JPH056896A - Bipolar transistor and manufacture thereof - Google Patents

Bipolar transistor and manufacture thereof

Info

Publication number
JPH056896A
JPH056896A JP15663991A JP15663991A JPH056896A JP H056896 A JPH056896 A JP H056896A JP 15663991 A JP15663991 A JP 15663991A JP 15663991 A JP15663991 A JP 15663991A JP H056896 A JPH056896 A JP H056896A
Authority
JP
Japan
Prior art keywords
film
region
oxide film
semiconductor substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15663991A
Other languages
Japanese (ja)
Inventor
Hiroshi Horie
博 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15663991A priority Critical patent/JPH056896A/en
Publication of JPH056896A publication Critical patent/JPH056896A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To improve high speed operating characteristics in a bipolar transistor having features in an interelement isolating region and a collector region and a method for manufacturing the same. CONSTITUTION:A LOCOS oxide film 4 is formed on a semiconductor substrate 1, a recess so retaining the film 4 on a periphery as to be larger than a region of the substrate 1 in which the film 4 is not formed, a metal silicide film 6 is formed on the surface of the substrate 1 exposed in the recess, and a polycrystalline semiconductor layer 7 is formed thereon. The layer 7 remains only in the recess to be flattened, an impurity is implanted to reduce its resistance, and an insulating film 8 is formed on the flattened layer 7. A supporting substrate 9 is adhered to the film 8, the back surface of the substrate 1 is polished until the film 4 is exposed, the substrate 1 remaining in the polishing step is used as a collector region, and the metal silicide film is so formed as to lead it as a collector leading region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、素子間分離領域とコレ
クタ領域に特徴を有するバイポーラトランジスタおよび
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bipolar transistor having a device isolation region and a collector region, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図4は、従来のバイポーラトランジスタ
の構成説明図である。この図において、31はp型半導
体基板、32はn+ 型埋め込み層、33はn型コレクタ
領域、34はp+ 型領域、35はp型ベース領域、36
はn+ 型エミッタ領域、37はp+ 型ベース引出し領
域、38はn+ 型コレクタ引出し領域、39はベース電
極、40はエミッタ電極、41はコレクタ電極である。
2. Description of the Related Art FIG. 4 is a diagram for explaining the structure of a conventional bipolar transistor. In this figure, 31 is a p-type semiconductor substrate, 32 is an n + -type buried layer, 33 is an n-type collector region, 34 is a p + -type region, 35 is a p-type base region, and 36.
Is an n + type emitter region, 37 is ap + type base extraction region, 38 is an n + type collector extraction region, 39 is a base electrode, 40 is an emitter electrode, and 41 is a collector electrode.

【0003】図4に示されているように、従来のバイポ
ーラトランジスタにおいては、コレクタ領域の底面およ
び側面がpn接合によって他の領域から分離されてお
り、これを製造する過程で一連の工程を半導体基板の片
側から加えることができるため、複数のバイポーラトラ
ンジスタを集積化することが容易であった。
As shown in FIG. 4, in the conventional bipolar transistor, the bottom surface and the side surface of the collector region are separated from other regions by a pn junction. Since it can be added from one side of the substrate, it was easy to integrate a plurality of bipolar transistors.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来のバイポーラトランジスタはpn接合によって他の
領域から分離されているため、その寄生容量を無視する
ことができず、また、その構造に起因して長く引き回さ
れるコレクタ領域とコレクタ引出し領域が不純物の拡散
によって形成されているため、その引出し抵抗が無視出
来ず、これを組み込んだ回路を高速化する上で問題があ
った。
However, since the above-mentioned conventional bipolar transistor is separated from other regions by the pn junction, its parasitic capacitance cannot be ignored, and due to its structure. Since the collector region and the collector extraction region, which are extended for a long time, are formed by diffusion of impurities, the extraction resistance cannot be ignored, and there is a problem in increasing the speed of a circuit incorporating the same.

