JP2006092971A - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
JP2006092971A
JP2006092971A JP2004278275A JP2004278275A JP2006092971A JP 2006092971 A JP2006092971 A JP 2006092971A JP 2004278275 A JP2004278275 A JP 2004278275A JP 2004278275 A JP2004278275 A JP 2004278275A JP 2006092971 A JP2006092971 A JP 2006092971A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium battery
active material
electrode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004278275A
Other languages
Japanese (ja)
Other versions
JP4245538B2 (en
Inventor
Hidesato Saruwatari
秀郷 猿渡
Takashi Kishi
敬 岸
Takashi Kuboki
貴志 久保木
Norio Takami
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004278275A priority Critical patent/JP4245538B2/en
Publication of JP2006092971A publication Critical patent/JP2006092971A/en
Application granted granted Critical
Publication of JP4245538B2 publication Critical patent/JP4245538B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium battery having high safety, a long shelf life, and excellent heavy current characteristics. <P>SOLUTION: In this lithium battery equipped with electrolyte using ionic liquid containing an organic cation expressed by formula 1, (in the formula, R, R' are 1-4C alkyl groups, and R'' is halogen or an 1-3C alkyl group), a material expressed by M<SP>a+</SP>X<SP>a-</SP>(M is a metal ion, X is an anion, and (a) is the number of electrons), and reduced to M in a discharge reaction is used as a positive electrode active material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、イオン性液体を用いたリチウム電池に係るものである。   The present invention relates to a lithium battery using an ionic liquid.

現在、有機溶媒にリチウム塩を溶解した有機電解液を用いたリチウム電池が携帯機器のメモリーバックアップや駆動電源として多用されている。これらの電池は、有機電解液に有機溶媒を用いるため高温下で蒸気圧が高くなることや、引火性を有するため安全性を高める配慮が必要である。特に非常用電源としての使用を考えるならば、可燃性の有機電解液を使用することは不可能といっても良い。   At present, lithium batteries using an organic electrolyte in which a lithium salt is dissolved in an organic solvent are widely used as a memory backup or driving power source for portable devices. Since these batteries use an organic solvent for the organic electrolyte, it is necessary to consider that the vapor pressure becomes high at high temperatures and that the safety is enhanced because of the flammability. In particular, when considering use as an emergency power source, it may be impossible to use a combustible organic electrolyte.

そのため、無機固体からなる固体電解質や不燃性の非水電解質として常温で液状のイオン性液体が注目されている。例えば特開平4−349365号(特許文献1)などにイオン性液体電解質が開示されている。   Therefore, an ionic liquid that is liquid at room temperature has attracted attention as a solid electrolyte made of an inorganic solid or a nonflammable non-aqueous electrolyte. For example, an ionic liquid electrolyte is disclosed in JP-A-4-349365 (Patent Document 1).

イオン性液体電解質は有機電解液と比べ粘度が高いので、比較的高密度の正極活物質への浸透が悪く、そのため大電流放電特性を高くできないと言う問題がある。   Since the ionic liquid electrolyte has a higher viscosity than the organic electrolytic solution, there is a problem that the penetration into the positive electrode active material having a relatively high density is poor, so that the high current discharge characteristics cannot be improved.

一方、最近になり様々なイオン性液体が開発されている。例えば特開2004−165131(特許文献2)に開示されているような、アニオンにシアノ基を含むイオン性液体は、低粘度で導電率も高いため電気化学デバイスに有効なものだが、金属リチウムとの反応性が高いためリチウム電池には使用できないという問題がある。
特開平4−349365号公報 特開2004−165131公報
On the other hand, various ionic liquids have been recently developed. For example, an ionic liquid containing a cyano group as an anion as disclosed in JP-A-2004-165131 (Patent Document 2) is effective for an electrochemical device because of low viscosity and high conductivity. Therefore, there is a problem that it cannot be used for a lithium battery.
JP-A-4-349365 JP 2004-165131 A

従来のイオン性液体を使用したリチウム電池は、イオン性液体電解質は有機電解液と比べ粘度が高いので、比較的高密度の正極活物質への浸透が悪いことから、大電流放電特性を高くできないと言う問題があった。また、イオン性液体によっては負極であるリチウム金属との反応性が高いため、貯蔵特性が非常に悪く使用できないものもある。   In conventional lithium batteries using ionic liquids, ionic liquid electrolytes have a higher viscosity than organic electrolytes, so the penetration into relatively high-density positive electrode active materials is poor, so high current discharge characteristics cannot be improved. There was a problem. Some ionic liquids have high reactivity with lithium metal as a negative electrode, so that some storage properties are very poor and cannot be used.

本発明は、以上の問題点を鑑みてなされたものであり、安全性が高く、しかも貯蔵特性および大電流性能の優れるリチウム電池を提供するものである。   The present invention has been made in view of the above problems, and provides a lithium battery having high safety and excellent storage characteristics and large current performance.

