JPH0568975B2 - - Google Patents

Info

Publication number
JPH0568975B2
JPH0568975B2 JP63278094A JP27809488A JPH0568975B2 JP H0568975 B2 JPH0568975 B2 JP H0568975B2 JP 63278094 A JP63278094 A JP 63278094A JP 27809488 A JP27809488 A JP 27809488A JP H0568975 B2 JPH0568975 B2 JP H0568975B2
Authority
JP
Japan
Prior art keywords
resin
glass fiber
magnetic field
sound insulating
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63278094A
Other languages
Japanese (ja)
Other versions
JPH02124139A (en
Inventor
Ryoichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP63278094A priority Critical patent/JPH02124139A/en
Publication of JPH02124139A publication Critical patent/JPH02124139A/en
Publication of JPH0568975B2 publication Critical patent/JPH0568975B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、被検体(通常は患者)よりの磁気共
鳴信号を収集して診断に供するMRI用磁石装置
の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an MRI magnet device that collects magnetic resonance signals from a subject (usually a patient) and uses the collected magnetic resonance signals for diagnosis. .

(従来の技術) 従来のMRI用磁石装置の断面図を第6図aに
示し、斜視図を同図bに示す。ここで、MRIと
は被検体からの磁気共鳴信号を収集して診断に供
する磁気共鳴イメージング装置の意で、以下
MRIと略す。1はMRI用磁石、2は被検体、3
は傾斜磁場コイル部、4は内側遮音部材、5は外
側遮音部材、6は遮音側板、8a,8bは支持
具、8cは防振ゴムである。傾斜磁場コイル部3
は、銅製の傾斜磁場用コイル3bに非磁性樹脂3
aでモールドし、筒状に形成した構造である。外
側遮音部材5は、内側遮音部材4の外側に空隙を
もつて同軸的に配置されている。遮音側板6はリ
ング状を成し、該外側遮音部材5の両端部に設け
られている。該外側遮音部材5、内側遮音部材4
及び遮音側板6とで一体構造を形成し、この一体
構造物は、内部に密閉空間7を形成し、MRI用
磁石1の内部空間に支持具10で該磁石1に取付
けられている。前記傾斜磁場コイル部3は、この
コイル部3自身の発生する振動による騒音を外部
に伝えないようにする目的で、前記密閉空間7内
に設けられている。また、内側遮音部材4の内部
には、被検体にRF波を照射し、被検体からの
MR信号を受信する送受信コイル(図示せず)を
有している。
(Prior Art) A sectional view of a conventional MRI magnet device is shown in FIG. 6a, and a perspective view is shown in FIG. 6b. Here, MRI refers to a magnetic resonance imaging device that collects magnetic resonance signals from a subject and uses them for diagnosis.
Abbreviated as MRI. 1 is an MRI magnet, 2 is a subject, 3
4 is a gradient magnetic field coil portion, 4 is an inner sound insulating member, 5 is an outer sound insulating member, 6 is a sound insulating side plate, 8a and 8b are supports, and 8c is a vibration isolating rubber. Gradient magnetic field coil section 3
, a non-magnetic resin 3 is attached to a gradient magnetic field coil 3b made of copper.
It has a structure in which it is molded with a and formed into a cylindrical shape. The outer sound insulating member 5 is coaxially arranged outside the inner sound insulating member 4 with a gap therebetween. The sound insulating side plates 6 have a ring shape and are provided at both ends of the outer sound insulating member 5. The outer sound insulating member 5 and the inner sound insulating member 4
and a sound insulating side plate 6 to form an integral structure, this integral structure forms a sealed space 7 inside, and is attached to the magnet 1 with a support 10 in the internal space of the MRI magnet 1. The gradient magnetic field coil section 3 is provided in the closed space 7 for the purpose of preventing noise caused by vibrations generated by the coil section 3 from being transmitted to the outside. In addition, inside the inner sound insulating member 4, RF waves are irradiated to the subject and noise from the subject is emitted.
It has a transmitting/receiving coil (not shown) for receiving MR signals.

更に、同様の目的で、前記傾斜磁場コイル部3
は、このコイル部3に取付けられた支持具8aと
内側遮音部材4に取付けられた支持具8bとの間
に防振ゴム8cを介在させて支持されている。撮
影時は、第6図aに示すように被検体2を内側遮
音部材4の開口4a内に入れる。次に、パルス状
の電流を傾斜磁場コイル部3の傾斜磁場用コイル
3bに流して、MRI用磁石1の発生する静磁場
に傾斜磁場を重畳する。同時に、送受信コイルよ
り励起回転磁場を発生させ、被検体2からのMR
信号を前記送受信コイルで受信し、この信号を外
部の画像処理装置(図示せず)で処理し、画像表
示する。
Furthermore, for the same purpose, the gradient magnetic field coil section 3
is supported with a vibration isolating rubber 8c interposed between a support 8a attached to the coil portion 3 and a support 8b attached to the inner sound insulating member 4. When photographing, the subject 2 is placed into the opening 4a of the inner sound insulating member 4 as shown in FIG. 6a. Next, a pulsed current is passed through the gradient magnetic field coil 3b of the gradient magnetic field coil section 3 to superimpose the gradient magnetic field on the static magnetic field generated by the MRI magnet 1. At the same time, an excitation rotating magnetic field is generated from the transmitter/receiver coil, and the MR from the subject 2 is
A signal is received by the transmitting/receiving coil, processed by an external image processing device (not shown), and displayed as an image.

このように、従来のMRI用磁石装置は構成さ
れているので、前記傾斜磁場コイル部3の傾斜磁
場用コイル3bにパルス状の電流が流れると、電
磁力により、前記コイル3bに流れる電流に対応
した力が、該コイル3bに発生し、傾斜磁場コイ
ル部3が変形する。この電流はパルス状に変化す
るため、該コイル部3に働く力もパルス状に変化
するので、該コイル部3は振動する。防振ゴム8
cは、この振動が他に伝わるのを絶縁している。
しかし、該コイル部3が振動すると、音圧により
内側遮音部材4が振動してしまい、この振動が主
に空気伝播により騒音となつて、開口4a内の被
検体2に伝播する。
The conventional MRI magnet device is configured in this way, so that when a pulsed current flows through the gradient magnetic field coil 3b of the gradient magnetic field coil section 3, the current flowing through the coil 3b corresponds to the current flowing through the coil 3b due to electromagnetic force. This force is generated in the coil 3b, and the gradient magnetic field coil section 3 is deformed. Since this current changes in a pulsed manner, the force acting on the coil portion 3 also changes in a pulsed manner, so that the coil portion 3 vibrates. Anti-vibration rubber 8
c insulates this vibration from being transmitted to others.
However, when the coil portion 3 vibrates, the inner sound insulating member 4 vibrates due to the sound pressure, and this vibration mainly becomes noise due to air propagation and propagates to the subject 2 within the opening 4a.

