ
る。たとえば、現在の4MビットのDRAM製造用のシ
リコンウェーハのデザインルールは0.8 μm であるか
ら、その平坦度は±0.8μm を要求され、また16Mビッ
トのDRAM製造用のシリコンウェーハのデザインルー
ルは0.6 μm 程度であるのでその平坦度も±0.6 μm 程
度を要求されると予想される。このようにLSIの微細
化技術の進展にともなって、シリコンウェーハの平坦度
についてもより高精度が要求され、それを実現する加圧
研磨技術の高度化が望まれている。
2. Description of the Related Art A wafer substrate such as a silicon wafer used for manufacturing a VLSI is required to have a flatness which is substantially equal to a manufacturing design rule (design minimum line width). For example, the current design rule for silicon wafers for 4 Mbit DRAM manufacturing is 0.8 μm, so a flatness of ± 0.8 μm is required, and the design rule for silicon wafers for 16 Mbit DRAM manufacturing is 0.6 μm. It is expected that the flatness will be required to be about ± 0.6 μm. As described above, with the progress of the miniaturization technology of LSI, higher accuracy is required for the flatness of the silicon wafer, and the sophistication of the pressure polishing technology for realizing it is desired.

【0003】ここで、従来用いられているシリコンウェ
ーハ基板の加圧研磨装置について、典型的な例として図
3を参照して説明する。この図3において、1は回転軸
1aに支持されて回転自在とされる研磨定盤(プラテ
ン)であり、2は研磨定盤1の回転軸1aに平行な回転
軸2aに支持されてその下面に複数のウェーハ基板3を
接着自在とする回転トップリングである。4は複数たと
えば4個の回転トップリング2を放射状に保持する円盤
状の保持部材であり、5は保持部材4を昇降するシリン
ダなどの加圧圧下装置であり、その一端が固定部6に固
定されている。そして、図4に示すように、回転トップ
リング2の裏面にたとえば6枚のウェーハ基板3を放射
状に接着してから、図5のように回転トップリング2を
加圧圧下装置5によって回転する研磨定盤1の研磨面に
加圧接触させながら回転させることにより、ばらつきの
ない研磨を行うことができる。
Here, a conventional pressure polishing apparatus for a silicon wafer substrate will be described with reference to FIG. 3 as a typical example. In FIG. 3, 1 is a polishing surface plate (platen) which is supported by a rotating shaft 1a and is rotatable, and 2 is a lower surface which is supported by a rotating shaft 2a parallel to the rotating shaft 1a of the polishing surface plate 1. It is a rotating top ring that allows a plurality of wafer substrates 3 to be bonded to each other. Reference numeral 4 is a disk-shaped holding member that radially holds a plurality of, for example, four rotating top rings 2, and 5 is a pressurizing / pressurizing device such as a cylinder that raises and lowers the holding member 4, one end of which is fixed to a fixed portion 6. Has been done. Then, as shown in FIG. 4, for example, six wafer substrates 3 are radially adhered to the back surface of the rotary top ring 2, and then the rotary top ring 2 is rotated by a pressurizing / pressurizing device 5 as shown in FIG. By rotating the platen 1 while pressing it against the polishing surface, uniform polishing can be performed.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記したよ
うな加圧研磨装置での研磨作業によってウェーハ基板表
面を平坦化加工して製品とするのであるが、この加圧研
磨装置を用いる場合は加圧研磨中におけるウェーハ基板
にかかる加圧圧力とそのときの基板表面温度が研磨後の
平坦度に大きく影響するという問題があり、上記した平
坦度の要求精度を満たすことができない場合が多いので
ある。
By the way, the surface of the wafer substrate is flattened by the above-mentioned polishing operation with the pressure polishing apparatus to obtain a product. There is a problem that the pressure applied to the wafer substrate during pressure polishing and the substrate surface temperature at that time have a great influence on the flatness after polishing, and it is often the case that the above-mentioned required accuracy of flatness cannot be satisfied. ..