【0005】[0005]

【課題を解決するための手段】本発明にかかるバイポー
ラトランジスタにおいては、上記の課題を解決するため
に、コレクタ領域の底面および側面が絶縁体膜によって
包囲され、該コレクタ領域からの引出し領域がメタルシ
リサイド膜である構成を採用した。
In the bipolar transistor according to the present invention, in order to solve the above-mentioned problems, the bottom surface and side surfaces of the collector region are surrounded by an insulating film, and the extraction region from the collector region is made of metal. A structure that is a silicide film is adopted.

【0006】また、本発明にかかるバイポーラトランジ
スタの製造方法においては、半導体基板上に素子分離用
LOCOS酸化膜を形成する工程と、該半導体基板上
に、該LOCOS酸化膜が形成されていない半導体基板
の領域より大きく、周囲に該LOCOS酸化膜を残す開
口を有するレジスト膜を形成する工程と、該レジスト膜
をマスクとして該LOCOS酸化膜をエッチング除去し
て凹部を形成する工程と、該凹部内の露出した半導体基
板表面にメタルシリサイド膜を形成する工程と、該半導
体基板全面に多結晶半導体層を堆積する工程と、該凹部
のみに多結晶半導体層を残して該多結晶半導体層を平坦
化する工程と、該多結晶半導体層に高濃度の不純物を導
入する工程と、平坦化された該多結晶半導体層の上に絶
縁膜を形成する工程と、該絶縁膜に支持基板を貼り合わ
せる工程と、該半導体基板の背面をLOCOS酸化膜が
露出するまで研磨する工程と、該研磨工程によって残さ
れた半導体基板をコレクタ領域とし、該メタルシリサイ
ド膜をコレクタ引出し領域として引き出す工程を含む構
成を採用した。
Further, in the method for manufacturing a bipolar transistor according to the present invention, a step of forming a LOCOS oxide film for element isolation on a semiconductor substrate, and a semiconductor substrate on which the LOCOS oxide film is not formed A region having a larger opening than the above region and having an opening left for leaving the LOCOS oxide film, a step of etching away the LOCOS oxide film using the resist film as a mask to form a recess, and a step of forming a recess in the recess. A step of forming a metal silicide film on the exposed surface of the semiconductor substrate, a step of depositing a polycrystalline semiconductor layer on the entire surface of the semiconductor substrate, and a step of flattening the polycrystalline semiconductor layer leaving the polycrystalline semiconductor layer only in the concave portions. A step, a step of introducing a high concentration impurity into the polycrystalline semiconductor layer, and a step of forming an insulating film on the planarized polycrystalline semiconductor layer A step of adhering a supporting substrate to the insulating film, a step of polishing the back surface of the semiconductor substrate until the LOCOS oxide film is exposed, and a semiconductor substrate left by the polishing step as a collector region, and a metal silicide film A structure including a step of pulling out as a collector lead-out area is adopted.

【0007】また本発明にかかるバイポーラトランジス
タの他の製造方法においては、半導体基板上に素子分離
用のLOCOS酸化膜を形成する工程と、該半導体基板
上に、該LOCOS酸化膜が形成されていない半導体基
板の領域より大きく、周囲に該LOCOS酸化膜を残す
開口を有するレジスト膜を形成する工程と、該レジスト
膜をマスクとして該LOCOS酸化膜をエッチング除去
して凹部を形成する工程と、該凹部内の露出した半導体
基板表面にメタルシリサイド膜を形成する工程と、該半
導体基板全面に絶縁膜を堆積する工程と、該絶縁膜の表
面を平坦化する工程と、平坦化された該絶縁膜の上に支
持基板を貼り合わせる工程と、該半導体基板の背面をL
OCOS酸化膜が露出するまで研磨する工程と、該研磨
工程によって残された半導体基板をコレクタ領域とし、
該メタルシリサイド膜をコレクタ引出し領域として引き
出す工程を含む構成を採用した。
In another method of manufacturing a bipolar transistor according to the present invention, the step of forming a LOCOS oxide film for element isolation on the semiconductor substrate and the step of not forming the LOCOS oxide film on the semiconductor substrate. A step of forming a resist film having an opening larger than a region of the semiconductor substrate and having an opening for leaving the LOCOS oxide film around, a step of etching and removing the LOCOS oxide film using the resist film as a mask to form a concave part; A step of forming a metal silicide film on the exposed surface of the semiconductor substrate, a step of depositing an insulating film on the entire surface of the semiconductor substrate, a step of flattening the surface of the insulating film, and a step of forming the flattened insulating film. The step of attaching the support substrate on top and the rear surface of the semiconductor substrate
A step of polishing until the OCOS oxide film is exposed, and the semiconductor substrate left by the polishing step is used as a collector region,
A structure including a step of drawing out the metal silicide film as a collector extraction region is adopted.