(発明が解決しようとする課題) 従来のMRI用磁石装置は、該装置に用いられ
ている傾斜磁場コイル部からの騒音の低減が十分
でなかつた。このため、被検体(通常は患者)に
不快を与えていた。
(Problems to be Solved by the Invention) Conventional MRI magnet devices have not been able to sufficiently reduce noise from the gradient magnetic field coil section used in the device. This has caused discomfort to the subject (usually the patient).

本発明の目的は、騒音の低減化を図つたMRI
用磁石装置の製造方法を提供することにある。
The purpose of the present invention is to provide an MRI system with reduced noise.
It is an object of the present invention to provide a method for manufacturing a magnet device for use in a magnet.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために請求項1記載の発明
は、コイルをモールドして筒状に形成したコイル
部を有するMRI用磁石装置の製造方法において、
第1のガラス繊維マツトを粘弾性シートの片面に
接着して積層部材を形成する工程と、前記コイル
部の内側及び外側の少なくともいずれか一方の面
と前記積層部材の粘弾性シート側の面とを接着す
る工程と、前記積層部材の第1のガラス繊維マツ
ト側の面に樹脂を含浸させた第2のガラス繊維マ
ツトを積層する工程と、前記含浸させた樹脂を硬
化させる工程とを有することを特徴とするもので
ある。
[Structure of the Invention] (Means for Solving the Problems) To achieve the above object, the invention according to claim 1 provides a method for manufacturing an MRI magnet device having a coil portion formed into a cylindrical shape by molding a coil. In,
bonding a first glass fiber mat to one side of a viscoelastic sheet to form a laminated member; and at least one of the inner and outer surfaces of the coil portion and the viscoelastic sheet side surface of the laminated member. a step of laminating a second glass fiber mat impregnated with resin on the surface of the laminated member on the first glass fiber mat side, and a step of curing the impregnated resin. It is characterized by:

また、請求項2記載の発明は、コイルをモール
ドして筒状に形成したコイル部を有するMRI用
磁石装置の製造方法において、前記コイル部の内
側及び外側の少なくともいずれか一方の面に、樹
脂を含浸させた第1のガラス繊維マツトを積層す
る工程と、第2及び第3のガラス繊維マツトを粘
弾性シートの両面にそれぞれ接着して積層部材を
形成する工程と、前記第1のガラス繊維マツトに
前記積層部材を積層する工程と、前記積層部材に
樹脂を含浸させた第4のガラス繊維マツトを積層
する工程と、前記第1及び第4のガラス繊維樹脂
に含浸させた樹脂を硬化させる工程とを有するこ
とを特徴とするものである。
Further, the invention according to claim 2 provides a method for manufacturing an MRI magnet device having a coil portion formed into a cylindrical shape by molding a coil, in which resin is provided on at least one of the inner and outer surfaces of the coil portion. a step of laminating a first glass fiber mat impregnated with a viscoelastic sheet, a step of adhering a second and a third glass fiber mat to both surfaces of a viscoelastic sheet to form a laminated member, and a step of laminating a first glass fiber mat impregnated with a viscoelastic sheet; a step of laminating the laminated member on a mat, a step of laminating a fourth glass fiber mat impregnated with resin on the laminated member, and curing the resin impregnated with the first and fourth glass fiber resins. It is characterized by having a process.

また、請求項3記載の発明は、前記コイルは、
傾斜磁場コイルであることを特徴とするものであ
る。
In addition, the invention according to claim 3 provides that the coil:
It is characterized by being a gradient magnetic field coil.

また、請求項4記載の発明は、前記コイルは、
送受信コイルであることを特徴とするものであ
る。
In addition, the invention according to claim 4 provides that the coil:
It is characterized by being a transmitting/receiving coil.

また、請求項5記載の発明は、筒状に形成され
た内側遮音部材と、この内側遮音部材の外側に空
隙をもつて同軸的に配置され、かつ、筒状に形成
された外側遮音部材と、該両遮音部材の両端部に
リング状の遮音側板とを設け、前記両遮音部材
と、前記遮音側板とで密閉空間を形成し、該密閉
空間内に、傾斜磁場用コイルを非磁性樹脂でモー
ルドして筒状に形成した傾斜磁場コイル部を設け
たMRI用磁石装置の製造方法において、予め樹
脂含浸前のガラス繊維マツトを粘弾性シートの両
面に接着して積層部材を形成し、樹脂を含浸させ
たガラス繊維マツトを複数回積層させてガラス繊
維強化樹脂を形成する工程中に、前記積層部材を
積層し、前記含浸させた樹脂を硬化させて、前記
内側遮音部材を形成する工程を有することを特徴
とするものである。
Further, the invention according to claim 5 provides an inner sound insulating member formed in a cylindrical shape, and an outer sound insulating member arranged coaxially with a gap outside the inner sound insulating member and formed in a cylindrical shape. , a ring-shaped sound insulating side plate is provided at both ends of the both sound insulating members, a sealed space is formed by both the sound insulating members and the sound insulating side plate, and a gradient magnetic field coil is provided in the sealed space with a non-magnetic resin. In a method for manufacturing an MRI magnet device equipped with a gradient magnetic field coil portion molded into a cylindrical shape, a laminated member is formed by adhering glass fiber mat before impregnated with resin to both sides of a viscoelastic sheet, and then the resin is applied. During the step of laminating impregnated glass fiber mats multiple times to form a glass fiber reinforced resin, the method further includes the step of laminating the laminated members and curing the impregnated resin to form the inner sound insulating member. It is characterized by this.

また、請求項6記載の発明は、非磁性樹脂から
なる第1の筒体と、この第1の筒体の内側に同軸
的に配置され、かつ、非磁性樹脂からなる第2の
筒体と、この第2の筒体と前記第1の筒体との間
に設けられた傾斜磁場用コイル部とから構成され
た傾斜磁場コイル部を有するMRI用磁石装置の
製造方法において、前記第1の筒体の前記第2の
筒体に向く面に粘弾性シートを接着し、前記第2
の筒体の前記第1の筒体に向く面に傾斜磁場用コ
イルを仮止めし、前記第1の筒体と前記第2の筒
体とを空隙をもつて同軸的に保持し、該空隙に熱
硬化性樹脂を注入し、該熱硬化性樹脂を硬化させ
て、傾斜磁場コイル部を成形する工程を有するこ
とを特徴とするものである。
In addition, the invention according to claim 6 includes a first cylindrical body made of non-magnetic resin, and a second cylindrical body coaxially arranged inside the first cylindrical body and made of non-magnetic resin. , a method for manufacturing an MRI magnet device having a gradient magnetic field coil section configured of a gradient magnetic field coil section provided between the second cylindrical body and the first cylindrical body; A viscoelastic sheet is adhered to the surface of the cylindrical body facing the second cylindrical body, and
A gradient magnetic field coil is temporarily fixed to the surface of the cylindrical body facing the first cylindrical body, the first cylindrical body and the second cylindrical body are held coaxially with a gap, and the gap is The method is characterized in that it has a step of injecting a thermosetting resin into the magnetic field, curing the thermosetting resin, and molding the gradient magnetic field coil section.

