JPH0569265B2 - - Google Patents

Info

Publication number
JPH0569265B2
JPH0569265B2 JP62118267A JP11826787A JPH0569265B2 JP H0569265 B2 JPH0569265 B2 JP H0569265B2 JP 62118267 A JP62118267 A JP 62118267A JP 11826787 A JP11826787 A JP 11826787A JP H0569265 B2 JPH0569265 B2 JP H0569265B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
electrolyte
discharge
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62118267A
Other languages
Japanese (ja)
Other versions
JPS63284763A (en
Inventor
Kensuke Tawara
Hideo Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP62118267A priority Critical patent/JPS63284763A/en
Priority to EP87309971A priority patent/EP0270264B1/en
Priority to DE8787309971T priority patent/DE3785834T2/en
Priority to US07/120,619 priority patent/US4804597A/en
Publication of JPS63284763A publication Critical patent/JPS63284763A/en
Publication of JPH0569265B2 publication Critical patent/JPH0569265B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、リチウムを負極主活物質とし、三酸
化ビスマスBi2O3を正極主活物質とする有機電解
質電池の電解質の改良に関するものである。 リチウムを負極活物質とし、Bi2O3を正極活物
質とする有機電解質電池は、作動電圧が約1.5V
であり、アルカリマンガン電池や酸化銀電池等、
水性のアルカリ電解液を用いる従来一般市販電池
とほぼ同じ作動電圧を有するので、これらと互換
性がある。しかも、アルカリ電解液の様なクリー
プ現象がないため、電解液の漏液が少なく、かつ
自己放電が小さい、エネルギー密度が高い等々の
利点を有するので、長期信頼性に優れた高エネル
ギー密度電池が期待できる。 〔従来の技術〕 従来、この種の電池の有機電解質としては、プ
ロピレンカーボネート(以下、PCと略記)、γ−
ブチロラクトン、テトラヒドロフラン、1,2−
ジメトキシエタン(以下、DMEと略記)、ジオキ
ソラン等の非プロトン性有機溶媒の単独又は混合
溶媒中に、支持電解質としてLiClO4、LiBF4
LiPF6、LiSO3CF3等のイオン解離性塩を溶解し
たものが用いられていた。 一般に、電池の電解質として必要な特性は種々
あるが、電池性能上最も重要な特性は、 1 イオン導電性が高く、電極反応速度が速い 2 沸点が高く、凝固点が低く、作動温度範囲が
広い。 3 正極、負極物質等に対して安定であり、かつ
正負極物質の溶解度が低い。 4 分解電圧が高い 等々があげられる。この様な観点から、高沸点、
低凝固点、高誘電率を有し支持電解質の溶解度の
高いPCと低粘性のDMEの混合溶媒にLiClO4を溶
解した有機電解質は優れたものであり、従来最も
しばしば用いられてきた。 〔発明が解決しようとする問題点〕 しかしながら、従来この種の電池を実際の機器
に搭載し放電させると、電池の放電の進行に伴
い、負極のLiは電解液中にLi+イオンとして溶解
し、電解液中を移動し正極と反応することによつ
て、その体積が減少するが、正極の体積が負極の
体積減少以上に膨張するため、電池ケースを膨張
させ、はなはだしい場合には、電池使用機器本体
を破損するという問題があつた。このため、従来
この種の電池においては、一定サイズの電池スペ
ース内に充填する正極および負極活物質量を小さ
くし、従つて放電可能な電池容量を低く抑えるこ
とによつて、放電による電池体積(電池ケース)
の膨張を抑制する方法が行われて来た。しかし、
この方法では電池使用機器から許容される一低体
積当たりの放電容量が小さくなるという問題があ
つた。 本発明は、この種電池の有機電解質の改良によ
り、この様な放電による体積膨張を低減すること
によつて、電池使用機器の中での信頼性、安全性
を高め、かつ同時に一定体積当たりの放電容量を
向上させることを目的とする。 〔問題点を解決するための手段〕 上記の様な問題点を解決するために、本発明
は、この種電池の有機電解質の溶媒として、ブチ
レンカーボネート(以下BCと略記)
[Industrial Application Field] The present invention relates to improvement of an electrolyte for an organic electrolyte battery that uses lithium as a negative electrode main active material and bismuth trioxide Bi 2 O 3 as a positive electrode main active material. An organic electrolyte battery that uses lithium as a negative electrode active material and Bi 2 O 3 as a positive electrode active material has an operating voltage of approximately 1.5V.
and alkaline manganese batteries, silver oxide batteries, etc.
It has approximately the same operating voltage as conventional commercially available batteries that use an aqueous alkaline electrolyte, so it is compatible with these batteries. Furthermore, since there is no creep phenomenon like with alkaline electrolytes, there is less electrolyte leakage, self-discharge is small, and energy density is high, so high energy density batteries with excellent long-term reliability can be used. You can expect it. [Prior Art] Conventionally, propylene carbonate (hereinafter abbreviated as PC), γ-
Butyrolactone, tetrahydrofuran, 1,2-
LiClO 4 , LiBF 4 , as a supporting electrolyte in a single or mixed solvent of aprotic organic solvents such as dimethoxyethane (hereinafter abbreviated as DME) and dioxolane.
A solution containing an ion dissociative salt such as LiPF 6 or LiSO 3 CF 3 was used. In general, there are various characteristics required for a battery electrolyte, but the most important characteristics for battery performance are: 1. High ionic conductivity and fast electrode reaction rate. 2. High boiling point, low freezing point, and wide operating temperature range. 3. Stable to positive and negative electrode materials, and low solubility of positive and negative electrode materials. 4. High decomposition voltage, etc. From this point of view, high boiling points,
An organic electrolyte in which LiClO 4 is dissolved in a mixed solvent of PC, which has a low freezing point, high dielectric constant, and high solubility as a supporting electrolyte, and DME, which has a low viscosity, is an excellent one and has been most often used in the past. [Problems to be solved by the invention] However, when this type of battery is conventionally installed in an actual device and discharged, as the battery discharge progresses, Li at the negative electrode dissolves into the electrolyte as Li + ions. As it moves through the electrolyte and reacts with the positive electrode, its volume decreases, but the volume of the positive electrode expands more than the decrease in volume of the negative electrode, causing the battery case to expand and, in extreme cases, preventing the battery from being used. There was a problem with the device itself being damaged. For this reason, in conventional batteries of this type, the amount of positive electrode and negative electrode active materials filled in a battery space of a certain size is reduced, and the battery capacity that can be discharged is kept low. battery case)
Methods have been developed to suppress the expansion of but,
This method has a problem in that the permissible discharge capacity per unit volume of the device using the battery becomes small. The present invention improves the organic electrolyte of this type of battery to reduce the volume expansion caused by discharge, thereby increasing reliability and safety in equipment using batteries, and at the same time reducing the volume per constant volume. The purpose is to improve discharge capacity. [Means for Solving the Problems] In order to solve the above problems, the present invention uses butylene carbonate (hereinafter abbreviated as BC) as a solvent for the organic electrolyte of this type of battery.