【0008】[0008]

【作用】上記本発明の構成を採用することにより、すな
わち、バイポーラトランジスタを他の領域から絶縁膜に
よって分離しているため、寄生容量を低減でき、また、
コレクタ領域からの引出し領域がメタルシリサイド膜に
よって引き出されるため、コレクタ抵抗が低減され、そ
の結果、バイポーラトランジスタの高速動作特性を向上
することができる。また、本発明の製造方法を採用する
ことによって、上記のバイポーラトランジスタを能率よ
く、歩留り高く製造することがてきる。
By adopting the structure of the present invention, that is, since the bipolar transistor is separated from the other regions by the insulating film, the parasitic capacitance can be reduced, and
Since the extraction region from the collector region is extracted by the metal silicide film, the collector resistance is reduced, and as a result, the high speed operation characteristics of the bipolar transistor can be improved. Further, by adopting the manufacturing method of the present invention, the bipolar transistor described above can be manufactured efficiently and with high yield.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。 (第1実施例)図1(A)〜(D)、図2(E)〜
(G)は、本発明の第1実施例の製造工程説明図であ
る。
EXAMPLES Examples of the present invention will be described below. (First Embodiment) FIGS. 1A to 1D and 2E to
(G) is a manufacturing process explanatory view of the first embodiment of the present invention.

【0010】この図において、1はSi基板、2はパッ
ド酸化膜、3はCVD窒化膜、4はLOCOS酸化膜、
5はレジストパターン、6はTiSi2 膜、7は多結晶
Si層、8は酸化膜、9はシリコン支持基板、10はn
+ 領域、11は酸化膜、12はベース領域、13はエミ
ッタ領域、14は酸化膜、15はベース電極、16は多
結晶Si層、17はエミッタ電極、18はコレクタ電極
18である。この図により第1実施例の製造工程を順次
説明する。
In this figure, 1 is a Si substrate, 2 is a pad oxide film, 3 is a CVD nitride film, 4 is a LOCOS oxide film,
5 is a resist pattern, 6 is a TiSi 2 film, 7 is a polycrystalline Si layer, 8 is an oxide film, 9 is a silicon support substrate, and 10 is n.
+ Region, 11 is an oxide film, 12 is a base region, 13 is an emitter region, 14 is an oxide film, 15 is a base electrode, 16 is a polycrystalline Si layer, 17 is an emitter electrode, and 18 is a collector electrode 18. The manufacturing process of the first embodiment will be sequentially described with reference to this drawing.

【0011】第1工程(図1(A)参照) n型のSi基板1上の全面に、厚さ20nmのパッド酸
化膜2と厚さ150nmのCVD窒化膜3を形成した
後、この2層にフォトリソグラフィー技術を適用して、
バイポーラトランジスタ形成領域を画定するパターニン
グを行い、これをマスクにしてSi基板1を熱酸化して
厚さ800nmのLOCOS酸化膜4を形成する。
First step (see FIG. 1A) After a pad oxide film 2 having a thickness of 20 nm and a CVD nitride film 3 having a thickness of 150 nm are formed on the entire surface of an n-type Si substrate 1, these two layers are formed. Applying photolithography technology to
Patterning is performed to define a bipolar transistor formation region, and the Si substrate 1 is thermally oxidized using this as a mask to form a LOCOS oxide film 4 having a thickness of 800 nm.