(作用) 請求項1記載の発明によれば、コイル部、粘弾
性シート、第1のガラス繊維マツト及び樹脂を含
浸させた第2のガラス繊維マツトの順で積層する
と、第2のガラス繊維マツトに含浸させた樹脂
が、第1のガラス繊維マツトに染み込み、粘弾性
シートに達する。次に、樹脂を硬化させることに
より、粘弾性シートとガラス繊維マツト層との結
合が強力なものとなる。また、コイル部の粘弾性
シートを貼る面が平滑な場合は、コイル部と粘弾
性シートとを接着しても、粘弾性シートの接着面
が平滑なので、接着面積が広くなり、十分な接着
強度が得られる。従つて、コイル部、粘弾性シー
ト及びガラス繊維マツト層は、互いに強固に結合
される。
(Function) According to the invention described in claim 1, when the coil part, the viscoelastic sheet, the first glass fiber mat, and the second glass fiber mat impregnated with resin are laminated in this order, the second glass fiber mat is laminated in this order. The resin impregnated with the resin permeates the first glass fiber mat and reaches the viscoelastic sheet. Next, by curing the resin, the bond between the viscoelastic sheet and the glass fiber mat layer becomes strong. In addition, if the surface of the coil part to which the viscoelastic sheet is attached is smooth, even if the coil part and the viscoelastic sheet are adhered, the adhesion surface of the viscoelastic sheet is smooth, so the adhesion area will be large, and sufficient adhesive strength will be obtained. is obtained. Therefore, the coil portion, the viscoelastic sheet and the glass fiber mat layer are firmly bonded to each other.

これにより、コイルにパルス状の電流を流す
と、この電流に応じた電磁力が発生し、コイル部
が振動するが、この振動は粘弾性シートによつて
吸収されて小さくなるので、騒音は小さくなる。
As a result, when a pulsed current is passed through the coil, an electromagnetic force corresponding to this current is generated and the coil section vibrates, but this vibration is absorbed by the viscoelastic sheet and becomes smaller, so the noise is small. Become.

請求項2記載の発明によれば、コイル部、樹脂
を含浸させた第1のガラス繊維マツト、第2のガ
ラス繊維マツト、粘弾性シート、第3のガラス繊
維マツト及び樹脂を含浸させた第4のガラス繊維
マツトの順で積層すると、第1及び第4のガラス
繊維マツトに含浸させた樹脂が、第2及び第3の
ガラス繊維マツトにそれぞれ染み込み、粘弾性シ
ートに達する。次に、樹脂を硬化させることによ
り、コイル部、粘弾性シート及びガラス繊維マツ
ト層の結合が強力なものとなる。また、コイル部
の粘弾性シートを貼る面が平滑でない場合は、上
記のようにガラス繊維マツトを介して粘弾性シー
トを積層することにより、コイル部と粘弾性シー
トとが強固に結合される。
According to the invention described in claim 2, the coil portion, the first glass fiber mat impregnated with resin, the second glass fiber mat, the viscoelastic sheet, the third glass fiber mat, and the fourth glass fiber mat impregnated with resin. When the glass fiber mats are laminated in this order, the resin impregnated in the first and fourth glass fiber mats soaks into the second and third glass fiber mats, respectively, and reaches the viscoelastic sheet. Next, by curing the resin, the bond between the coil portion, the viscoelastic sheet, and the glass fiber mat layer becomes strong. Furthermore, if the surface of the coil portion to which the viscoelastic sheet is attached is not smooth, the coil portion and the viscoelastic sheet are firmly bonded by laminating the viscoelastic sheets via a glass fiber mat as described above.

これにより、コイルにパルス状の電流を流す
と、この電流に応じた電磁力が発生し、コイル部
が振動するが、この振動は粘弾性シートによつて
吸収されて小さくなるので、騒音は小さくなる。
As a result, when a pulsed current is passed through the coil, an electromagnetic force corresponding to this current is generated and the coil section vibrates, but this vibration is absorbed by the viscoelastic sheet and becomes smaller, so the noise is small. Become.

請求項3記載の発明によれば、コイルが傾斜磁
場コイルの場合でも請求項1及び2記載の発明と
同様の作用を奏する。
According to the invention set forth in claim 3, even when the coil is a gradient magnetic field coil, the same effect as the invention set forth in claims 1 and 2 is achieved.

請求項4記載の発明によれば、コイルが送受信
コイルの場合でも請求項1及び2記載の発明と同
様の作用を奏する。
According to the invention set forth in claim 4, even when the coil is a transmitting/receiving coil, the same effect as the invention set forth in claims 1 and 2 is achieved.

請求項5記載の発明によれば、ガラス繊維強化
樹脂からなる内側遮音部材の内部に粘弾性シート
を積層する場合、ガラス繊維強化樹脂層の各面
は、平滑な面でないため、請求項2に記載した平
滑でない面との接合方法と同様の順序で行えばよ
い。
According to the invention described in claim 5, when the viscoelastic sheet is laminated inside the inner sound insulation member made of glass fiber reinforced resin, each surface of the glass fiber reinforced resin layer is not a smooth surface. It may be performed in the same order as the described method for joining with an uneven surface.

このように振動する傾斜磁場コイル部を密閉空
間に入れ、かつ、密閉空間を形成している内側遮
音部材内に粘弾性シートを積層して形成すると、
傾斜磁場コイル部の振動による騒音は、密閉空間
より外に洩れなくなる。更に、傾斜磁場コイル部
の振動によつて発生する密閉空間内の音圧による
内側遮音部材の振動が、内側遮音部材の粘弾性シ
ートにより吸収されるので、特に、被検者が入る
内側遮音部材の中心軸付近での騒音を低減するこ
とができる。
If the gradient magnetic field coil part that vibrates in this way is placed in a sealed space, and a viscoelastic sheet is laminated inside the inner sound insulation member forming the sealed space,
Noise caused by vibration of the gradient magnetic field coil section will no longer leak out from the closed space. Furthermore, since the vibration of the inner sound insulating member due to the sound pressure in the closed space generated by the vibration of the gradient magnetic field coil section is absorbed by the viscoelastic sheet of the inner sound insulating member, the inner sound insulating member in which the subject enters is particularly effective. It is possible to reduce noise near the central axis of the

請求項6記載の発明によれば、傾斜磁場用コイ
ルを非磁性樹脂でモールドする過程で、粘弾性シ
ートを積層することもできる。第1の筒体の第2
の筒体に向く面が平滑であるとすると、直接この
面に粘弾性シートを貼ることができ、第1の筒体
と第2の筒体との間隙に熱硬化性樹脂を注入し
て、この熱硬化性樹脂を硬化させると、粘弾性シ
ートと第2の筒体との結合が強力なものとなる。
According to the sixth aspect of the invention, the viscoelastic sheet can also be laminated in the process of molding the gradient magnetic field coil with non-magnetic resin. the second of the first cylinder
Assuming that the surface facing the cylinder is smooth, a viscoelastic sheet can be applied directly to this surface, and a thermosetting resin is injected into the gap between the first cylinder and the second cylinder. When this thermosetting resin is cured, the bond between the viscoelastic sheet and the second cylinder becomes strong.