【0005】それゆえ、加圧研磨中におけるウェーハ基
板にかかる加圧圧力と基板表面温度をオンラインで計測
してそのデータをもとに回転トップリングの加圧圧力や
回転速度などを制御すればよいのであるが、しかしなが
ら従来はオンラインで加圧圧力,温度を測定することは
極めて困難であった。すなわち、通常、回転体上での計
測を実現する手段としては、たとえばFM電波通信によ
る方法やスリップリングによる方法、さらには光スリッ
プリング(光ロータリジョイント)による方法(たとえ
ば米国特許USPNo.4027945 参照)などがあるが、そ
れぞれ以下に示すような問題があってウェーハ基板を研
磨する加圧研磨装置には適用し得ないのである。
Therefore, the pressure applied to the wafer substrate during pressure polishing and the substrate surface temperature may be measured online, and the pressure applied to the rotary top ring and the rotational speed may be controlled based on the data. However, it has been extremely difficult to measure the pressurizing pressure and temperature online in the past. That is, usually, as a means for realizing measurement on a rotating body, for example, a method using FM radio wave communication, a method using a slip ring, and a method using an optical slip ring (optical rotary joint) (see, for example, US Pat. No. 4027945). However, they cannot be applied to a pressure polishing apparatus for polishing a wafer substrate due to the following problems.

【0006】まず、FM電波通信による方法では、電波
周波数帯域に制約があって多くの測定点数がとれない
(たとえば市販の明星電気(株)の温度テレメータでは
最大13点) こと、また信号変調/復調などの送信処理に
時間を要する(たとえば0.4 秒/点) こと、さらにノイ
ズの問題(電波通信共通の問題)によって測定誤差の原
因となることなどの欠点がある。
First, in the method using FM radio wave communication, there are restrictions on the radio wave frequency band and a large number of measurement points cannot be obtained (for example, a commercially available Meisei Electric Co., Ltd. temperature telemeter has a maximum of 13 points). There are drawbacks such as the time required for transmission processing such as demodulation (for example, 0.4 seconds / point), and measurement problems due to noise problems (a problem common to radio communication).

【0007】つぎに、スリップリングによる方法では、
電気接点の摩耗のためにメンテナンスが困難であり、さ
らにウェーハ処理プロセス一般に粉塵の混入が製品に致
命的な打撃を与えるため、スリップリングのような機械
的接触部分をプロセス装置に用いることは金属粉塵発生
源となって好ましくないのである。さらに、光スリップ
リングによる方法の場合については、図6に示すよう
に、オプチカルファイバ束6を複数配置した回転体7と
非回転体8とを対向させて配置し、複数の光送信器9
a,9b,9cから発信される光信号を複数の光受信器
10a,10b,10cでそれぞれ受信するように構成されて
光通信を行う方式のものである。しかし、このような方
式でも回転体7の軸心およびその周囲にオプチカルファ
イバ束6を組み込む必要があることから、前記した加圧
研磨装置にそのまま適用することは技術的に困難であ
る。
Next, in the method using the slip ring,
It is difficult to maintain due to the abrasion of electrical contacts, and in addition, since the contamination of dust in a wafer processing process generally gives a fatal impact to the product, it is not possible to use mechanical contact parts such as slip rings in process equipment. It becomes a source of generation and is not preferable. Further, in the case of the method using an optical slip ring, as shown in FIG. 6, a rotating body 7 having a plurality of optical fiber bundles 6 and a non-rotating body 8 are arranged so as to face each other, and a plurality of optical transmitters 9 are provided.
a, 9b, 9c, the optical signals transmitted from a plurality of optical receivers
The optical communication system is configured to receive by 10a, 10b and 10c respectively. However, even in such a method, it is technically difficult to apply the optical fiber bundle 6 to the axis of the rotating body 7 and its surroundings, as it is, as it is to the pressure polishing apparatus.

【0008】本発明は、上記のような従来技術の有する
課題を解決すべくしてなされたものであって、研磨され
るウェーハ基板の加圧圧力および/または表面温度を測
定して、その測定信号の遠隔伝送を容易に行うことの可
能な加圧研磨装置を提供することを目的とする。
The present invention has been made in order to solve the above problems of the prior art, and measures the pressurizing pressure and / or the surface temperature of the wafer substrate to be polished and outputs the measurement signal. It is an object of the present invention to provide a pressure polishing device capable of easily performing remote transmission of the.