【0012】第2工程(図1(B)参照) 前工程において残されていたパッド酸化膜2とCVD窒
化膜3を除去し、フォトリソグラフィー技術を用いて、
LOCOS酸化膜が形成されていないSi基板の領域よ
り大きく、周囲にLOCOS酸化膜を残す開口を有する
レジストパターン5を形成する。その後、このレジスト
パターン5をマスクにして露出しているLOCOS酸化
膜4をエッチング除去して凹部を形成する。
Second step (see FIG. 1B) The pad oxide film 2 and the CVD nitride film 3 left in the previous step are removed and a photolithography technique is used to
A resist pattern 5 is formed which is larger than the region of the Si substrate where the LOCOS oxide film is not formed and has an opening around which the LOCOS oxide film is left. Then, the exposed LOCOS oxide film 4 is removed by etching using the resist pattern 5 as a mask to form a recess.

【0013】第3工程(図1(C)参照) 上面全体に厚さ100nmのTiSi2 膜6をスパッタ
法により形成し、フォトリソグラフィー技術を用いてパ
ターニングして、凹部内の台地状の部分とその周辺にT
iSi膜6を残す。このメタルシリサイドは上記のTi
Si2 に限らず、TaSi2 、MoSi2 等他のメタル
シリサイドでも使用できる。
Third step (see FIG. 1C) A TiSi 2 film 6 having a thickness of 100 nm is formed on the entire upper surface by a sputtering method, and is patterned by using a photolithography technique to form a plateau portion in the recess. T around it
The iSi film 6 is left. This metal silicide is Ti
Not only Si 2 but also other metal silicides such as TaSi 2 and MoSi 2 can be used.

【0014】第4工程(図1(D)参照) CVD法によって、厚さ800nmの多結晶Si層7を
堆積した後、この多結晶Si層7を研磨して平坦化す
る。この研磨に際して、LOCOS酸化膜4の上縁部が
研磨のストッパーとして作用する。つぎに、多結晶Si
層7中にイオン注入法によって砒素(As)をドーピン
グし、後に形成されるコレクタ領域の抵抗を低減する。
Fourth Step (see FIG. 1D) After depositing a polycrystalline Si layer 7 having a thickness of 800 nm by the CVD method, the polycrystalline Si layer 7 is polished and flattened. During this polishing, the upper edge of the LOCOS oxide film 4 acts as a polishing stopper. Next, polycrystalline Si
The layer 7 is doped with arsenic (As) by the ion implantation method to reduce the resistance of the collector region formed later.

【0015】第5工程(図2(E)参照) その上に、CVD法によって厚さ1μm程度の酸化膜
(SiO2 )あるいはBPSG8を堆積し、その上に1
000℃程度の温度でシリコン支持基板9を貼り合わせ
る。この貼り合わせ工程の熱処理によって、多結晶Si
層7中のAsがSi基板1に拡散されてn+ 領域10が
形成される。
Fifth step (see FIG. 2 (E)) An oxide film (SiO 2 ) or BPSG 8 having a thickness of about 1 μm is deposited thereon by a CVD method, and 1 is formed thereon.
The silicon support substrate 9 is attached at a temperature of about 000 ° C. By the heat treatment of this bonding step, polycrystalline Si
As in the layer 7 is diffused into the Si substrate 1 to form the n + region 10.

【0016】第6工程(図2(F)参照) Si基板1をLOCOS酸化膜4の表面が露出するまで
研磨して除去する。この研磨工程において、LOCOS
酸化膜4がストッパーとなる。
Step 6 (see FIG. 2F) The Si substrate 1 is polished and removed until the surface of the LOCOS oxide film 4 is exposed. In this polishing process, LOCOS
The oxide film 4 serves as a stopper.