(実施例) 以下、本発明の実施例を添付図面に基づいて、
詳細に説明する。
(Example) Hereinafter, examples of the present invention will be described based on the attached drawings.
Explain in detail.

本発明の一実施例のMRI用磁石装置を第1図
に示す。同図は、第6図aに示す従来装置の断面
図のA部の要部断面図で、本発明に係る実施例装
置の改良部を示している。
An MRI magnet device according to an embodiment of the present invention is shown in FIG. This figure is a sectional view of a main part of the A part of the sectional view of the conventional device shown in FIG. 6a, and shows an improved part of the embodiment device according to the present invention.

1はMRI用磁石、300は傾斜磁場コイル部
3と振動吸収部材30とからなる低振動型傾斜磁
場コイル部、5は外側遮音部材、400は内側遮
音部材、6はリング状の遮音側板である。前記外
側遮音部材5は、内側遮音部材400の外側に空
隙をもつて同軸的に配置され、遮音側板6は該外
側遮音部材5の両端部に設けられ、該外側遮音部
材5と前記内側遮音部材400と前記遮音側板6
とは、一体構造となつて、内部に密閉空間7を形
成し、前記MRI用磁石1の内部空間に支持具1
0(第6図b参照)で、該磁石1に取付けられて
いる。前記低振動型傾斜磁場コイル部300は、
前記密閉空間7内に支持具8a,8b(第6図a)
によつて防振ゴム8c(第6図a)を介して支持
されている。前記傾斜磁場コイル部3は、銅製の
傾斜磁場コイル3bに非磁性樹脂3aでモールド
し、筒状に形成した構造である。前記低振動型傾
斜磁場コイル部300は、前記傾斜磁場コイル部
3と、このコイル部3の外周に積層された振動吸
収部材30とから構成されている。この振動吸部
材30は、粘弾性シート3cの外周に、ガラス繊
維強化樹脂(以下FRPという)層を形成して成
つている。ここで、粘弾性シート3cは、粘弾性
特性を有するプラスチツクシートである。内側遮
音部材400は、被検体にRF波を照射し、被検
体からのMR信号を受信する送受信コイル部40
と、粘弾性シート40cと、ガラス繊維マツト4
0d(以下、樹脂含浸後のガラス繊維マツトをい
う)とから構成され筒状に形成されている。前記
送受信コイル部40は、銅製の送受信用コイル4
0bをFRP40aでモールドした構造である。
該送受信コイル部40の周囲に複数個のガラス繊
維マツト40dを積層し、この積層中に、粘弾性
シート40cを設けている。
1 is a magnet for MRI, 300 is a low-vibration type gradient magnetic field coil section consisting of a gradient magnetic field coil section 3 and a vibration absorbing member 30, 5 is an outer sound insulating member, 400 is an inner sound insulating member, and 6 is a ring-shaped sound insulating side plate. . The outer sound insulating member 5 is disposed coaxially with a gap outside the inner sound insulating member 400, and the sound insulating side plates 6 are provided at both ends of the outer sound insulating member 5, and the outer sound insulating member 5 and the inner sound insulating member 400 and the sound insulation side plate 6
is an integral structure that forms a sealed space 7 inside, and a support 1 is placed in the internal space of the MRI magnet 1.
0 (see FIG. 6b) and is attached to the magnet 1. The low vibration type gradient magnetic field coil section 300 includes:
Supports 8a and 8b (Fig. 6a) are provided in the sealed space 7.
It is supported by a vibration isolating rubber 8c (FIG. 6a). The gradient magnetic field coil section 3 has a structure in which a copper gradient magnetic field coil 3b is molded with a non-magnetic resin 3a to form a cylindrical shape. The low vibration type gradient magnetic field coil section 300 is composed of the gradient magnetic field coil section 3 and a vibration absorbing member 30 laminated on the outer periphery of the coil section 3. This vibration absorbing member 30 is formed by forming a glass fiber reinforced resin (hereinafter referred to as FRP) layer around the outer periphery of a viscoelastic sheet 3c. Here, the viscoelastic sheet 3c is a plastic sheet having viscoelastic properties. The inner sound insulating member 400 includes a transmitting/receiving coil section 40 that irradiates the subject with RF waves and receives MR signals from the subject.
, viscoelastic sheet 40c, and glass fiber mat 4
0d (hereinafter referred to as glass fiber mat after resin impregnation) and is formed into a cylindrical shape. The transmitting/receiving coil section 40 includes a transmitting/receiving coil 4 made of copper.
It has a structure in which 0b is molded with FRP40a.
A plurality of glass fiber mats 40d are laminated around the transmitting/receiving coil section 40, and a viscoelastic sheet 40c is provided in this lamination.

以上のように構成された低振動型傾斜磁場コイ
ル部300を用いたMRI用磁石装置において、
前記コイル3bにパルス状の電流を流すと、この
電流に応じた電磁力が発生し、前記低振動型傾斜
磁場コイル部300は、肉厚が薄いため、該コイ
ル部300の周面に直交する方向に主に振動す
る。この方向に振動すると、第2図aの粘弾性シ
ートの挙動を示す要部断面図に示すように、前記
周面に平行に歪が生じる。この歪が生じると、粘
弾性シート3cにせん断応力τが発生して該粘弾
性シート3cの変形により振動エネルギーは、熱
エネルギーに変換され振動は減衰する。この振動
の減衰を示した図が第2図bで、横軸が時間(単
位は秒)、縦軸は振動加速度(単位はガル)を表
わし、振動吸収部材30の外周で測定したもので
ある。同図bより振動してもわずか0.1秒程度で
減衰しているのがわかる。従つて、発生する騒音
も小さくなる。しかも、前記傾斜磁場コイル部3
が振動しても、前記密閉空間7内で振動している
ので、この振動が外に騒音となつて洩れるのも減
少する。
In the MRI magnet device using the low-vibration gradient magnetic field coil unit 300 configured as described above,
When a pulsed current is passed through the coil 3b, an electromagnetic force corresponding to this current is generated, and since the low-vibration gradient magnetic field coil section 300 has a thin wall thickness, the electromagnetic force is perpendicular to the circumferential surface of the coil section 300. It vibrates mainly in the direction. When vibrated in this direction, strain occurs in parallel to the circumferential surface, as shown in the cross-sectional view of the principal part showing the behavior of the viscoelastic sheet in FIG. 2a. When this strain occurs, shear stress τ is generated in the viscoelastic sheet 3c, and the vibration energy is converted into thermal energy due to the deformation of the viscoelastic sheet 3c, thereby damping the vibration. A diagram showing the attenuation of this vibration is shown in Fig. 2b, where the horizontal axis represents time (in seconds) and the vertical axis represents vibration acceleration (in gal), which was measured at the outer periphery of the vibration absorbing member 30. . From Figure b, it can be seen that even if the vibration occurs, it decays in only about 0.1 seconds. Therefore, the noise generated is also reduced. Moreover, the gradient magnetic field coil section 3
Even if it vibrates, it is vibrating within the closed space 7, so the possibility of this vibration leaking outside as noise is reduced.