【0009】[0009]

【課題を解決するための手段】本発明は、回転軸に支持
されて回転自在とされる研磨定盤と、この研磨定盤の回
転軸に平行な回転軸に支持されてその下面に複数のウェ
ーハ基板を接着自在とする回転トップリングと、この回
転トップリングを複数個放射状に保持する保持部材とか
らなるウェーハ基板の加圧研磨装置において、前記回転
トップリングのウェーハ基板接着面付近に配置されて加
圧圧力および/または表面温度を測定するセンサと、前
記回転トップリングに固定されて前記センサからの電気
信号を光に変換する光送信器と、前記保持部材または機
外に取付けられるホルダに前記光送信器と対向する位置
に配置されて前記光送信器からの光信号を受信して電気
信号に変換する光受信器と、を備えたことを特徴とする
ウェーハ基板の加圧研磨装置である。
According to the present invention, there is provided a polishing platen which is supported by a rotating shaft and is rotatable, and a plurality of polishing plates which are supported by a rotating shaft parallel to the rotating shaft of the polishing platen and which are provided on the lower surface thereof. In a pressure polishing apparatus for a wafer substrate, which comprises a rotary top ring that allows wafer substrates to be bonded freely and a holding member that radially holds a plurality of these rotary top rings, the rotary top ring is disposed near the wafer substrate bonding surface of the rotary top ring. A pressure sensor and / or a surface temperature sensor, an optical transmitter fixed to the rotating top ring to convert an electric signal from the sensor into light, and a holder mounted on the holding member or outside the machine. An optical receiver disposed at a position facing the optical transmitter and receiving an optical signal from the optical transmitter and converting the optical signal into an electric signal. It is a polishing apparatus.

【0010】[0010]

【作 用】本発明によれば、センサで測定された信号を
光変換して送信する光送信器を回転トップリングに取付
け、一方光受信器を光送信器に対向する位置に固定して
取付けるようにしたので、回転トップリングが回転して
も光送信器からの測定信号を光受信器で間欠的に受信す
ることが可能となる。
[Operation] According to the present invention, an optical transmitter for optically converting and transmitting a signal measured by a sensor is attached to a rotating top ring, while an optical receiver is fixed and attached at a position facing the optical transmitter. As a result, even if the rotary top ring rotates, the measurement signal from the optical transmitter can be intermittently received by the optical receiver.

【0011】[0011]

【実施例】以下に、本発明の実施例について図面を参照
して説明する。図1は、本発明の加圧研磨装置の構成を
一部断面にして示す側面図であり、従来例と同一部材は
同一符号を付して説明を省略する。図において、11はた
とえばストレンゲージなどの圧力センサ、12はたとえば
サーモカップルなどの温度センサであり、回転トップリ
ング2のウェーハ基板3の接着面付近にそれぞれウェー
ハ基板3の位置に対応して取付けられる。13は各センサ
11, 12からの電気信号を信号線14を介して入力し光に変
換する光送信器であり、各回転トップリング2の上面に
たとえば1個ずつ(ここでは計4個)取付けられる。15
は光送信器13からの光信号を受信して電気信号に変換す
る光受信器であり、保持部材4の中央下面から突き出し
て取付けられるホルダ16に、光送信器13の高さ位置に対
向するようにしてたとえば光送信器13の個数と同じ個数
(ここでは4個)が設けられる。17は演算制御器であ
り、光受信器15からの電気信号を信号線18を介して入力
して平均化などの処理と設定値との比較などの演算処理
を行う機能を有する。19は加圧圧力調節器で、演算制御
器17からの制御信号に応じて加圧圧下装置5の加圧圧力
を制御し、研磨定盤1の研磨面へのウェーハ基板3の加
圧圧力を加減する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing a partial cross-section of the structure of the pressure polishing device of the present invention. In the figure, 11 is a pressure sensor such as a strain gauge, and 12 is a temperature sensor such as a thermocouple, which are mounted near the bonding surface of the wafer substrate 3 of the rotary top ring 2 in correspondence with the position of the wafer substrate 3. .. 13 is each sensor
It is an optical transmitter that inputs electric signals from 11 and 12 through a signal line 14 and converts it into light, and is attached to the upper surface of each rotary top ring 2 by, for example, one each (here, four in total). 15
Is an optical receiver that receives an optical signal from the optical transmitter 13 and converts it into an electric signal, and faces a holder 16 protruding from the lower surface of the center of the holding member 4 at the height position of the optical transmitter 13. Thus, for example, the same number as the number of the optical transmitters 13 (here, four) is provided. An arithmetic controller 17 has a function of inputting an electric signal from the optical receiver 15 via a signal line 18 and performing arithmetic processing such as averaging and comparison with a set value. Reference numeral 19 denotes a pressurizing pressure controller, which controls the pressurizing pressure of the pressurizing / pressurizing device 5 in accordance with a control signal from the arithmetic controller 17, and controls the pressurizing pressure of the wafer substrate 3 to the polishing surface of the polishing platen 1. Adjust.