【0017】第7工程(図2(G)参照) コレクタ領域となる残存したSi基板1に開口を有する
酸化膜11を形成し、その上にp型のSiをエピタキシ
ャル成長してベース領域12を形成する。このエピタキ
シャル成長によって、単結晶のSi基板1の上には単結
晶が成長するが、酸化膜11の上には多結晶Siが成長
する。
Step 7 (see FIG. 2G) An oxide film 11 having an opening is formed on the remaining Si substrate 1 which will be a collector region, and p-type Si is epitaxially grown on the oxide film 11 to form a base region 12. To do. By this epitaxial growth, a single crystal grows on the single crystal Si substrate 1, but polycrystalline Si grows on the oxide film 11.

【0018】その上にマスク拡散法によってn型のエミ
ッタ領域13を形成する。その上に酸化膜14を形成
し、ベース領域12にベース電極15を、エミッタ領域
13に多結晶Si層からなるエミッタ引出し領域16と
エミッタ電極17を、また、コレクタ領域1の底に延在
するTiSi2 膜6にコレクタ電極18を形成する。
An n-type emitter region 13 is formed thereon by a mask diffusion method. An oxide film 14 is formed thereon, and a base electrode 15 is extended to the base region 12, an emitter extraction region 16 and an emitter electrode 17 made of a polycrystalline Si layer are extended to the emitter region 13, and the bottom of the collector region 1 is extended. A collector electrode 18 is formed on the TiSi 2 film 6.

【0019】(第2実施例)図3(A)〜(D)は、本
発明の第2実施例の製造工程説明図である。この図にお
いて、21はSi基板、22はパッド酸化膜、23はC
VD窒化膜、24はLOCOS酸化膜、25はTiSi
2 膜、26はAs、27はn+ 領域、28はSiO2
である。この図により第2実施例の製造工程を説明す
る。
(Second Embodiment) FIGS. 3A to 3D are explanatory views of a manufacturing process of a second embodiment of the present invention. In this figure, 21 is a Si substrate, 22 is a pad oxide film, and 23 is C.
VD nitride film, 24 LOCOS oxide film, 25 TiSi
2 is a film, 26 is As, 27 is an n + region, and 28 is a SiO 2 film. The manufacturing process of the second embodiment will be described with reference to this drawing.

【0020】第1工程(図3(A)参照) n型のSi基板21上の一部に、厚さ20nmのパッド
酸化膜22と厚さ150nmのCVD窒化膜23を形成
し、これをマスクにしてSi基板21の表面を熱酸化し
て厚さ800nmのLOCOS酸化膜24を形成する。
First step (see FIG. 3A) A pad oxide film 22 having a thickness of 20 nm and a CVD nitride film 23 having a thickness of 150 nm are formed on a part of the n-type Si substrate 21 and used as a mask. Then, the surface of the Si substrate 21 is thermally oxidized to form an LOCOS oxide film 24 having a thickness of 800 nm.

【0021】第2工程(図3(B)参照) 前工程においてマスクとして使用したパッド酸化膜22
とCVD窒化膜23を除去し、フォトリソグラフィー技
術を用いて、LOCOS酸化膜が形成されていないSi
基板の領域より大きく、周囲にLOCOS酸化膜を残す
開口を有するレジストパターンを形成し、これをマスク
にして露出しているLOCOS酸化膜24をエッチング
除去して凹部を形成する。
Second step (see FIG. 3B) Pad oxide film 22 used as a mask in the previous step
And the CVD nitride film 23 are removed, and a LOCOS oxide film is not formed on the Si by using the photolithography technique.
A resist pattern having an opening larger than the substrate region and having a LOCOS oxide film around it is formed, and the exposed LOCOS oxide film 24 is removed by etching to form a recess.