また、前記傾斜磁場コイル部3は、密閉空間7
内で振動すると、該密閉空間7内で音圧が発生
し、内側遮音部材400を振動させる恐れがあ
る。そこで、この振動を吸収するため、該内側遮
音部材400に粘弾性シート40cを積層し、被
検体が入る該内側遮音部材400の開口4a中へ
の騒音を、より低減している。従つて、静粛な
MRI磁石装置とすることができる。
Further, the gradient magnetic field coil section 3 is arranged in a closed space 7.
When the inner sound insulating member 400 vibrates, sound pressure is generated within the sealed space 7, which may cause the inner sound insulating member 400 to vibrate. Therefore, in order to absorb this vibration, a viscoelastic sheet 40c is laminated on the inner sound insulating member 400 to further reduce the noise entering the opening 4a of the inner sound insulating member 400 into which the subject enters. Therefore, quiet
It can be an MRI magnet device.

次に、粘弾性シート3c,40cをMRI用磁
石装置に適用した場合の該装置の製造方法の実施
例について説明する。
Next, an example of a method for manufacturing an MRI magnet device in which the viscoelastic sheets 3c and 40c are applied to the device will be described.

第3図a乃至dは本実施例装置の低振動型傾斜
磁場コイル部300の第1実施例の製造工程を示
す図である。この製造工程は、 (イ) 第1工程(第3図a):樹脂含浸前のガラス
繊維マツト3ddと粘弾性シート3cとを接着
して積層部材3cdを形成する工程、 (ロ) 第2工程(第3図b):傾斜磁場コイル部3
に沿つて、貼付面に前記粘弾性シート3cがく
るように前記積層部材3cdを接着する工程、 (ハ) 第3工程(第3図c):前記積層部材3cdの
外側に樹脂を含浸させたガラス繊維マツト3d
(以下、単にガラス繊維マツト3dという)を
1回以上積層する工程、 (ニ) 第4工程(第3図d):前記樹脂を硬化させ
て前記ガラス繊維マツト3dをFRP34とす
る振動吸収部材30を形成する工程、 (ホ) 第5工程(図示せず):MRI用磁石1に低振
動型傾斜コイル部300を組込む工程、 からなる。
FIGS. 3a to 3d are diagrams showing the manufacturing process of the first embodiment of the low-vibration type gradient magnetic field coil section 300 of the apparatus of this embodiment. This manufacturing process includes: (a) First step (Fig. 3a): A step of bonding the glass fiber mat 3dd before resin impregnation and the viscoelastic sheet 3c to form a laminated member 3cd; (b) Second step (Figure 3b): Gradient magnetic field coil section 3
(c) Third step (Fig. 3c): impregnating the outside of the laminated member 3c with resin so that the viscoelastic sheet 3c is on the attachment surface. glass fiber mat 3d
(hereinafter simply referred to as glass fiber mat 3d) one or more times, (d) Fourth step (Fig. 3 d): A vibration absorbing member 30 in which the resin is cured and the glass fiber mat 3d is made into FRP 34. (e) Fifth step (not shown): a step of incorporating the low-vibration type gradient coil section 300 into the MRI magnet 1.

第4図a乃至eは、本実施例装置の内側遮音部
材400の一実施例の製造工程を示す図である。
FIGS. 4a to 4e are diagrams showing the manufacturing process of an embodiment of the inner sound insulating member 400 of the apparatus of this embodiment.

この製造工程は、 (イ) 第1工程(第4図a):外周がFRP製の送受
信コイル部40に樹脂を含浸させたガラス繊維
マツト40dを積層する工程、 (ロ) 第2工程(第4図b):樹脂含浸前のガラス
繊維マツト40ddを粘弾性シート40cの両
面に接着して積層部材40cdを形成する工程、 (ハ) 第3工程(第4図c):前記積層部材40cd
を前記樹脂を含浸させたガラス繊維マツト40
dの外周に貼る工程、 (ニ) 第4工程(第4図d):前記積層部材40cd
の外周に樹脂を含浸させたガラス繊維マツト4
0dを積層する工程、 (ホ) 第5工程(第4図e):前記樹脂を硬化させ
て、FRP41,42を形成する工程、 (ヘ) 第6工程(図示せず):内側遮音部材400
を外側遮音部材5と遮音側板6と低振動型傾斜
磁場コイル部300と組合せて、MRI磁石1
に組込む工程、 からなる。
This manufacturing process consists of (a) a first process (Fig. 4a): a process of laminating a resin-impregnated glass fiber mat 40d on a transmitting/receiving coil part 40 whose outer periphery is made of FRP; (b) a second process (Fig. 4a); Figure 4b): Step of bonding the glass fiber mat 40dd before resin impregnation to both sides of the viscoelastic sheet 40c to form the laminated member 40cd, (c) Third step (Figure 4c): The laminated member 40cd
Glass fiber mat 40 impregnated with the resin
(d) Fourth step (Fig. 4 d): The laminated member 40 cd
Glass fiber mat 4 whose outer periphery is impregnated with resin
(e) Fifth step (Fig. 4 e): Curing the resin to form FRPs 41, 42; (F) Sixth step (not shown): Inner sound insulating member 400
is combined with the outer sound insulating member 5, the sound insulating side plate 6, and the low-vibration gradient magnetic field coil section 300 to form the MRI magnet 1.
It consists of the process of incorporating into.

第5図a乃至cは、本実施例装置の第2実施例
の製造工程を示す図である。この製造工程は、 (イ) 第1工程(第5図a):非磁性樹脂からなる
第2の筒体31にコイル3bを仮止め部材31
cで固定する工程、 (ロ) 第2工程(第5図b):非磁性樹脂からなる
第1の筒体32の内面に粘弾性シート3cを接
着する工程、 (ハ) 第3工程(第5図c):前記第1の筒体32
と前記第2の筒体31とを空隙をもつて同軸的
に保持し、前記空隙に熱硬化性樹脂であるエポ
キシ樹脂33cを注入し、該樹脂33を硬化さ
せて、低振動型傾斜磁場コイル部300を成形
する工程、 (ニ) 第4工程(図示せず):前記低振動型傾斜磁
場コイル部300をMRI用磁石1に組込む工
程、 からなる。
FIGS. 5a to 5c are diagrams showing the manufacturing process of the second embodiment of the device of this embodiment. This manufacturing process is as follows: (a) First step (Fig. 5a): Temporarily fixing the coil 3b to the second cylindrical member 31 made of non-magnetic resin.
(b) Second step (FIG. 5b): A step of adhering the viscoelastic sheet 3c to the inner surface of the first cylindrical body 32 made of non-magnetic resin, (c) Third step (FIG. 5b): Figure 5c): The first cylinder 32
and the second cylindrical body 31 are held coaxially with a gap between them, and an epoxy resin 33c, which is a thermosetting resin, is injected into the gap, and the resin 33 is hardened to form a low-vibration gradient magnetic field coil. (d) Fourth step (not shown): a step of incorporating the low vibration type gradient magnetic field coil section 300 into the MRI magnet 1.