上記課題を解決するために、請求項1のリチウム電池は、正極活物質、導電助剤、及び結着剤からなる正極合剤と、この正極合剤に対向して配置されリチウム金属もしくはリチウム合金の少なくとも一方を含有する負極と、この負極と前記正極合剤の間に介在し下記化学式(1)で表される有機カチオンを含有するイオン性液体を用いた電解液とを具備するリチウム電池において、前記正極活物質は、Ma+a−(Mは金属イオン、Xはアニオン、aは電子数)で表され、放電反応においてMまで還元されるものであり、且つ密度が1.6〜2.4g/cm3の範囲であることを特徴とするリチウム電池。

Figure 2006092971
(但し、R、R’はC1〜C4のアルキル基、R”はハロゲンもしくはC1〜C3のアルキル基)
請求項2のリチウム電池は、請求項1において、前記正極活物質がCu4O(PO4)2であることを特徴とする。 In order to solve the above-mentioned problems, a lithium battery according to claim 1 is composed of a positive electrode mixture comprising a positive electrode active material, a conductive auxiliary agent, and a binder, and a lithium metal or lithium alloy disposed opposite to the positive electrode mixture. In a lithium battery comprising: a negative electrode containing at least one of the above; and an electrolyte using an ionic liquid containing an organic cation represented by the following chemical formula (1) interposed between the negative electrode and the positive electrode mixture: The positive electrode active material is represented by M a + X a- (M is a metal ion, X is an anion, a is the number of electrons), and is reduced to M in a discharge reaction, and the density is 1.6 to Lithium battery characterized by being in a range of 2.4 g / cm 3.
Figure 2006092971
(Where R and R ′ are C1 to C4 alkyl groups, R ″ is halogen or C1 to C3 alkyl groups)
A lithium battery of claim 2 is characterized in that, in claim 1, the positive electrode active material is Cu4O (PO4) 2.

請求項3のリチウム電池は、請求項1において、前記正極活物質は、FeSもしくはFeS2であることを特徴とする。   According to a third aspect of the present invention, there is provided a lithium battery according to the first aspect, wherein the positive electrode active material is FeS or FeS2.

請求項4のリチウム電池は、前記正極活物質の粒径が、1〜50μmの範囲であることを特徴とする。   The lithium battery of claim 4 is characterized in that the positive electrode active material has a particle size in the range of 1 to 50 μm.

請求項5のリチウム電池は、請求項1において、前記導電助剤の正極合剤中の含有量が、1wt%〜5wt%であることを特徴とする。   A lithium battery according to a fifth aspect is characterized in that, in the first aspect, the content of the conductive additive in the positive electrode mixture is 1 wt% to 5 wt%.

請求項6のリチウム電池は、請求項1において、前記電解液中にビスオキサラトホウ酸アニオンあるいはビニレンカーボネートを含むことを特徴とする。   A lithium battery according to a sixth aspect is characterized in that, in the first aspect, the electrolytic solution contains a bisoxalatoborate anion or vinylene carbonate.

以上述べたような電池とすることで、安全性が高く長期保存性および大電流特性に優れるリチウム電池を提供することができる。   By using the battery as described above, it is possible to provide a lithium battery that is highly safe and excellent in long-term storage and large current characteristics.

金属リチウムを負極に用いる電池系として最もポピュラーであるLi/MnO2系に導電性に優れ電気化学的な安定性の高い(化学式1)で示す有機カチオンを有するイオン性液体を用いた1M−LiTFSI/EMITFSIを電解液として適用してみたところ、有機電解液に比べ長期保存特性が非常に劣ることが確認された。劣化電池を調べてみたところ、MnO2のチャンネルにEMI+が挿入していることが確認された。つまり、(化学式1)で示すような有機カチオンは、Liイオンを挿入・脱離するような電極活物質に対しては、Liイオンが入るチャンネルに取り込まれてしまい、結果として放電を行わなくても活物質容量が減少してしまうと考えられる。   1M-LiTFSI / using an ionic liquid having an organic cation represented by (Chemical formula 1) having excellent conductivity and high electrochemical stability to the Li / MnO2 system, which is the most popular battery system using metallic lithium as a negative electrode When EMITFSI was applied as an electrolytic solution, it was confirmed that the long-term storage characteristics were very inferior compared to the organic electrolytic solution. When the deteriorated battery was examined, it was confirmed that EMI + was inserted into the channel of MnO2. In other words, the organic cation represented by (Chemical Formula 1) is taken into the channel into which Li ions enter the electrode active material that inserts and desorbs Li ions, and as a result, no discharge occurs. It is thought that the active material capacity will decrease.

そこでこの問題点を解決するために鋭意研究を進めたところ、正極活物質にMa+a−(Mは金属イオン、Xはアニオン、aは電子数)で表され、放電反応においてMまで還元されるものであれば、(化学式1)で示される有機カチオンを含むイオン性液体を用いても、長期保存特性に優れた電池となることを見出した。また、大電流特性を優れたものにするには正極合剤密度を1.6〜2.4g/cm3の範囲内とすることが必要だということを見出した。合剤密度が1.6g/cm3より小さいと電極が疎になりすぎて十分な導電性が得られず大電流特性に不利になり、2.4g/cm3より大きいとイオン性液体の含浸性が下がり電極内抵抗が大きくなり大電流特性は悪くなる。すなわち、本発明によれば正極活物質と導電剤と結着剤からなる正極合剤とリチウム金属もしくはリチウム合金の少なくとも一方を含有した負極と(化学式1)で表される有機カチオン(但し。R、R’はC1〜C4のアルキル、R”はハロゲンもしくはC1〜C3のアルキル)を含有するイオン性液体を用いた電解液からなるリチウム電池において、前記正極活物質はMa+a−(Mは金属イオン、Xはアニオン、aは電子数)で表され、放電反応においてMまで還元されるものであり、前記正極合剤密度が1.6〜2.4g/cm3の範囲内とすることで、安全性が高く、長期保存特性と大電流特性の両方に優れたリチウム電池とすることができる。 Therefore, as a result of diligent research to solve this problem, the positive electrode active material is expressed by M a + X a− (M is a metal ion, X is an anion, a is the number of electrons), and is reduced to M in the discharge reaction. As a result, it has been found that even when an ionic liquid containing an organic cation represented by (Chemical Formula 1) is used, the battery has excellent long-term storage characteristics. It has also been found that the positive electrode mixture density needs to be in the range of 1.6 to 2.4 g / cm @ 3 in order to improve the large current characteristics. If the mixture density is less than 1.6 g / cm 3, the electrode becomes too sparse and sufficient conductivity cannot be obtained, which is disadvantageous for large current characteristics. If it exceeds 2.4 g / cm 3, the impregnation property of the ionic liquid is poor. The falling electrode resistance increases and the large current characteristics deteriorate. That is, according to the present invention, a positive electrode mixture comprising a positive electrode active material, a conductive agent and a binder, a negative electrode containing at least one of lithium metal or lithium alloy, and an organic cation represented by (Chemical Formula 1) (provided that R) , R ′ is C1-C4 alkyl, R ″ is halogen or C1-C3 alkyl), and the positive electrode active material is M a + X a− (M Is a metal ion, X is an anion, and a is the number of electrons), and is reduced to M in the discharge reaction, and the positive electrode mixture density is within the range of 1.6 to 2.4 g / cm 3. Therefore, a lithium battery having high safety and excellent in both long-term storage characteristics and large current characteristics can be obtained.