【0022】その上面全体に厚さ100nmのTiSi
2 膜を形成し、フォトリソグラフィー技術を用いてパタ
ーニングして、凹部内の台地状の部分とその周辺にTi
Si膜25を残して他の領域のTiSi膜を除去する。
その上からAs26をドーズ量5×1015/cm-2程度
イオン注入してn+ 領域27を形成する。
TiSi having a thickness of 100 nm is formed on the entire upper surface thereof.
2 film is formed and patterned by using photolithography technology.
The Si film 25 is left and the TiSi film in other regions is removed.
From above, As 26 is ion-implanted at a dose of about 5 × 10 15 / cm −2 to form an n + region 27.

【0023】第3工程(図3(C)参照) その上にCVD法によって、厚さ1μm程度のSiO2
膜28を堆積する。
Third step (see FIG. 3C) SiO 2 having a thickness of about 1 μm is formed thereon by the CVD method.
The film 28 is deposited.

【0024】第4工程(図3(D)参照) 前工程で堆積したSiO2 膜28の表面を研磨して平坦
化する。平坦化されたSiO2 膜28の表面に支持基板
を貼り合わせる工程以後は、第1実施例の第5工程(図
2(E))以下に説明した工程とほぼ同様である。この
第2実施例は、第1実施例において、多結晶Si層7
(図1(D)参照)を堆積する工程を省略したものに相
当し、それだけ製造工程を低減することができる。
Fourth Step (see FIG. 3D) The surface of the SiO 2 film 28 deposited in the previous step is polished and flattened. After the step of adhering the support substrate to the flattened surface of the SiO 2 film 28, the steps are substantially the same as the steps described after the fifth step (FIG. 2E) of the first embodiment. This second embodiment is different from the first embodiment in that the polycrystalline Si layer 7 is
This corresponds to the one in which the step of depositing (see FIG. 1D) is omitted, and the number of manufacturing steps can be reduced accordingly.

【0025】上記の第1実施例および第2実施例では、
npn型のトランジスタを例示したが、本発明は、pn
p型トランジスタでも同様に適用できる。また、Siば
かりでなく、他の半導体材料を適宜採用することができ
る。
In the first and second embodiments described above,
Although an npn-type transistor has been illustrated, the present invention is not limited to pn.
The same applies to p-type transistors. Further, not only Si but also other semiconductor materials can be appropriately adopted.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
バイポーラトランジスタのコレクタ領域の周囲を絶縁膜
で囲むことができるため寄生容量を低減でき、さらには
コレクタ引出し電極をメタルシリサイドにしたためコレ
クタ抵抗を低減することができ、その結果、バイポーラ
トランジスタの高速動作特性を向上でき、高速動作特性
の向上が強く要請されているコンピュータ、通信、制御
等の技術分野において寄与するところが大きい。また、
本発明の製造方法によれば、上記のバイポーラトランジ
スタを能率よく、歩留り高く製造することがてきる。
As described above, according to the present invention,
Since the periphery of the collector region of the bipolar transistor can be surrounded by an insulating film, the parasitic capacitance can be reduced. Furthermore, since the collector extraction electrode is made of metal silicide, the collector resistance can be reduced. As a result, the high speed operation characteristics of the bipolar transistor can be reduced. It is possible to make a great contribution to the technical fields of computers, communication, control, etc., where the improvement of high speed operation characteristics is strongly required. Also,
According to the manufacturing method of the present invention, the bipolar transistor described above can be manufactured efficiently and with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(D)は、本発明の第1実施例の製造
工程説明図(1)である。
1A to 1D are explanatory views (1) of a manufacturing process of a first embodiment of the present invention.

【図2】(E)〜(G)は、本発明の第1実施例の製造
工程説明図(2)である。
2 (E) to (G) are explanatory views (2) of the manufacturing process of the first embodiment of the present invention.

【図3】本発明の第2実施例の製造工程説明図である。FIG. 3 is a drawing explaining the manufacturing process of the second embodiment of the present invention.