〔作用〕[Effect]

上記の様に有機電解質の溶媒としてBCとDME
を主体とする混合溶媒を用いた電池の場合には、
従来のPCとDMEの混合溶媒を用いた電池の場合
に比べ、一定の放電容量に対する電池体積の膨張
が著しく小さいため、与えられた一定の電池スペ
ース内により多量の正・負活物質を充填すること
ができ、単位体積当たりの放電容量を著しく向上
することができる。 放電による電池体積の膨張が改善される理由は
必ずしも明らかではないが、次の様に推定され
る。三酸化ビスマスとリチウムの電池放電反応
は、次の(1)式で示され、反応生成物はBiとLi2
である。 6Li+Bi2O3−→2Bi+3Li2O ……(1) この反応では、本来第1表に示す様にLi、Bi2
O3、Bi、Li2Oのそれぞれの密度と式量からBi2
O3 1モルに対して(1)式の反応量で計算される
体積では、電池反応後BiとLi2Oの体積を加えた
値は反応前のLiとBi2O3の体積を加えた値よりも
小さい。にもかかわらず、実際に電池を放電する
と電池が膨張する理由は、正極での反応生成物が
単純に式(1)の様に生成するのではなく、電解質を
取り込んだ形で反応が進むものと推定される。実
際、反応後の電池を分解してみると、電解液はほ
とんど全て正極反応生成体中に吸蔵されており、
液体はほとんど見られない。この様に正極反応生
成体中に電解質溶媒が吸蔵されることにより正極
が膨張するため、電解質溶媒の種類、状態が正極
の放電による膨張に著しい影響を与えるものと推
定される。
As mentioned above, BC and DME are used as solvents for organic electrolytes.
In the case of batteries using a mixed solvent mainly consisting of
Compared to batteries using conventional mixed solvents of PC and DME, the expansion of battery volume for a given discharge capacity is significantly smaller, so a larger amount of positive and negative active materials can be filled in a given battery space. The discharge capacity per unit volume can be significantly improved. The reason why the expansion of battery volume due to discharge is improved is not necessarily clear, but it is presumed as follows. The battery discharge reaction between bismuth trioxide and lithium is shown by the following equation (1), and the reaction products are Bi and Li 2 O
It is. 6Li+Bi 2 O 3 −→2Bi+3Li 2 O ...(1) In this reaction, as shown in Table 1, Li, Bi 2
From the respective densities and formula weights of O 3 , Bi, and Li 2 O, Bi 2
In terms of the volume calculated from the reaction amount in equation (1) for 1 mole of O 3 , the sum of the volumes of Bi and Li 2 O after the battery reaction is the sum of the volumes of Li and Bi 2 O 3 before the reaction. less than the value. Nevertheless, the reason why the battery actually expands when it is discharged is that the reaction products at the positive electrode are not simply generated as shown in equation (1), but the reaction progresses while incorporating electrolyte. It is estimated to be. In fact, when we disassemble the battery after the reaction, we find that almost all of the electrolyte is occluded in the positive electrode reaction product.
Almost no liquid is visible. Since the positive electrode expands due to the electrolyte solvent being occluded in the positive electrode reaction product, it is presumed that the type and state of the electrolyte solvent have a significant effect on the expansion of the positive electrode due to discharge.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明す
る。 第1図は本発明の一例を示すボタン型電池の断
面図である。図において、1は負極端子を兼ねる
負極缶であり、Ni−SUS−Niの3層クラツド板
を絞り加工したものである。負極2は、厚さ1.4
mmのリチウムシートを打ち抜いて上記負極缶内面
に圧着されている。6はNiメツキしたSUS製の
正極缶であり、正極端子を兼ねている。この正極
缶内に、後述の正極5が充填され、その上にマイ
クロポーラスなポリプロピレンシートからなるセ
パレータ4が載置されている。3は正極と負極間
に電解液を保持する含浸材であり、ポリプロピレ
ンを主要素とする不織布からなる。7はポリプロ
ピレンを主体とするガスケツトであり、負極缶1
と正極缶6の間に介在し、正極と負極の電気的絶
縁性を保つと同時に、正極缶開口縁が内側に折り