以下、本発明に係るリチウム電池について部材毎に説明する。   Hereinafter, the lithium battery according to the present invention will be described for each member.

1)正極
正極活物質にMa+a−(Mは金属イオン、Xはアニオン、aは電子数)で表され、放電反応においてMまで還元されるものである。
1) Positive electrode The positive electrode active material is represented by M a + X a- (M is a metal ion, X is an anion, a is the number of electrons), and is reduced to M in a discharge reaction.

前記正極活物質としては、例えば、二硫化鉄(FeS2)、硫化鉄(FeS)、酸化銅(CuO)、オキシリン酸銅(Cu4O(PO4)2)、クロム酸銀(Ag2Cr2O4)、硫化銅(CuS),フッ化銅(CuF2)、塩化銅(CuCl2)、二硫化三ニッケル(Ni3S2)、塩化銀(AgCl)、三酸化二ビスマス(Bi2O3)等を挙げることができる。   Examples of the positive electrode active material include iron disulfide (FeS2), iron sulfide (FeS), copper oxide (CuO), copper oxyphosphate (Cu4O (PO4) 2), silver chromate (Ag2Cr2O4), and copper sulfide (CuS). ), Copper fluoride (CuF2), copper chloride (CuCl2), trinickel disulfide (Ni3S2), silver chloride (AgCl), dibismuth trioxide (Bi2O3), and the like.

中でもオキシリン酸銅が好ましい。(化学式1)で示される有機カチオンは、電気化学的な安定性が従来の有機溶媒よりも低いため、理論電圧が2.7V・作動電圧が2.3VであるLi/Cu4O(PO4)2系の組み合わせだと電解液へのダメージが少なく長期保存特性に有利となる。   Of these, copper oxyphosphate is preferred. Since the organic cation represented by (Chemical Formula 1) has lower electrochemical stability than conventional organic solvents, the Li / Cu4O (PO4) 2 system has a theoretical voltage of 2.7 V and an operating voltage of 2.3 V. This combination is advantageous for long-term storage characteristics with little damage to the electrolyte.

FeSおよびFeS2も好ましい正極である。これらの正極を有機電解液で用いると反応性生物であるLi2Sが電解液に溶け出すという欠点を有するが、(化学式1)で示される有機カチオンを含むイオン性液体を用いた場合、このLi2Sの溶出を防ぐことができるので有利となる。   FeS and FeS2 are also preferred positive electrodes. When these positive electrodes are used in an organic electrolyte, Li2S, which is a reactive organism, has the disadvantage that it dissolves into the electrolyte, but when an ionic liquid containing an organic cation represented by (Chemical Formula 1) is used, this Li2S This is advantageous because elution can be prevented.

また、前記正極活物質の粒径は1−50μmであることが好ましい。1μmより小さいと電池反応と関係のない電解液との反応が顕著になり、50μmより大きいと抵抗が大きくなり大放電特性に不利となる。通常の有機溶媒では、このような粒径の小さい活物質を用いることは、電解液との副反応の観点から不利となるが、化学的に安定なイオン性液体を用いることで、このような小さな粒径の活物質を使用することが可能となる。   The particle size of the positive electrode active material is preferably 1-50 μm. If it is smaller than 1 μm, the reaction with the electrolyte solution unrelated to the battery reaction becomes remarkable, and if it is larger than 50 μm, the resistance increases, which is disadvantageous for large discharge characteristics. In an ordinary organic solvent, using such an active material having a small particle diameter is disadvantageous from the viewpoint of side reaction with the electrolyte solution. However, by using a chemically stable ionic liquid, It becomes possible to use an active material having a small particle size.

導電助剤としては、例えば、黒鉛、アセチレンブラック、ケッチェンブラックなどを挙げることができる。導電剤の比表面積は120m2/g以上であることが好ましい。120m2/gより小さいと電極内抵抗が大きくなり導電助剤としての役割が不十分となる。ところで、本発明において正極活物質はにMa+a−(Mは金属イオン、Xはアニオン、aは電子数)で表され、放電反応においてMまで還元されるものである。このような正極を用いると、放電反応が進むにつれ導電性を有するMが生成し、電極内抵抗が減少する。したがって、導電助剤の量を少なくし、正極合剤中の正極活物質の量を増やすことができ、電池容量の増加につながる。導電助剤の量は正極合剤全重量の1−5wt%とすることが好ましい。1wt%より小さいと導電助剤としての効果が不十分となり、5wt%より多いと電池容量が減ってくるからである。 Examples of the conductive assistant include graphite, acetylene black, and ketjen black. The specific surface area of the conductive agent is preferably 120 m2 / g or more. If it is less than 120 m @ 2 / g, the resistance in the electrode increases and the role as a conductive aid becomes insufficient. By the way, in the present invention, the positive electrode active material is represented by M a + X a− (M is a metal ion, X is an anion, a is the number of electrons), and is reduced to M in the discharge reaction. When such a positive electrode is used, M having conductivity is generated as the discharge reaction proceeds, and the resistance in the electrode is reduced. Therefore, the amount of the conductive auxiliary agent can be reduced, the amount of the positive electrode active material in the positive electrode mixture can be increased, and the battery capacity is increased. The amount of the conductive assistant is preferably 1-5 wt% of the total weight of the positive electrode mixture. This is because if it is less than 1 wt%, the effect as a conductive additive is insufficient, and if it exceeds 5 wt%, the battery capacity decreases.