【図4】従来のバイポーラトランジスタの構成説明図で
ある。
FIG. 4 is an explanatory diagram of a configuration of a conventional bipolar transistor.

【符号の説明】[Explanation of symbols]

1 Si基板 2 パッド酸化膜 3 CVD窒化膜 4 LOCOS酸化膜 5 レジストパターン 6 TiSi2 膜 7 多結晶Si層 8 酸化膜 9 シリコン支持基板 10 砒素 11 酸化膜 12 ベース領域 13 エミッタ領域 14 酸化膜 15 ベース電極 16 多結晶Si層 17 エミッタ電極 18 コレクタ電極1 Si substrate 2 Pad oxide film 3 CVD nitride film 4 LOCOS oxide film 5 Resist pattern 6 TiSi 2 film 7 Polycrystalline Si layer 8 Oxide film 9 Silicon support substrate 10 Arsenic 11 Oxide film 12 Base region 13 Emitter region 14 Oxide film 15 base Electrode 16 Polycrystalline Si layer 17 Emitter electrode 18 Collector electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 コレクタ領域の底面および側面が絶縁体
膜によって包囲され、該コレクタ領域からの引出し領域
がメタルシリサイド膜であることを特徴とするバイポー
ラトランジスタ。
1. A bipolar transistor, wherein a bottom surface and a side surface of a collector region are surrounded by an insulating film, and a region extracted from the collector region is a metal silicide film.
【請求項2】 半導体基板上に素子分離用のLOCOS
酸化膜を形成する工程と、該半導体基板上に、該LOC
OS酸化膜が形成されていない半導体基板の領域より大
きく、周囲に該LOCOS酸化膜を残す開口を有するレ
ジスト膜を形成する工程と、該レジスト膜をマスクとし
て該LOCOS酸化膜をエッチング除去して凹部を形成
する工程と、該凹部内の露出した半導体基板表面にメタ
ルシリサイド膜を形成する工程と、該半導体基板全面に
多結晶半導体層を堆積する工程と、該凹部のみに多結晶
半導体層を残して該多結晶半導体層を平坦化する工程
と、該多結晶半導体層に高濃度の不純物を導入する工程
と、平坦化された該多結晶半導体層の上に絶縁膜を形成
する工程と、該絶縁膜に支持基板を貼り合わせる工程
と、該半導体基板の背面をLOCOS酸化膜が露出する
まで研磨する工程と、該研磨工程によって残された半導
体基板をコレクタ領域とし、該メタルシリサイド膜をコ
レクタ引出し領域として引き出す工程を含むことを特徴
とするバイポーラトランジスタの製造方法。
2. A LOCOS for element isolation on a semiconductor substrate
Forming an oxide film, and forming the LOC on the semiconductor substrate.
A step of forming a resist film having an opening larger than a region of the semiconductor substrate where the OS oxide film is not formed and having an opening for leaving the LOCOS oxide film in the periphery; and etching and removing the LOCOS oxide film using the resist film as a mask to form a recess Forming a metal silicide film on the surface of the semiconductor substrate exposed in the recess, depositing a polycrystalline semiconductor layer over the entire surface of the semiconductor substrate, and leaving the polycrystalline semiconductor layer only in the recess. Planarizing the polycrystalline semiconductor layer, introducing a high concentration impurity into the polycrystalline semiconductor layer, forming an insulating film on the planarized polycrystalline semiconductor layer, A step of adhering a supporting substrate to the insulating film; a step of polishing the back surface of the semiconductor substrate until the LOCOS oxide film is exposed; And method for producing a bipolar transistor which comprises a step of pulling out said metal silicide film as the collector lead-out region.
【請求項3】 半導体基板上に素子分離用のLOCOS
酸化膜を形成する工程と、該半導体基板上に、該LOC
OS酸化膜が形成されていない半導体基板の領域より大
きく、周囲に該LOCOS酸化膜を残す開口を有するレ
ジスト膜を形成する工程と、該レジスト膜をマスクとし
て該LOCOS酸化膜をエッチング除去して凹部を形成
する工程と、該凹部内の露出した半導体基板表面にメタ
ルシリサイド膜を形成する工程と、該半導体基板全面に
絶縁膜を堆積する工程と、該絶縁膜の表面を平坦化する
工程と、平坦化された該絶縁膜の上に支持基板を貼り合
わせる工程と、該半導体基板の背面をLOCOS酸化膜
が露出するまで研磨する工程と、該研磨工程によって残
された半導体基板をコレクタ領域とし、該メタルシリサ
イド膜をコレクタ引出し領域として引き出す工程を含む
ことを特徴とするバイポーラトランジスタの製造方法。
3. A LOCOS for element isolation on a semiconductor substrate
Forming an oxide film, and forming the LOC on the semiconductor substrate.
A step of forming a resist film having an opening larger than a region of the semiconductor substrate where the OS oxide film is not formed and having an opening for leaving the LOCOS oxide film in the periphery; and etching and removing the LOCOS oxide film using the resist film as a mask to form a recess A step of forming a metal silicide film on the surface of the semiconductor substrate exposed in the recess, a step of depositing an insulating film on the entire surface of the semiconductor substrate, and a step of flattening the surface of the insulating film. Bonding a support substrate on the planarized insulating film, polishing the back surface of the semiconductor substrate until the LOCOS oxide film is exposed, and using the semiconductor substrate left by the polishing process as a collector region, A method of manufacturing a bipolar transistor, comprising the step of drawing out the metal silicide film as a collector extraction region.
JP15663991A 1991-06-27 1991-06-27 Bipolar transistor and manufacture thereof Withdrawn JPH056896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15663991A JPH056896A (en) 1991-06-27 1991-06-27 Bipolar transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15663991A JPH056896A (en) 1991-06-27 1991-06-27 Bipolar transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH056896A true JPH056896A (en) 1993-01-14