曲げられ、カシメられることによつて、電池内容
物を密封、封止している。 正極5は、正極活物質である純度99.99%の三
酸化ビスマス粉末を大気中900℃で5時間溶融熱
処理し、冷却後、粒径100μm以下に粉砕したもの
と炭素導電剤(グラフアイト又はカーボンブラツ
ク等)及びフツ素樹脂からなる結着剤とを、重量
比95.7:4:0.3の割合で混合し、断面L字状の
SUS製正極保持リング8と共にペレツト状に加
圧成形した後、100℃で十分真空加熱乾燥したも
のを用いた。正極合剤重量は電池1個当たり0.26
gであつた。 本実施例で用いた電解液は、(a)BCとDMEの体
積比1:1混合溶媒にLiClO4を1モル/溶解
したもの、(b)BCとDMEにさらにECを体積比で
45:50:5の割合で混合した混合溶媒にLiClO4
を1モル/溶解したもの、及び従来例として、
(c)PCとDMEの1:1混合溶媒にLiClO4を1モ
ル/溶解したもの、の3種である。それぞれの
電解液を用い、上記の様にして、電解液の種類以
外は全て同様な3種類の電池を作製した。電池の
大きさは、直径9.45mm、高さ3.0mmであり、注入
した電解液量は、各電解液とも電池1個当たり
45μであつた。 第2図に、この様にして作つた電池の20℃にお
ける7.5KΩ定抵抗放電特性を示し、また第2表
に、カツトオフ電圧1.2V迄の放電容量と7.5KΩで
550時間迄過放電(この時全ての電池は完全に放
電し尽くし作動電圧は0Vになつていた)した後
の電池の高さと放電前の電池の高さとの差(放電
による膨み)の結果を示した。 これらの結果から明らかな様に、本発明電池(b)
と従来電池(c)ではカツトオフ電圧1.2V迄の放電
容量にほとんど差はないが、放電による電池の膨
みは、本発明による電池(b)の方が従来電池(c)に比
べて著しく小さくなつている。即ち、電池使用機
器から許される電池の最大高さが3.2mmの場合、
本発明による電池(b)では、少なくとも76mAh以
上の放電容量を取り出すことが可能であるが、従
来電池(c)では76mAh放電させると電池高さが
3.36mm以上迄膨むため、3.2mm以下とするために
は、正負活物質量を約10%減らす必要があり、従
つてその分取り出せる放電容量も低下する。 (a)では、第2図の様に放電末期に内部抵抗が増
大するため作動電圧がやや低下し、カツトオフ電
圧1.2V迄の放電容量は、(b)や(c)よりやや小さく
なつているが、放電による電池の膨みは、(b)同様
に、(c)に比べて著しく小さい。このため、許容さ
れる同一体積当たりの容量では従来電池(c)より本
発明により電池(a)の方が大きくなる。又、電池の
形状変化が小さいことは、電池使用機器の信頼
性、安全性のために極めて重要な利点である。
Hereinafter, the present invention will be explained in more detail with reference to Examples. FIG. 1 is a sectional view of a button-type battery showing an example of the present invention. In the figure, 1 is a negative electrode can which also serves as a negative electrode terminal, and is made by drawing a three-layer Ni-SUS-Ni clad plate. Negative electrode 2 has a thickness of 1.4
A lithium sheet with a diameter of 1 mm is punched out and crimped onto the inner surface of the negative electrode can. 6 is a positive electrode can made of SUS plated with Ni, which also serves as a positive electrode terminal. This positive electrode can is filled with a positive electrode 5, which will be described later, and a separator 4 made of a microporous polypropylene sheet is placed thereon. 3 is an impregnating material that holds the electrolyte between the positive electrode and the negative electrode, and is made of a nonwoven fabric whose main element is polypropylene. 7 is a gasket mainly made of polypropylene, and the negative electrode can 1
It is interposed between the positive electrode can 6 and maintains electrical insulation between the positive electrode and the negative electrode, and at the same time, the opening edge of the positive electrode can is bent inward and caulked to seal and seal the battery contents. There is. The positive electrode 5 is made of bismuth trioxide powder with a purity of 99.99%, which is a positive electrode active material, which is melt-heat treated at 900°C in the air for 5 hours, cooled, and then crushed to a particle size of 100 μm or less, and a carbon conductive agent (graphite or carbon black). etc.) and a binder made of fluororesin at a weight ratio of 95.7:4:0.3 to form an L-shaped cross-section.