結着剤としては、例えば、ポリテトラフルオロエチレン、ポリビニリデンフルオライドなどを挙げることができる。   Examples of the binder include polytetrafluoroethylene and polyvinylidene fluoride.

2)負極
負極としては、リチウム金属またはリチウム合金の一方を含むものである。
2) Negative electrode The negative electrode includes one of lithium metal or lithium alloy.

リチウム合金としてはLiとSi、Sn、Al、B、Ga、In、Pb、Bi、Sbの中から選ばれる少なくとも1種の元素との合金等が挙げられる。   Examples of the lithium alloy include alloys of Li and at least one element selected from Si, Sn, Al, B, Ga, In, Pb, Bi, and Sb.

その他の負極としては、LiとCoもしくはNiとを含む窒化物、LiとSiとを含む化合物と炭素との混合物等が挙げられる。   Examples of the other negative electrode include a nitride containing Li and Co or Ni, a mixture of a compound containing Li and Si and carbon, and the like.

これらの中でもリチウム金属が好ましい。   Among these, lithium metal is preferable.

3)電解液
電解液は溶媒として少なくとも(化学式1)で表される有機カチオンを含有するイオン性液体を含む。前記カチオンは中でも、1−エチル−3−メチルイミダゾリウムカチオン、1−ブチル−3−メチルイミダゾリウムカチオン、1,2−ジメチル−3−プロピルイミダゾリウムカチオンが導電性が高いため好ましい。アニオンとしては、PF6−,BF4−,Cl−,AlCl4−,AsF6−,2.3HF−,C4F9SO3−,CF3SO3−,(CF3SO2)2N−,(C2F5SO2)2N−,(CF3SO2)3C−等が挙げられる。電解液中のイオン性液体の量は50−100wt%であることが好ましい。50wt%未満であると、本来期待する不燃性の効果が十分得られず、安全性の高いものが実現できない。ここで、例に挙げたイオン性液体のうちアニオンがBF4−であるものは、リチウム金属との反応性が高く貯蔵性に劣る。しかしながら、これは電解液中にビスオキサラトホウ酸アニオンあるいはビニレンカーボネートを添加することで、負極表面にイオン性液体とリチウムの反応を抑制するような被膜を形成することができ、使用できるようになる。
3) Electrolytic Solution The electrolytic solution contains an ionic liquid containing at least an organic cation represented by (Chemical Formula 1) as a solvent. Among these cations, 1-ethyl-3-methylimidazolium cation, 1-butyl-3-methylimidazolium cation, and 1,2-dimethyl-3-propylimidazolium cation are preferable because of high conductivity. Examples of anions include PF6-, BF4-, Cl-, AlCl4-, AsF6-, 2.3HF-, C4F9SO3-, CF3SO3-, (CF3SO2) 2N-, (C2F5SO2) 2N-, (CF3SO2) 3C- and the like. It is done. The amount of the ionic liquid in the electrolytic solution is preferably 50-100 wt%. If it is less than 50 wt%, the expected nonflammability effect cannot be obtained sufficiently, and a highly safe product cannot be realized. Here, among the ionic liquids mentioned as examples, those in which the anion is BF4- have high reactivity with lithium metal and poor storage properties. However, this can be used by adding a bisoxalatoborate anion or vinylene carbonate to the electrolyte so that a film that suppresses the reaction between the ionic liquid and lithium can be formed on the negative electrode surface. .

また、溶媒としてイオン性液体以外の有機溶媒を含んでも良い。イオン性液体以外の有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、ジメチルカーボネート、メチルエチルカーボネート、アセトニトリル、テトラヒドロフラン、ビニレンカーボネート、ビニレンアセテート、ビニルエチレンカーボネート、フェニルエチレンカーボネート、カテコールカーボネート等が挙げられる。これらの溶媒は1種類もしくは2種類以上含まれても良い。   Moreover, you may contain organic solvents other than an ionic liquid as a solvent. Organic solvents other than ionic liquids include ethylene carbonate, propylene carbonate, butylene carbonate, dimethoxyethane, γ-butyrolactone, dimethyl carbonate, methyl ethyl carbonate, acetonitrile, tetrahydrofuran, vinylene carbonate, vinylene acetate, vinyl ethylene carbonate, phenyl ethylene carbonate And catechol carbonate. These solvents may be contained in one kind or two or more kinds.