Family

ID=15632066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15663991A Withdrawn JPH056896A (en) 1991-06-27 1991-06-27 Bipolar transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH056896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116802A (en) * 1997-05-05 2000-09-12 L'oreal Device for packaging and applying a crumbleable product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116802A (en) * 1997-05-05 2000-09-12 L'oreal Device for packaging and applying a crumbleable product

Similar Documents

Publication Publication Date Title
JP3258123B2 (en) Semiconductor device
JPS6252963A (en) Manufacture of bipolar transistor
JP3172031B2 (en) Method for manufacturing semiconductor device
US5234845A (en) Method of manufacturing semiconductor IC using selective poly and EPI silicon growth
US6803642B2 (en) Bipolar device having non-uniform depth base-emitter junction
JP2001023998A (en) Manufacturing method of bipolar element with self- aligned type base-emitting junction
JPH08274108A (en) Semiconductor device and its manufacture
JPH10112507A (en) Manufacture of semiconductor device
JPH056896A (en) Bipolar transistor and manufacture thereof
JPH04355958A (en) Semiconductor device and manufacture thereof
JP2613031B2 (en) Manufacturing method of bipolar transistor
JP2856432B2 (en) Semiconductor device
JP3209443B2 (en) Manufacturing method of bipolar transistor
JPH05211158A (en) Semiconductor device and manufacture thereof
JP2500427B2 (en) Method for manufacturing bipolar semiconductor device
KR0137568B1 (en) Method of making a bipolar transistor
JP2817210B2 (en) Method for manufacturing semiconductor device
JP2817184B2 (en) Method for manufacturing semiconductor device
JPS594073A (en) Manufacture of semiconductor device
JP2765864B2 (en) Method for manufacturing semiconductor device
JPH034539A (en) Semiconductor device and its manufacture
JPS6138619B2 (en)
JPH04251935A (en) Semiconductor device and manufacture thereof
JPH04251936A (en) Semiconductor device and manufacture thereof
JPH05304164A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903