After being pressure-molded into a pellet shape together with the positive electrode holding ring 8 made of SUS, the pellet was thoroughly dried under vacuum heating at 100°C. The weight of the positive electrode mixture is 0.26 per battery.
It was hot at g. The electrolytes used in this example were (a) 1 mol/LiClO 4 dissolved in a mixed solvent of BC and DME in a volume ratio of 1:1, and (b) EC in a volume ratio of BC and DME.
LiClO 4 in a mixed solvent mixed at a ratio of 45:50:5
1 mol/dissolved and as a conventional example,
(c) 1 mole/LiClO 4 dissolved in a 1:1 mixed solvent of PC and DME; Using each electrolyte solution, three types of batteries were fabricated as described above, except for the type of electrolyte solution. The size of the battery is 9.45 mm in diameter and 3.0 mm in height, and the amount of electrolyte injected is
It was 45μ. Figure 2 shows the 7.5KΩ constant resistance discharge characteristics of the battery made in this way at 20°C, and Table 2 shows the discharge capacity up to a cut-off voltage of 1.2V and the 7.5KΩ constant resistance discharge characteristic at 20°C.
The result of the difference between the height of the battery after overdischarging for up to 550 hours (at this time all batteries were completely discharged and the operating voltage was 0V) and the height of the battery before discharge (swelling due to discharge) showed that. As is clear from these results, the battery of the present invention (b)
There is almost no difference in discharge capacity up to a cut-off voltage of 1.2V between the conventional battery (c) and the conventional battery (c), but the swelling of the battery due to discharge is significantly smaller in the battery according to the present invention (b) than in the conventional battery (c). It's summery. In other words, if the maximum height of the battery allowed by the battery-using device is 3.2mm,
With the battery (b) according to the present invention, it is possible to extract a discharge capacity of at least 76mAh, but with the conventional battery (c), the battery height increases when 76mAh is discharged.
Since it expands to 3.36 mm or more, in order to make it 3.2 mm or less, it is necessary to reduce the amount of positive and negative active materials by about 10%, and the discharge capacity that can be taken out decreases accordingly. In (a), as shown in Figure 2, the internal resistance increases at the end of discharge, so the operating voltage decreases slightly, and the discharge capacity up to the cut-off voltage of 1.2V is slightly smaller than in (b) and (c). However, similarly to (b), the swelling of the battery due to discharge is significantly smaller than that in (c). Therefore, the battery (a) according to the present invention has a larger allowable capacity per the same volume than the conventional battery (c). Further, the small change in shape of the battery is an extremely important advantage for the reliability and safety of devices using batteries.