電解質塩であるリチウム塩としては、LiBF4,LiPF6,LiClO4,LiAsF6,LiSbF6,LiCF3SO3,Li(CF3SO3)2N,Li(C2F5SO3)2N,LiC4F9SO3,Li(CF3SO2)3C等が挙げられる。これらのLi塩は1種類もしくは2種類以上含まれても良い。ただし、Li塩の総濃度は0.5M〜3.5Mであることが好ましい。Li塩濃度が0.5Mより小さいと十分なリチウムイオン導電性を得ることができず、一方、3.5Mより大きいと電解液の粘度が上がりすぎて導電性が低くなる。   Examples of the lithium salt as the electrolyte salt include LiBF4, LiPF6, LiClO4, LiAsF6, LiSbF6, LiCF3SO3, Li (CF3SO3) 2N, Li (C2F5SO3) 2N, LiC4F9SO3, Li (CF3SO2) 3C. One type or two or more types of these Li salts may be contained. However, the total concentration of the Li salt is preferably 0.5M to 3.5M. When the Li salt concentration is less than 0.5M, sufficient lithium ion conductivity cannot be obtained. On the other hand, when the Li salt concentration is more than 3.5M, the viscosity of the electrolytic solution increases so that the conductivity is lowered.

4)セパレータ
セパレータとしては、イオンの透過度が優れ、機械的強度のある絶縁性薄膜を用いることができる。耐有機溶剤性からポリプロピレンやポリエチレンといったポリオレフィン、ポリエチレンテレフタレート、ポリビニレンテレフタレートといったポリエステル、ポリイミド、ポリアミド、ガラス繊維、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、セルロース等からつくられたシート、微孔膜、不織布が用いられる。
4) Separator As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Sheets made from polyolefins such as polypropylene and polyethylene, polyethylene terephthalate, polyvinylene terephthalate, polyimide, polyamide, glass fiber, polyvinylidene fluoride, polytetrafluoroethylene, cellulose, etc., microporous membranes and non-woven fabrics from organic solvent resistance Used.

以下に例を挙げ、本発明をさらに詳しく説明するが、発明の主旨を超えない限り本発明は以下に掲載される実施例に限定されるものでない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as long as the gist of the invention is not exceeded.

(実施例1)
<正極の作製>
正極活物質として粒径40μmのオキシリン酸銅、導電助剤としてアセチレンブラックとグラファイト、結着材としてポリテトラフルオロエチレンを用い、これらを重量比で100:2.5:2.5:2となるように均一に混合した後、加圧成形して密度2.2g/cm3、厚さ5mm、直径16.0mmのペレット状正極合剤を作製した。
Example 1
<Preparation of positive electrode>
Copper oxyphosphate having a particle size of 40 μm is used as the positive electrode active material, acetylene black and graphite are used as the conductive assistant, and polytetrafluoroethylene is used as the binder, and these are in a weight ratio of 100: 2.5: 2.5: 2. Then, the mixture was uniformly mixed and pressure-molded to produce a pellet-shaped positive electrode mixture having a density of 2.2 g / cm 3, a thickness of 5 mm, and a diameter of 16.0 mm.

<負極の作製>
厚さ5mm、直径16.0mmに打ち抜き加工したリチウム金属を負極とした。
<Production of negative electrode>
Lithium metal punched into a thickness of 5 mm and a diameter of 16.0 mm was used as the negative electrode.

<電解液の調製>
ビストリフルオロメチルスルホニルイミド1−エチル−3−メチルイミダゾリウム(EMITFSI)に1Mのビストリフルオロメチルスルホニルイミドリチウム(LiTFSI)を溶解させ電解液とした。
<Preparation of electrolyte>
1M bistrifluoromethylsulfonylimide lithium (LiTFSI) was dissolved in bistrifluoromethylsulfonylimide 1-ethyl-3-methylimidazolium (EMITFSI) to obtain an electrolytic solution.

<電池の組立て>
上記正極合剤をステンレス鋼からなる正極缶に収納し、かつ上記負極をステンレス鋼からなる負極缶に収納し、上記正極合剤と負極の間にポリプロピレン不繊布からなるセパレータを配置し、正極缶に負極缶を絶縁ガスケットを介してかしめ固定することにより、図1に示す構造を有するコイン型リチウム電池を組み立てた。1は負極缶、2は負極、3はガスケット、4は正極缶、5は正極合剤、6はセパレータである。
<Battery assembly>
The positive electrode mixture is housed in a positive electrode can made of stainless steel, the negative electrode is housed in a negative electrode can made of stainless steel, and a separator made of a polypropylene non-woven fabric is disposed between the positive electrode mixture and the negative electrode. A coin-type lithium battery having the structure shown in FIG. 1 was assembled by caulking and fixing the negative electrode can through an insulating gasket. 1 is a negative electrode can, 2 is a negative electrode, 3 is a gasket, 4 is a positive electrode can, 5 is a positive electrode mixture, and 6 is a separator.

すなわち、有底円筒形の正極缶4内には、ペレット状の正極合剤5が収納されている。一方、有底円筒形の負極缶1内には、負極2が収納されている。セパレータ6は、正極合剤5と負極2との間に配置されている。電解液は、正極合剤5、セパレータ6および負極2に含浸されている。負極缶1は、正極缶4に絶縁ガスケットを介してかしめ固定されている。   That is, a pellet-shaped positive electrode mixture 5 is accommodated in a bottomed cylindrical positive electrode can 4. On the other hand, a negative electrode 2 is accommodated in a bottomed cylindrical negative electrode can 1. The separator 6 is disposed between the positive electrode mixture 5 and the negative electrode 2. The electrolytic solution is impregnated in the positive electrode mixture 5, the separator 6, and the negative electrode 2. The negative electrode can 1 is caulked and fixed to the positive electrode can 4 via an insulating gasket.