粘弾性シート3cの振動エネルギー吸収の有効
な構造は、粘弾性シート3cの内側の層である傾
斜磁場コイル部3と、該シート3cの外側の層で
あるFRP34とが等しい曲げ剛性を有する構造
である。(第3図参照)すなわち、前記傾斜磁場
コイル部3と、FRP34とが同材質の場合は、
それぞれの肉厚を等しくすればよく、FRP34
より傾斜磁場コイル部3を曲げ剛性が低い材質で
作る場合は、FRP34の肉厚を薄くすれば、等
しい曲げ剛性となる。
An effective structure for vibration energy absorption of the viscoelastic sheet 3c is a structure in which the gradient magnetic field coil section 3, which is the inner layer of the viscoelastic sheet 3c, and the FRP 34, which is the outer layer of the viscoelastic sheet 3c, have equal bending rigidity. be. (See Figure 3) That is, when the gradient magnetic field coil section 3 and the FRP 34 are made of the same material,
All you have to do is make the wall thickness the same, FRP34
If the gradient magnetic field coil section 3 is made of a material with lower bending rigidity, the same bending rigidity can be achieved by reducing the thickness of the FRP 34.

以上、MRI用磁石装置の一実施例について説
明したが、本発明はこれに限定されるものでな
く、その要旨を変更しない範囲で種々に変形実施
が可能である。
Although one embodiment of the MRI magnet device has been described above, the present invention is not limited thereto, and various modifications can be made without changing the gist thereof.

例えば、振動吸収部材内又は、内側遮音部材内
に複数個の粘弾性シートを介在させたい場合、複
数個の粘弾性シート間にFRP等の振動吸収部材
を介在させてもよいし、複数個の粘弾性シート同
志を密着させてもよい。
For example, when it is desired to interpose a plurality of viscoelastic sheets within a vibration absorbing member or an inner sound insulating member, a vibration absorbing member such as FRP may be interposed between a plurality of viscoelastic sheets, or a plurality of The viscoelastic sheets may be brought into close contact with each other.

また、本実施例装置の低振動型傾斜磁場コイル
部は、傾斜磁場コイル部の外側に粘弾性シートを
積層した構造であるが、該傾斜磁場コイル部の内
側又は両側に積層してもよい。
Furthermore, although the low-vibration type gradient magnetic field coil section of the device of this embodiment has a structure in which a viscoelastic sheet is laminated on the outside of the gradient magnetic field coil section, it may be laminated on the inside or both sides of the gradient magnetic field coil section.

更に、本実施例装置は、密閉空間に低振動型傾
斜磁場コイル部を設けたが、該コイル部を直接
MRI用磁石装置の内部空間に設けたり、あるい
は、粘弾性シートを積層した内側遮音部材により
形成した密閉空間に粘弾性シートを有していない
傾斜磁場コイル部を設けても当該装置の低騒音化
は計れる。
Furthermore, although the device of this embodiment has a low-vibration gradient magnetic field coil section in a closed space, the coil section is not directly connected to the coil section.
Even if a gradient magnetic field coil section without a viscoelastic sheet is installed in the internal space of the MRI magnet device or in a closed space formed by an inner sound insulating member laminated with a viscoelastic sheet, the noise of the device can be reduced. can be measured.

また更に、本実施例装置の内側遮音部材は、送
受信コイルを有する構造であるが、該送受信コイ
ルを含まない構造としてもよい。この場合は、内
側遮音部材の内側に送信受信コイルを設ければよ
い。
Furthermore, although the inner sound insulating member of the device of this embodiment has a structure including a transmitting/receiving coil, it may have a structure not including the transmitting/receiving coil. In this case, a transmitting/receiving coil may be provided inside the inner sound insulating member.

[発明の効果] 以上詳述した請求項1記載の発明によれば、粘
弾性シートとガラス繊維マツト層との結合が強力
なものとなり、コイル部の粘弾性シートを貼る面
が平滑な場合は、コイル部と粘弾性シートとを接
着しても、粘弾性シートの接着面が平滑なので、
接着面積が広くなり、十分な接着強度が得られる
ので、コイル部、粘弾性シート及びガラス繊維マ
ツト層は、互いに強固に結合される。これによ
り、コイルにパルス状の電流を流してこの電流に
応じた電磁力が発生し、コイル部が振動しても、
この振動は粘弾性シートによつて吸収されて小さ
くなるので、騒音は小さくなり、中心軸方向の低
騒音化が図れる。
[Effects of the Invention] According to the invention described in claim 1 detailed above, the bond between the viscoelastic sheet and the glass fiber mat layer becomes strong, and when the surface of the coil portion to which the viscoelastic sheet is applied is smooth, , Even if the coil part and the viscoelastic sheet are bonded together, the adhesion surface of the viscoelastic sheet is smooth, so
Since the bonding area is increased and sufficient bonding strength is obtained, the coil portion, viscoelastic sheet, and glass fiber mat layer are firmly bonded to each other. As a result, a pulsed current is passed through the coil, and an electromagnetic force corresponding to this current is generated, and even if the coil part vibrates,
Since this vibration is absorbed by the viscoelastic sheet and becomes smaller, the noise is reduced, and the noise in the central axis direction can be reduced.

請求項2記載の発明によれば、粘弾性シートと
ガラス繊維マツト層との結合が強力なものとな
り、コイル部の粘弾性シートを貼る面が平滑でな
い場合は、ガラス繊維マツトを介して粘弾性シー
トを積層することにより、コイル部と粘弾性シー
トとが強固に結合され、コイル部、粘弾性シート
及びガラス繊維マツト層の結合が強力なものとな
る。これにより、コイルにパルス状の電流を流し
てこの電流に応じた電磁力が発生し、コイル部が
振動しても、この振動は粘弾性シートによつて吸
収されて小さくなるので、騒音は小さくなり、中
心軸方向の低騒音化が図れる。
According to the invention as claimed in claim 2, the bond between the viscoelastic sheet and the glass fiber mat layer becomes strong, and if the surface of the coil portion to which the viscoelastic sheet is applied is not smooth, the viscoelastic sheet is bonded to the glass fiber mat layer. By stacking the sheets, the coil portion and the viscoelastic sheet are firmly bonded, and the bond between the coil portion, the viscoelastic sheet, and the glass fiber mat layer becomes strong. As a result, a pulsed current is passed through the coil, and an electromagnetic force corresponding to this current is generated. Even if the coil part vibrates, this vibration is absorbed by the viscoelastic sheet and becomes smaller, resulting in less noise. Therefore, noise reduction in the direction of the central axis can be achieved.

請求項3記載の発明によれば、コイルが傾斜磁
場コイルの場合でも請求項1及び2記載の発明と
同様の効果を奏する。
According to the invention set forth in claim 3, even when the coil is a gradient magnetic field coil, the same effects as those of the inventions set forth in claims 1 and 2 can be achieved.