〔発明の効果〕〔Effect of the invention〕

以上詳述した様に、本発明は電解質溶媒として
ブチレンカーボネートと1,2−ジメトキシエタ
ンとを主体とする混合溶媒もしくはこれに更にエ
チレンカーボネートをも含んだ混合溶媒を用いる
ことによつて、Li/Bi2O3系電池の放電による電
池膨張を著しく低減させることができ、単位体積
当たりの放電容量を著しく向上させ、同時に電池
使用機器の信頼性、安全性に好ましくない電池の
形状変化を著しく低減する等々、優れた効果を有
する。
As detailed above, the present invention uses a mixed solvent mainly consisting of butylene carbonate and 1,2-dimethoxyethane or a mixed solvent containing ethylene carbonate as an electrolyte solvent. It can significantly reduce the expansion of Bi 2 O 3 batteries due to discharge, significantly improving the discharge capacity per unit volume, and at the same time significantly reducing changes in battery shape that are unfavorable for the reliability and safety of battery-using equipment. It has excellent effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において実施した電池の一例を
示す断面図、第2図は7.5KΩ定抵抗放電特性の比
較図である。 1……負極缶、2……負極リチウム、3……含
浸材、4……セパレータ、5……正極、6……正
極缶、7……ガスケツト、8……正極保持リン
グ。
FIG. 1 is a sectional view showing an example of a battery implemented in the present invention, and FIG. 2 is a comparison diagram of 7.5KΩ constant resistance discharge characteristics. DESCRIPTION OF SYMBOLS 1... Negative electrode can, 2... Negative electrode lithium, 3... Impregnating material, 4... Separator, 5... Positive electrode, 6... Positive electrode can, 7... Gasket, 8... Positive electrode holding ring.