(実施例2)
4フッ化ホウ酸1−エチル−3−メチルイミダゾリウム(EMIBF4)に1Mの4フッ化ホウ酸リチウム(LiBF4)と5wt%のビスオキサラトホウ酸リチウムを溶解させ電解液とした以外は、実施例1と同じリチウム電池を作製した。
(Example 2)
Example 1 except that 1M lithium tetrafluoroborate (LiBF4) and 5 wt% lithium bisoxalatoborate were dissolved in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) to obtain an electrolytic solution. The same lithium battery as 1 was produced.

(実施例3)
4フッ化ホウ酸1−エチル−3−メチルイミダゾリウム(EMIBF4)に1Mの4フッ化ホウ酸リチウム(LiBF4)と5wt%のビニレンカーボネートを溶解させ電解液とした以外は、実施例1と同じリチウム電池を作製した。
(Example 3)
Same as Example 1 except that 1M lithium tetrafluoroborate (LiBF4) and 5 wt% vinylene carbonate were dissolved in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) to obtain an electrolyte solution. A lithium battery was produced.

(実施例4)
ビスペンタフルオロエチルスルホニルイミド1−エチル−3−メチルイミダゾリウム(EMIBETI)に1Mのビスペンタフルオロエチルスルホニルイミドリチウム(LiBETI)を溶解させ電解液とした以外は、実施例1と同じリチウム電池を作製した。
Example 4
The same lithium battery as in Example 1 was produced except that 1M bispentafluoroethylsulfonylimide lithium (LiBETI) was dissolved in 1-ethyl-3-methylimidazolium (EMIBETI) to obtain an electrolyte solution. did.

(実施例5)
ビストリフルオロメチルスルホニルイミド1−ブチル−3−メチルイミダゾリウム(BMITFSI)に1Mのビストリフルオロメチルスルホニルイミドリチウム(LiTFSI)を溶解させ電解液とした以外は、実施例1と同じリチウム電池を作製した。
(Example 5)
A lithium battery was prepared in the same manner as in Example 1 except that 1M bistrifluoromethylsulfonylimide lithium (LiTFSI) was dissolved in bistrifluoromethylsulfonylimide 1-butyl-3-methylimidazolium (BMITSI) to obtain an electrolyte.

(実施例6)
ビストリフルオロメチルスルホニルイミド1,2−ジメチル−3−プロピルイミダゾリウム(DMPITFSI)に1Mのビストリフルオロメチルスルホニルイミドリチウム(LiTFSI)を溶解させ電解液とした以外は、実施例1と同じリチウム電池を作製した。
(Example 6)
The same lithium battery as in Example 1 was prepared except that 1M bistrifluoromethylsulfonylimide lithium (LiTFSI) was dissolved in bistrifluoromethylsulfonylimide 1,2-dimethyl-3-propylimidazolium (DMPITFSI) to obtain an electrolyte. did.

(実施例7)
正極密度を1.6g/cm3とする以外は、実施例1と同じリチウム電池を作製した。
(Example 7)
The same lithium battery as in Example 1 was produced except that the positive electrode density was 1.6 g / cm 3.

(実施例8)
正極密度を2.4g/cm3とする以外は、実施例1と同じリチウム電池を作製した。
(Example 8)
The same lithium battery as in Example 1 was prepared except that the positive electrode density was 2.4 g / cm 3.

(実施例9)
正極活物質粒径を1μmとする以外は、実施例1と同じリチウム電池を作製した。
Example 9
The same lithium battery as in Example 1 was produced except that the particle diameter of the positive electrode active material was 1 μm.

(実施例10)
正極活物質粒径を50μmとする以外は、実施例1と同じリチウム電池を作製した。
(Example 10)
The same lithium battery as in Example 1 was produced except that the particle diameter of the positive electrode active material was 50 μm.

(実施例11)
正極活物質をFeSとする以外は、実施例1と同じリチウム電池を作製した。
(Example 11)
The same lithium battery as in Example 1 was produced except that the positive electrode active material was FeS.

(実施例12)
正極活物質をFeS2とする以外は、実施例1と同じリチウム電池を作製した。
(Example 12)
The same lithium battery as in Example 1 was produced except that the positive electrode active material was FeS2.

(比較例1)
正極活物質をMnO2とする以外は、実施例1と同じリチウム電池を作製した。
(Comparative Example 1)
The same lithium battery as in Example 1 was produced except that the positive electrode active material was MnO2.

(比較例2)
正極活物質を(CF)nとする以外は、実施例1と同じリチウム電池を作製した。
(Comparative Example 2)
The same lithium battery as in Example 1 was produced except that the positive electrode active material was (CF) n.

(比較例3)
正極活物質をV2O5とする以外は、実施例1と同じリチウム電池を作製した。
(Comparative Example 3)
The same lithium battery as in Example 1 was produced except that the positive electrode active material was V2O5.

(比較例4)
正極密度を1.2g/cm3とする以外は、実施例1と同じリチウム電池を作製した。
(Comparative Example 4)
The same lithium battery as in Example 1 was produced except that the positive electrode density was 1.2 g / cm 3.

(比較例5)
正極密度を2.8g/cm3とする以外は、実施例1と同じリチウム電池を作製した。
(Comparative Example 5)
The same lithium battery as in Example 1 was produced except that the positive electrode density was 2.8 g / cm 3.

(比較例6)
正極活物質粒径を0.5μmとする以外は、実施例1と同じリチウム電池を作製した。
(Comparative Example 6)
The same lithium battery as in Example 1 was produced except that the particle diameter of the positive electrode active material was 0.5 μm.

(比較例7)
正極活物質粒径を70μmとする以外は、実施例1と同じリチウム電池を作製した。
(Comparative Example 7)
The same lithium battery as in Example 1 was produced except that the particle diameter of the positive electrode active material was set to 70 μm.