【0012】このようにして、加圧研磨装置に光送信器
13と光受信器15を取付けることにより、ウェーハ基板3
の研磨中において全部のウェーハ基板3に加圧される圧
力とその表面の温度とを間欠的に測定して遠隔伝送する
ことができるから、その測定信号を演算制御器17におい
て平均化するとともに予め与えられている加圧圧力設定
値PS ,表面温度設定値TS とそれぞれ比較することに
より、それぞれの両者間に差があればそれに応じて制御
信号を加圧圧力調節器19に出力して加圧圧下装置5の圧
下量を調節するようにする。なお、ここでは図示しない
が、回転トップリング2の回転速度を調節することも可
能である。
In this way, the pressure transmitter and the light transmitter are combined with each other.
Wafer substrate 3 by attaching 13 and optical receiver 15
Since the pressure applied to all the wafer substrates 3 and the temperature of the surface thereof can be intermittently measured and remotely transmitted during polishing, the measurement signals are averaged by the arithmetic controller 17 and previously measured. By comparing the applied pressurization pressure set value P S and the surface temperature set value T S respectively, if there is a difference between the two, a control signal is output to the pressurization pressure adjuster 19 accordingly. The amount of pressure reduction of the pressure reduction device 5 is adjusted. Although not shown here, it is also possible to adjust the rotation speed of the rotary top ring 2.

【0013】なお、上記した実施例において、光送信器
13は各回転トップリング2に1個ずつ取付けるとして説
明したが、本発明はこれに限定されるものではなく、回
転トップリング2に接着されるウェーハ基板3の個数に
応じて増やすことも可能である。また、光受信器15はホ
ルダ16に取付けるとしたが、回転トップリング2の自転
を利用するようにすれば、図2(a) に示すように装置の
外部のホルダ16Aに取付けることも可能である。
In the above embodiment, the optical transmitter
13 has been described as being attached to each rotating top ring 2 one by one, but the present invention is not limited to this, and it is possible to increase the number according to the number of wafer substrates 3 bonded to the rotating top ring 2. is there. Further, the optical receiver 15 is attached to the holder 16, but if the rotation of the rotating top ring 2 is used, it can be attached to the holder 16A outside the device as shown in FIG. 2 (a). is there.

【0014】さらに、上記実施例において光受信器15は
回転トップリング2に対応して1個ずつ配置するとして
説明したが、たとえば図2(b) に示すように、光送信器
13をたとえばウェーハ基板3の個数だけ配置し、一方L
字状のホルダ16Bを用いて光受信器15をその光送信器13
に対向させるように配置することも可能であり、これに
よりほぼ連続的な測定が可能となる。さらにまた、同時
に加圧圧力と表面温度とを圧力センサ11と温度センサ12
で測定するとして説明したが、本発明はこれに限るもの
ではなく、どちらか一方を測定するようにしてもかまわ
ない。
Further, in the above-mentioned embodiment, the optical receivers 15 have been described as being arranged one by one corresponding to the rotating top ring 2, but as shown in FIG.
13 are arranged by the number of wafer substrates 3, for example, while L
The optical receiver 15 is connected to the optical transmitter 13 by using the character-shaped holder 16B.
It is also possible to arrange them so as to face each other, which enables an almost continuous measurement. Furthermore, at the same time, the pressure sensor 11 and the temperature sensor 12 measure the pressurizing pressure and the surface temperature.
However, the present invention is not limited to this, and either one may be measured.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、セ
ンサで測定された信号を光変換して送信する光送信器を
回転トップリングに取付け、一方光受信器を光送信器に
対向した位置に固定して取付けるようにしたので、回転
トップリングが回転しても光送信器からの測定信号を容
易に光受信器で受信することが可能となり、これによっ
て適切な研摩制御が可能となるから、デザインルールに
従ったウェーハ基板の平坦度を得ることができ、したが
って製品の品質や歩留りの向上に大いに寄与する。
As described above, according to the present invention, the optical transmitter for optically converting the signal measured by the sensor and transmitting it is attached to the rotary top ring, while the optical receiver is opposed to the optical transmitter. Since it is fixed in position and attached, even if the rotating top ring rotates, the measurement signal from the optical transmitter can be easily received by the optical receiver, which enables proper polishing control. Therefore, it is possible to obtain the flatness of the wafer substrate according to the design rule, and therefore, it greatly contributes to the improvement of product quality and yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加圧研摩装置の実施例を一部断面で示
す側面図である。
FIG. 1 is a side view showing a partial cross-section of an embodiment of a pressure polishing device of the present invention.