Claims (1)

【特許請求の範囲】 1 リチウムを主活物質とする負極と、有機電解
質と、三酸化ビスマスBi2O3を主活物質とする正
極とから少なくとも成り、前記有機電解質の溶媒
としてブチレンカーボネートと1,2−ジメトキ
シエタンとを主体とする混合溶媒を用いたことを
特徴とする有機電解質電池。 2 前記有機電解質の溶媒として、更にエチレン
カーボネートをも含む混合溶媒を用いたことを特
徴とする特許請求の範囲第1項記載の有機電解質
電池。 3 前記有機電解質に溶解する支持電解質として
過塩素酸リチウムLiClO4を用いたことを特徴と
する特許請求の範囲第1項もしくは第2項記載の
有機電解質電池。
[Scope of Claims] 1 Consists of at least a negative electrode having lithium as the main active material, an organic electrolyte, and a positive electrode having bismuth trioxide Bi 2 O 3 as the main active material, and butylene carbonate and 1 as a solvent for the organic electrolyte. , 2-dimethoxyethane. 2. The organic electrolyte battery according to claim 1, wherein a mixed solvent further containing ethylene carbonate is used as a solvent for the organic electrolyte. 3. The organic electrolyte battery according to claim 1 or 2, characterized in that lithium perchlorate LiClO 4 is used as a supporting electrolyte dissolved in the organic electrolyte.
JP62118267A 1986-11-13 1987-05-15 Organic electrolyte battery Granted JPS63284763A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62118267A JPS63284763A (en) 1987-05-15 1987-05-15 Organic electrolyte battery
EP87309971A EP0270264B1 (en) 1986-11-13 1987-11-11 An organic electrolyte cell
DE8787309971T DE3785834T2 (en) 1986-11-13 1987-11-11 CELL WITH ORGANIC ELECTROLYTE.
US07/120,619 US4804597A (en) 1986-11-13 1987-11-13 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62118267A JPS63284763A (en) 1987-05-15 1987-05-15 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS63284763A JPS63284763A (en) 1988-11-22
JPH0569265B2 true JPH0569265B2 (en) 1993-09-30

Family

ID=14732405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62118267A Granted JPS63284763A (en) 1986-11-13 1987-05-15 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63284763A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715820B2 (en) * 1988-05-09 1995-02-22 三洋電機株式会社 Non-aqueous electrolyte battery
JP2698103B2 (en) * 1988-07-01 1998-01-19 三洋電機株式会社 Non-aqueous electrolyte primary battery
JPH02299159A (en) * 1989-05-15 1990-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPS63284763A (en) 1988-11-22

Similar Documents

Publication Publication Date Title
EP0829913B1 (en) Solid state rechargeable lithium battery, battery assembly, and charging method of the same
KR100838932B1 (en) Nonaqueous electrolyte secondary battery
EP1009055B1 (en) Nonaqueous electrolyte battery and charging method therefor
JPH10154532A (en) Organic electrolyte secondary battery
JP2004146361A (en) Lithium battery negative electrode, and lithium battery including same
EP2161776B1 (en) Polyvinylpyridine additives for nonaqueous electrolytes
JP4149042B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH09213348A (en) Non-aqueous electrolyte battery
JPH11283667A (en) Lithium ion battery
JPH0569265B2 (en)
JP4737952B2 (en) Non-aqueous electrolyte secondary battery
JPH03108261A (en) Nonaqueous solvent secondary battery
WO2018000493A1 (en) Lithium-iron disulphide battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP4538866B2 (en) Non-aqueous electrolyte electrochemical device
JPH06275322A (en) Lithium battery
JPH0462764A (en) Nonaqueous electrolyte cell
JP2006092971A (en) Lithium battery
US20220328848A1 (en) High voltage cathode materials for non-aquenous ammonia based
JP2005141997A (en) Lithium / iron disulfide primary battery, and manufacturing method
JP2007134270A (en) Lithium primary cell
JPH0315300B2 (en)
JPH084015B2 (en) Organic electrolyte secondary battery
JP2766018B2 (en) Non-aqueous electrolyte battery
JPH0275169A (en) Organic electrolyte battery