(比較例8)
4フッ化ホウ酸1−エチル−3−メチルイミダゾリウム(EMIBF4)に1Mの4フッ化ホウ酸リチウム(LiBF4)を溶解させ電解液とした以外は、実施例1と同じリチウム電池を作製した。
(Comparative Example 8)
A lithium battery was prepared in the same manner as in Example 1 except that 1M lithium tetrafluoroborate (LiBF4) was dissolved in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) to obtain an electrolytic solution.

実施例1〜12および比較例1〜8の電池について作製後6時間に20℃において0.5mA/cm2で直流放電を行い、電池電圧が0.8Vに達した際の容量(これを100とする)を測定した。次に、実施例1〜12および比較例1〜8の電池について作製後6時間に20℃において5mA/cm2で直流放電を行い、電池電圧が0.8Vに達した際の容量を測定し大電流特性を調べた。また、実施例1〜12および比較例1〜8の電池について作製後85℃恒温層で1週間放置した後に20℃において0.5mA/cm2で直流放電を行い、電池電圧が0.8Vに達した際の容量を測定し長期保存特性を調べた。結果を表1にまとめる。

Figure 2006092971
尚、表1において、大電流放電時および長期保存後のデータは、それぞれの電池作製後6時間に20℃において0.5mA/cm2で直流放電を行い、電池電圧が0.8Vに達した際の容量を100とした場合の相対値である。 The batteries of Examples 1 to 12 and Comparative Examples 1 to 8 were subjected to DC discharge at 0.5 mA / cm 2 at 20 ° C. for 6 hours after production, and the capacity when the battery voltage reached 0.8 V (this was expressed as 100 Measured). Next, the batteries of Examples 1 to 12 and Comparative Examples 1 to 8 were subjected to direct current discharge at 5 mA / cm 2 at 20 ° C. for 6 hours after production, and the capacity when the battery voltage reached 0.8 V was measured. The current characteristics were investigated. In addition, after the batteries of Examples 1 to 12 and Comparative Examples 1 to 8 were prepared, they were left in a constant temperature layer at 85 ° C. for 1 week and then subjected to direct current discharge at 20 ° C. at 0.5 mA / cm 2 to reach a battery voltage of 0.8V The capacity was measured and the long-term storage characteristics were examined. The results are summarized in Table 1.
Figure 2006092971
In Table 1, the data at the time of large current discharge and after long-term storage are obtained when DC discharge is performed at 0.5 mA / cm 2 at 20 ° C. for 6 hours after each battery is produced, and the battery voltage reaches 0.8V. The relative value when the capacity of 100 is 100.

実施例と比較例1〜3を比較することで、正極活物質にMa+a−(Mは金属イオン、Xはアニオン、aは電子数)で表され、放電反応においてMまで還元されるものを用いることで長期保存特性が劇的に改善されていることがわかる。また、実施例と比較例4,5を比較することで、大電流特性に優れるものにするには正極合剤密度が1.6〜2.4g/cm3の範囲内でなければならないことがわかる。実施例と比較例6、7を比較することで、大電流特性と長期保存特性を両立させるには、正極活物質粒径が1〜50μmの範囲内でなければならないことがわかる。 By comparing the Examples and Comparative Examples 1 to 3, the positive electrode active material is expressed by M a + X a− (M is a metal ion, X is an anion, a is the number of electrons), and is reduced to M in the discharge reaction. It can be seen that the long-term storage characteristics have been dramatically improved by using those. Further, by comparing the Examples with Comparative Examples 4 and 5, it is understood that the density of the positive electrode mixture must be in the range of 1.6 to 2.4 g / cm 3 in order to be excellent in large current characteristics. . By comparing the Examples with Comparative Examples 6 and 7, it is found that the positive electrode active material particle size must be in the range of 1 to 50 μm in order to achieve both large current characteristics and long-term storage characteristics.

また、実施例2,3と比較例8を比較することで、アニオンにBF4−を用いる場合は、ビスオキサラトホウ酸アニオンあるいはビニレンカーボネートが必要であることが分かる。   Further, by comparing Examples 2 and 3 with Comparative Example 8, it is found that when BF4- is used as the anion, a bisoxalatoborate anion or vinylene carbonate is necessary.

本発明の実施例を説明する断面図。Sectional drawing explaining the Example of this invention.

符号の説明Explanation of symbols

1 負極缶
2 負極
3 ガスケット
4 正極缶
5 正極合剤
6 セパレータ
DESCRIPTION OF SYMBOLS 1 Negative electrode can 2 Negative electrode 3 Gasket 4 Positive electrode can 5 Positive electrode mixture 6 Separator

Claims (6)