【図2】(a) ,(b) は他の実施例を示す部分側面図であ
る。
2A and 2B are partial side views showing another embodiment.

【図3】加圧研摩装置の従来例を示す概要図である。FIG. 3 is a schematic view showing a conventional example of a pressure polishing device.

【図4】従来の回転トップリングの斜視図である。FIG. 4 is a perspective view of a conventional rotating top ring.

【図5】従来の加圧研摩装置の動作を説明する斜視図で
ある。
FIG. 5 is a perspective view illustrating the operation of a conventional pressure polishing device.

【図6】従来の光スリップリングの一例を模式的に示す
断面図である。
FIG. 6 is a sectional view schematically showing an example of a conventional optical slip ring.

【符号の説明】[Explanation of symbols]

1 研磨定盤 2 回転トップリング 3 ウェーハ基板 4 保持部材 5 加圧圧下装置 11 圧力センサ 12 温度センサ 13 光送信器 15 光受信器 16 ホルダ 17 演算制御器 19 加圧圧力調節器 1 Polishing surface plate 2 Rotating top ring 3 Wafer substrate 4 Holding member 5 Pressurizing and lowering device 11 Pressure sensor 12 Temperature sensor 13 Optical transmitter 15 Optical receiver 16 Holder 17 Arithmetic controller 19 Pressurizing pressure controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転軸に支持されて回転自在とされる
研磨定盤と、この研磨定盤の回転軸に平行な回転軸に支
持されてその下面に複数のウェーハ基板を接着自在とす
る回転トップリングと、この回転トップリングを複数個
放射状に保持する保持部材とからなるウェーハ基板の加
圧研磨装置において、前記回転トップリングのウェーハ
基板接着面付近に配置されて加圧圧力および/または表
面温度を測定するセンサと、前記回転トップリングに固
定されて前記センサからの電気信号を光に変換する光送
信器と、前記保持部材または機外に取付けられるホルダ
に前記光送信器と対向する位置に配置されて前記光送信
器からの光信号を受信して電気信号に変換する光受信器
と、を備えたことを特徴とするウェーハ基板の加圧研磨
装置。
1. A polishing platen which is supported by a rotation shaft and is rotatable, and a rotation which is supported by a rotation shaft parallel to the rotation shaft of the polishing platen so that a plurality of wafer substrates can be bonded to its lower surface. In a pressure polishing apparatus for a wafer substrate, which comprises a top ring and a holding member that radially holds a plurality of the rotating top rings, a pressure applying pressure and / or surface is provided near a wafer substrate bonding surface of the rotating top ring. A sensor that measures temperature, an optical transmitter that is fixed to the rotating top ring and that converts an electric signal from the sensor into light, and a position that faces the optical transmitter in the holding member or a holder attached outside the machine. And a light receiver for receiving an optical signal from the optical transmitter and converting the optical signal into an electric signal, the pressure polishing apparatus for a wafer substrate.
JP3229998A 1991-09-10 1991-09-10 Device for pressure-grinding wafer board Pending JPH0569311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3229998A JPH0569311A (en) 1991-09-10 1991-09-10 Device for pressure-grinding wafer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3229998A JPH0569311A (en) 1991-09-10 1991-09-10 Device for pressure-grinding wafer board

Publications (1)

Publication Number Publication Date
JPH0569311A true JPH0569311A (en) 1993-03-23

Family

ID=16901002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3229998A Pending JPH0569311A (en) 1991-09-10 1991-09-10 Device for pressure-grinding wafer board

Country Status (1)

Country Link
JP (1) JPH0569311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700180A (en) * 1993-08-25 1997-12-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
EP0823545A1 (en) 1996-08-09 1998-02-11 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for a compression-ignition combustion engine
US5730642A (en) * 1993-08-25 1998-03-24 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including optical montoring
US7037403B1 (en) 1992-12-28 2006-05-02 Applied Materials Inc. In-situ real-time monitoring technique and apparatus for detection of thin films during chemical/mechanical polishing planarization
US20140033830A1 (en) * 2011-01-21 2014-02-06 Jtekt Corporation Grinding abnormality monitoring method and grinding abnormality monitoring device
CN109773647A (en) * 2017-11-13 2019-05-21 凯斯科技股份有限公司 Wafer grinding system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037403B1 (en) 1992-12-28 2006-05-02 Applied Materials Inc. In-situ real-time monitoring technique and apparatus for detection of thin films during chemical/mechanical polishing planarization
US7582183B2 (en) 1992-12-28 2009-09-01 Applied Materials, Inc. Apparatus for detection of thin films during chemical/mechanical polishing planarization
US7569119B2 (en) 1992-12-28 2009-08-04 Applied Materials, Inc. In-situ real-time monitoring technique and apparatus for detection of thin films during chemical/mechanical polishing planarization
US5851135A (en) * 1993-08-25 1998-12-22 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6464564B2 (en) 1993-08-25 2002-10-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US5700180A (en) * 1993-08-25 1997-12-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6120347A (en) * 1993-08-25 2000-09-19 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6261151B1 (en) 1993-08-25 2001-07-17 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6306009B1 (en) 1993-08-25 2001-10-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6338667B2 (en) 1993-08-25 2002-01-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6464560B2 (en) 1993-08-25 2002-10-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6464561B2 (en) 1993-08-25 2002-10-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US5842909A (en) * 1993-08-25 1998-12-01 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including heater
US6739944B2 (en) 1993-08-25 2004-05-25 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US5762537A (en) * 1993-08-25 1998-06-09 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including heater
US5730642A (en) * 1993-08-25 1998-03-24 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including optical montoring
EP0823545A1 (en) 1996-08-09 1998-02-11 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for a compression-ignition combustion engine
US20140033830A1 (en) * 2011-01-21 2014-02-06 Jtekt Corporation Grinding abnormality monitoring method and grinding abnormality monitoring device
US9212961B2 (en) * 2011-01-21 2015-12-15 Jtekt Corporation Grinding abnormality monitoring method and grinding abnormality monitoring device
CN109773647A (en) * 2017-11-13 2019-05-21 凯斯科技股份有限公司 Wafer grinding system
CN109773647B (en) * 2017-11-13 2021-03-16 凯斯科技股份有限公司 Wafer grinding system

Similar Documents

Publication Publication Date Title
US6736698B2 (en) Method and apparatus for wireless transfer of chemical-mechanical planarization measurements
US5851135A (en) System for real-time control of semiconductor wafer polishing
US5842909A (en) System for real-time control of semiconductor wafer polishing including heater
US4272924A (en) Method of ultrasonic control for lapping and an apparatus therefor
US5949927A (en) In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization
US6960115B2 (en) Multiprobe detection system for chemical-mechanical planarization tool
JPH08281550A (en) Polishing device and correcting method of the same
GB2347102A (en) Wafer grinder and method of detecting grinding amount
JPH0569311A (en) Device for pressure-grinding wafer board
JP3772946B2 (en) Dressing apparatus and polishing apparatus provided with the dressing apparatus
US7037403B1 (en) In-situ real-time monitoring technique and apparatus for detection of thin films during chemical/mechanical polishing planarization
CN112894609A (en) Chemical mechanical polishing system and chemical mechanical polishing monitoring method
JPH08316179A (en) Flattening method and apparatus in semiconductor process
JPH10256209A (en) Polishing equipment
US20020049029A1 (en) System and method for chemical mechanical polishing
JP3795317B2 (en) Substrate gripping apparatus and polishing apparatus
TW202348348A (en) Determining substrate orientation with acoustic signals
JPH08243917A (en) Polishing end point detecting method and polishing device and manufacture of semiconductor device using it
JP2968443B2 (en) Method for measuring polishing accuracy of semiconductor wafer
JPH10202508A (en) Polishing method
WO2022265967A3 (en) Method and apparatus for in-situ monitoring of chemical mechanical planarization (cmp) processes
KR200168401Y1 (en) chemical mechanical polishing apparatus
JPH1086060A (en) Polishing amount measuring device
KR20010036681A (en) End point detector for chemical mechanical polishing
GB2380700A (en) Wafer polishing apparatus