請求項4記載の発明によれば、コイルが送受信
コイルの場合でも請求項1及び2記載の発明と同
様の効果を奏する。
According to the invention set forth in claim 4, even when the coil is a transmitting/receiving coil, the same effects as those of the inventions set forth in claims 1 and 2 can be achieved.

請求項5記載の発明によれば、傾斜磁場コイル
部を密閉空間に入れ、かつ、密閉空間を形成して
いる内側遮音部材内に粘弾性シートを積層して形
成しているので、傾斜磁場コイル部の振動による
騒音は、密閉空間より外に洩れなくなる。更に、
傾斜磁場コイル部の振動によつて発生する密閉空
間内の音圧による内側遮音部材の振動が、内側遮
音部材内の粘弾性シートにより吸収されるので、
特に、被検者が入る内側遮音部材の中心軸付近で
の騒音を低減することができる。
According to the invention set forth in claim 5, the gradient magnetic field coil portion is placed in a sealed space, and the viscoelastic sheet is laminated within the inner sound insulating member forming the sealed space, so that the gradient magnetic field coil portion The noise caused by the vibration of the parts will not leak out from the closed space. Furthermore,
The vibration of the inner sound insulating member due to the sound pressure in the closed space generated by the vibration of the gradient magnetic field coil section is absorbed by the viscoelastic sheet in the inner sound insulating member.
In particular, noise near the central axis of the inner sound insulating member into which the subject enters can be reduced.

請求項6記載の発明によれば、熱硬化性樹脂を
注入するだけで第1の筒体と第2の筒体との結合
及び傾斜磁場用コイルと第2の筒体との結合が同
時に行えるので短時間に低振動型傾斜磁場コイル
部を製造することができる。
According to the invention set forth in claim 6, the first cylindrical body and the second cylindrical body and the gradient magnetic field coil and the second cylindrical body can be simultaneously coupled by simply injecting the thermosetting resin. Therefore, a low vibration type gradient magnetic field coil section can be manufactured in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のMRI用磁石装
置の要部断面図である。第2図は本発明のMRI
用磁石装置に用いられる一実施例の低振動型傾斜
磁場コイル部の粘弾性シートの挙動に関する図
で、同図aは要部断面図、同図bは振動波形の図
である。第3図a乃至dは本発明の第1実施例の
低振動型傾斜磁場コイル部の製造工程図、第4図
a乃至eは本発明の実施例の内側遮音部材の製造
工程図、第5図a乃至cは本発明の第2実施例の
低振動型傾斜磁場コイル部の製造工程図である。
第6図は従来例のMRI用磁石装置に関する図で、
同図aは断面図、同図bは斜視図である。 1…MRI用磁石、3…傾斜磁場コイル部、3
a,40a…非磁性樹脂、3b…傾斜磁場用コイ
ル、3c,40c…粘弾性シート、3cd,40
cd…積層部材、3d,40d…樹脂含浸後のガ
ラス繊維マツト、3dd,40dd…樹脂含浸前の
ガラス繊維マツト、30…振動吸収部材、31…
第2の筒体、32…第1の筒体、31c…仮止め
部材、33…熱硬化性樹脂、34,41,42…
FRP、400…内側遮音部材、5…外側遮音部
材、6…遮音側板、7…密閉空間。
FIG. 1 is a sectional view of a main part of an MRI magnet device according to an embodiment of the present invention. Figure 2 shows the MRI of the present invention.
FIG. 2 is a diagram relating to the behavior of a viscoelastic sheet in a low-vibration type gradient magnetic field coil section of an embodiment used in a magnet device, in which FIG. 3a to 3d are manufacturing process diagrams of the low-vibration type gradient magnetic field coil section according to the first embodiment of the present invention, FIGS. Figures a to c are manufacturing process diagrams of a low-vibration type gradient magnetic field coil section according to a second embodiment of the present invention.
Figure 6 is a diagram of a conventional MRI magnet device.
Figure a is a sectional view, and figure b is a perspective view. 1... MRI magnet, 3... Gradient magnetic field coil section, 3
a, 40a... Non-magnetic resin, 3b... Gradient magnetic field coil, 3c, 40c... Viscoelastic sheet, 3cd, 40
cd...Laminated member, 3d, 40d...Glass fiber mat after resin impregnation, 3dd, 40dd...Glass fiber mat before resin impregnation, 30...Vibration absorbing member, 31...
Second cylindrical body, 32... First cylindrical body, 31c... Temporary fixing member, 33... Thermosetting resin, 34, 41, 42...
FRP, 400...inner sound insulating member, 5...outer sound insulating member, 6...sound insulating side plate, 7...closed space.

Claims (1)

【特許請求の範囲】 1 コイルをモールドして筒状に形成したコイル
部を有するMRI用磁石装置の製造方法において、
第1のガラス繊維マツトを粘弾性シートの片面に
接着して積層部材を形成する工程と、前記コイル
部の内側及び外側の少なくともいずれか一方の面
と前記積層部材の粘弾性シート側の面とを接着す
る工程と、前記積層部材の第1のガラス繊維マツ
ト側の面に樹脂を含浸させた第2のガラス繊維マ
ツトを積層する工程と、前記含浸させた樹脂を硬
化させる工程とを有することを特徴とするMRI
用磁石装置の製造方法。 2 コイルをモールドして筒状に形成したコイル
部を有するMRI用磁石装置の製造方法において、
前記コイル部の内側及び外側の少なくともいずれ
か一方の面に、樹脂を含浸させた第1のガラス繊
維マツトを積層する工程と、第2及び第3のガラ
ス繊維マツトを粘弾性シートの両面にそれぞれ接
着して積層部材を形成する工程と、前記第1のガ
ラス繊維マツトに前記積層部材を積層する工程
と、前記積層部材に樹脂を含浸させた第4のガラ
ス繊維マツトを積層する工程と、前記第1及び第
4のガラス繊維樹脂に含浸させた樹脂を硬化させ
る工程とを有することを特徴とするMRI用磁石
装置の製造方法。 3 前記コイルは、傾斜磁場コイルであることを
特徴とする請求項1又は2記載のMRI用磁石装
置の製造方法。 4 前記コイルは、送受信コイルであることを特
徴とする請求項1又は2記載のMRI用磁石装置
の製造方法。 5 筒状に形成された内側遮音部材と、この内側
遮音部材の外側に空隙をもつて同軸的に配置さ
れ、かつ、筒状に形成された外側遮音部材と、該
両遮音部材の両端部にリング状の遮音側板とを設
け、前記両遮音部材と、前記遮音側板とで密閉空
間を形成し、該密閉空間内に、傾斜磁場用コイル
を非磁性樹脂でモールドして筒状に形成した傾斜
磁場コイル部を設けたMRI用磁石装置の製造方
法において、予め樹脂含浸前のガラス繊維マツト
を粘弾性シートの両面に接着して積層部材を形成
し、樹脂を含浸させたガラス繊維マツトを複数回
積層させてガラス繊維強化樹脂を形成する工程中
に、前記積層部材を積層し、前記含浸させた樹脂
を硬化させて、前記内側遮音部材を形成する工程
を有することを特徴とするMRI用磁石装置の製
造方法。 6 非磁性樹脂からなる第1の筒体と、この第1
の筒体の内側に同軸的に配置され、かつ、非磁性
樹脂からなる第2の筒体と、この第2の筒体と前
記第1の筒体との間に設けられた傾斜磁場用コイ
ル部とから構成された傾斜磁場コイル部を有する
MRI用磁石装置の製造方法において、前記第1
の筒体の前記第2の筒体に向く面に粘弾性シート
を接着し、前記第2の筒体の前記第1の筒体に向
く面に傾斜磁場用コイルを仮止めし、前記第1の
筒体と前記第2の筒体とを空隙をもつて同軸的に
保持し、該空隙に熱硬化性樹脂を注入し、該熱硬
化性樹脂を硬化させて、傾斜磁場コイル部を成形
する工程を有することを特徴とするMRI用磁石
装置の製造方法。
[Claims] 1. A method for manufacturing an MRI magnet device having a coil portion formed into a cylindrical shape by molding a coil,
bonding a first glass fiber mat to one side of a viscoelastic sheet to form a laminated member; and at least one of the inner and outer surfaces of the coil portion and the viscoelastic sheet side surface of the laminated member. a step of laminating a second glass fiber mat impregnated with resin on the surface of the laminated member on the first glass fiber mat side, and a step of curing the impregnated resin. MRI characterized by
A method for manufacturing a magnetic device for 2. In a method for manufacturing an MRI magnet device having a coil portion formed into a cylindrical shape by molding a coil,
A step of laminating a first glass fiber mat impregnated with resin on at least one of the inner and outer surfaces of the coil portion, and laminating second and third glass fiber mats on both sides of the viscoelastic sheet, respectively. a step of adhering to form a laminated member; a step of laminating the laminated member on the first glass fiber mat; a step of laminating the laminated member with a fourth glass fiber mat impregnated with a resin; A method for manufacturing an MRI magnet device, comprising the step of curing resins impregnated with first and fourth glass fiber resins. 3. The method for manufacturing an MRI magnet device according to claim 1 or 2, wherein the coil is a gradient magnetic field coil. 4. The method for manufacturing an MRI magnet device according to claim 1 or 2, wherein the coil is a transmitting/receiving coil. 5. An inner sound insulating member formed in a cylindrical shape, an outer sound insulating member arranged coaxially with a gap outside the inner sound insulating member and formed in a cylindrical shape, and a cylindrical outer sound insulating member at both ends of the two sound insulating members. A ring-shaped sound insulating side plate is provided, a sealed space is formed by both the sound insulating members and the sound insulating side plate, and a gradient magnetic field coil is molded with a non-magnetic resin in the sealed space to form a cylindrical shape. In a method for manufacturing an MRI magnet device equipped with a magnetic field coil section, glass fiber mats that have not been impregnated with resin are bonded to both sides of a viscoelastic sheet in advance to form a laminated member, and the glass fiber mats impregnated with resin are bonded multiple times. An MRI magnet device characterized by having a step of laminating the laminated members and curing the impregnated resin to form the inner sound insulating member during the step of laminating the laminated members to form the glass fiber reinforced resin. manufacturing method. 6 A first cylindrical body made of non-magnetic resin, and
a second cylindrical body coaxially arranged inside the cylindrical body and made of non-magnetic resin; and a gradient magnetic field coil provided between the second cylindrical body and the first cylindrical body. It has a gradient magnetic field coil section consisting of a section and a gradient coil section.
In the method for manufacturing an MRI magnet device, the first
A viscoelastic sheet is adhered to the surface of the cylinder facing the second cylinder, a gradient magnetic field coil is temporarily fixed to the surface of the second cylinder facing the first cylinder, and a gradient magnetic field coil is temporarily fixed to the surface of the second cylinder facing the first cylinder. The cylindrical body and the second cylindrical body are held coaxially with a gap, a thermosetting resin is injected into the gap, and the thermosetting resin is cured to form a gradient magnetic field coil part. 1. A method for manufacturing an MRI magnet device, comprising the steps of:
JP63278094A 1988-11-01 1988-11-01 Magnet device for mri and manufacture of the same Granted JPH02124139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63278094A JPH02124139A (en) 1988-11-01 1988-11-01 Magnet device for mri and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63278094A JPH02124139A (en) 1988-11-01 1988-11-01 Magnet device for mri and manufacture of the same

Publications (2)

Publication Number Publication Date
JPH02124139A JPH02124139A (en) 1990-05-11
JPH0568975B2 true JPH0568975B2 (en) 1993-09-30

Family

ID=17592553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63278094A Granted JPH02124139A (en) 1988-11-01 1988-11-01 Magnet device for mri and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH02124139A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510A (en) * 1995-06-23 1997-01-07 Ge Yokogawa Medical Syst Ltd Coil mechanism of magnetic resonance photographing device
JP6188347B2 (en) * 2012-02-22 2017-08-30 東芝メディカルシステムズ株式会社 X-ray CT system

Also Published As

Publication number Publication date
JPH02124139A (en) 1990-05-11

Similar Documents

Publication Publication Date Title
JPH0568973B2 (en)
US5256969A (en) Gradient magnetic field coil for magnetic resonance imaging system
EA000836B1 (en) Inertial vibration transducer
KR19990037667A (en) Vibration transducer
SK25698A3 (en) Vibration transducers
GB2406382A (en) Acoustically Damped Gradient Coil
KR101702687B1 (en) Magnetic resonance device
US9910110B2 (en) Medical imaging device comprising a housing unit that has a casing shell and method for producing a casing shell of the medical imaging device
US20130234709A1 (en) Magnetic resonance apparatus
EP4080744A1 (en) Pole piece device for magnetic gear, magnetic gear, and production method for pole piece device for magnetic gear
JPS607296A (en) Ultrasonic wave transceiver for underwater searching
US4774486A (en) Coil mounting for NMR diagnostic apparatus
JPH0568975B2 (en)
JP4881250B2 (en) Magnetic resonance imaging device
JPS59216045A (en) Slanting magnetic field coil
JPS62290548A (en) Printer, particularly, needle type matrix printer
JPH01208817A (en) Magnet device for nuclear magnetic resonance type diagnostic apparatus
JP2886871B2 (en) Nuclear magnetic resonance equipment
JPH0332643A (en) Nuclear magnetic resonance device
US20030123688A1 (en) Sound-damping laminate system
JPH11230265A (en) Base isolation mount for equipment
Lavergne et al. On the modeling of an emitting cylindrical transducer with a piezoelectric polymer membrane
JP2001258864A (en) Inclined magnetic field unit and magnetic resonance imaging device
JPH02302245A (en) Inclined magnetic field coil
JPH0351035A (en) Noise reducing structure for inclined magnetic field coil system