正極活物質、導電助剤、及び結着剤からなる正極合剤と、この正極合剤に対向して配置されリチウム金属もしくはリチウム合金の少なくとも一方を含有する負極と、この負極と前記正極合剤の間に介在し下記化学式(1)で表される有機カチオンを含有するイオン性液体を用いた電解液とを具備するリチウム電池において、前記正極活物質は、Ma+a−(Mは金属イオン、Xはアニオン、aは電子数)で表され、放電反応においてMまで還元されるものであり、且つ密度が1.6〜2.4g/cm3の範囲であることを特徴とするリチウム電池。
Figure 2006092971
(但し、R、R’はC1〜C4のアルキル基、R”はハロゲンもしくはC1〜C3のアルキル基)
A positive electrode mixture comprising a positive electrode active material, a conductive additive, and a binder, a negative electrode disposed opposite to the positive electrode mixture and containing at least one of lithium metal or lithium alloy, and the negative electrode and the positive electrode mixture And an electrolyte using an ionic liquid containing an organic cation represented by the following chemical formula (1), wherein the positive electrode active material is M a + X a− (M is a metal Lithium battery characterized in that it is represented by ions, X is an anion, and a is the number of electrons), and is reduced to M in the discharge reaction, and has a density in the range of 1.6 to 2.4 g / cm 3. .
Figure 2006092971
(Where R and R ′ are C1 to C4 alkyl groups, R ″ is halogen or C1 to C3 alkyl groups)
前記正極活物質はCu4O(PO4)2であることを特徴とする請求項1に記載のリチウム電池。   The lithium battery according to claim 1, wherein the positive electrode active material is Cu 4 O (PO 4) 2. 前記正極活物質は、FeSもしくはFeS2であることを特徴とする請求項1に記載のリチウム電池。   The lithium battery according to claim 1, wherein the positive electrode active material is FeS or FeS 2. 前記正極活物質の粒径が、1〜50μmの範囲であることを特徴とする請求項1に記載のリチウム電池。   The lithium battery according to claim 1, wherein a particle diameter of the positive electrode active material is in a range of 1 to 50 μm. 前記導電助剤の正極合剤中の含有量が、1wt%〜5wt%であることを特徴とする請求項1に記載のリチウム電池。   2. The lithium battery according to claim 1, wherein the content of the conductive additive in the positive electrode mixture is 1 wt% to 5 wt%. 前記電解液中にビスオキサラトホウ酸アニオンもしくは、ビニレンカーボネートを含むことを特徴とする請求項1に記載のリチウム電池。

The lithium battery according to claim 1, wherein the electrolytic solution contains a bisoxalatoborate anion or vinylene carbonate.

JP2004278275A 2004-09-24 2004-09-24 Lithium battery Expired - Fee Related JP4245538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278275A JP4245538B2 (en) 2004-09-24 2004-09-24 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278275A JP4245538B2 (en) 2004-09-24 2004-09-24 Lithium battery

Publications (2)

Publication Number Publication Date
JP2006092971A true JP2006092971A (en) 2006-04-06
JP4245538B2 JP4245538B2 (en) 2009-03-25

Family

ID=36233752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278275A Expired - Fee Related JP4245538B2 (en) 2004-09-24 2004-09-24 Lithium battery

Country Status (1)

Country Link
JP (1) JP4245538B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123410A (en) * 2007-11-13 2009-06-04 Panasonic Corp Nonaqueous electrolyte battery
JP2012517668A (en) * 2009-02-12 2012-08-02 ザ ジレット カンパニー Lithium battery with iron disulfide cathode
JP2013089365A (en) * 2011-10-14 2013-05-13 Erekuseru Kk Nonaqueous electrolytic solution containing ionic fluid, and lithium secondary battery
WO2015001803A1 (en) * 2013-07-05 2015-01-08 パナソニック株式会社 Electrochemical energy storage device
CN110556585A (en) * 2018-06-01 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123410A (en) * 2007-11-13 2009-06-04 Panasonic Corp Nonaqueous electrolyte battery
JP2012517668A (en) * 2009-02-12 2012-08-02 ザ ジレット カンパニー Lithium battery with iron disulfide cathode
JP2013089365A (en) * 2011-10-14 2013-05-13 Erekuseru Kk Nonaqueous electrolytic solution containing ionic fluid, and lithium secondary battery
WO2015001803A1 (en) * 2013-07-05 2015-01-08 パナソニック株式会社 Electrochemical energy storage device
CN104781977A (en) * 2013-07-05 2015-07-15 松下电器产业株式会社 Electrochemical energy storage device
US10490855B2 (en) 2013-07-05 2019-11-26 Panasonic Corporation Electrochemical energy storage device
CN110556585A (en) * 2018-06-01 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP4245538B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
EP2367230B1 (en) Electrolyte solution for rechargeable lithium battery, and rechargeable lithium battery including the same
US9196929B2 (en) Electrolyte compositions for batteries using sulphur or sulphur compounds
JP4539584B2 (en) Lithium / iron disulfide primary battery
JP6699876B2 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery containing the same
JP5666528B2 (en) High rate and high energy cathode materials for lithium batteries
US20130224609A1 (en) Electrolyte and lithium air battery including the same
EP3255716B1 (en) Non-aqueous electrolytic solution for secondary battery, and secondary battery including same
KR102050837B1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
US20060078790A1 (en) Solid electrolytes based on lithium hafnium phosphate for active metal anode protection
JP2005108438A (en) Electrolyte for lithium-sulfur battery, and lithium-sulfur battery including the electrolyte for lithium-sulfur battery
US9023518B2 (en) Lithium—sulfur battery with performance enhanced additives
US20210320331A1 (en) Solid polymer matrix electrolyte (pme) for rechargeable lithium batteries and batteries made therewith
JP2004103560A (en) Electrolytic solution for lithium-sulfur battery and lithium-sulfur battery containing electrolytic solution
KR20180114631A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
JP2007157459A (en) Nonaqueous electrolytic solution battery
KR102003295B1 (en) Electrolyte for sulfur battery and sulfur battery comprising the same
KR102207522B1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
JP4245538B2 (en) Lithium battery
WO2015132892A1 (en) Electrolyte solution for lithium ion secondary batteries, and lithium ion secondary battery using same
JPWO2018230238A1 (en) Semi-solid electrolyte, electrode, electrode with semi-solid electrolyte layer, and secondary battery
GB2422244A (en) Improvements relating to electrolyte compositions for batteries using sulphur or sulphur compounds
JP4903983B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4710230B2 (en) Secondary battery electrolyte and secondary battery
JP2006024407A (en) Organic electrolyte battery
KR101175134B1 (en) Electrolyte with silicon compound and lithium battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees