JPH0568810A - Equipment for removing bubbles in liquid - Google Patents

Equipment for removing bubbles in liquid

Info

Publication number
JPH0568810A
JPH0568810A JP26137791A JP26137791A JPH0568810A JP H0568810 A JPH0568810 A JP H0568810A JP 26137791 A JP26137791 A JP 26137791A JP 26137791 A JP26137791 A JP 26137791A JP H0568810 A JPH0568810 A JP H0568810A
Authority
JP
Japan
Prior art keywords
liquid
bubbles
mesh
container
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26137791A
Other languages
Japanese (ja)
Other versions
JP3079687B2 (en
Inventor
Masaaki Ogiwara
正明 荻原
Tsumoru Fujii
積 藤井
Michio Aoyama
道夫 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP03261377A priority Critical patent/JP3079687B2/en
Publication of JPH0568810A publication Critical patent/JPH0568810A/en
Application granted granted Critical
Publication of JP3079687B2 publication Critical patent/JP3079687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To collect and remove bubbles by moving liquid in a vessel and applying large electric force to the bubbles moved when removing bubbles in liquid in the gravity-free environment or the in the micro gravity environment. CONSTITUTION:In the outer circumference of a vessel 1 holding liquid 2 including bubbles 3 is arranged an electrohydrodynamics pump element 12 for moving the liquid 2 in the vessel 1 upward. In the upper part of the vessel 1 is installed a mesh-shaped electrode 8 formed by connecting wires 4, 5 to an AC power source 9. When the bubbles 3 in the liquid 2 moved by the electrohydrodynamics pump element 2 are conveyed to the mesh-shaped electrode 8, they are collected in the mesh central part with weak electric field by the mesh-shaped electrode 8. The bubbles 3 come into contact with gas in outside space 15 at top of the vessel to remove them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は宇宙での材料実験で利用
するため無重力環境下あるいは微小重力環境下で液体中
の気泡を除去する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for removing bubbles in a liquid under a zero-gravity environment or a microgravity environment for use in material experiments in space.

【0002】[0002]

【従来の技術】宇宙空間で液体を利用する機会は、宇宙
開発の進展につれてますます増加するものと考えられる
が、これに伴い、宇宙空間で利用される液体中に気泡が
含まれていることは、実験条件の擾乱や液体システムの
性能低下をもたらすために、液体中に含まれる気泡を効
率よく分離して除去する技術の開発も不可欠である。
2. Description of the Related Art Opportunities to use liquids in outer space are expected to increase with the progress of space development, and accompanying this, bubbles contained in liquids used in outer space. In order to bring about disturbance of experimental conditions and deterioration of the performance of the liquid system, it is essential to develop a technology to efficiently separate and remove the bubbles contained in the liquid.

【0003】かかる観点から従来より宇宙開発に必要な
基礎技術として、無重力下あるいは微小重力下で液体中
の気泡を移動させて除去する装置の開発が進められてい
る。
From this point of view, as a basic technique necessary for space development, a device for moving and removing bubbles in a liquid under zero gravity or under microgravity has been developed.

【0004】図5は従来の気泡除去装置を示すもので、
液体bが存在する容器a内に、リング状(格子状)電極
cを同心状に設置すると共に、該リング状電極cの中心
に直状棒電極dを配置し、両電極cとdに高い電位差v
を与えることにより直状棒電極dからリング状電極cへ
向けてより弱くなる不平等電界を生じさせることができ
るようにし、容器a内を液体bと気泡eからなる気液2
相で満たすことにより、不平等電界内の気泡e群は電界
の弱い方向へ向けて静電気力Fを受けて気泡e群を移動
させるようにしてある。上記気泡(分極粒子)eに作用
する静電気力Fは、 F=2πr3 ε0 ε1 (ε2 −ε1 )/(2ε1 +ε2 )・gradE2 …(1) で表わされる。
FIG. 5 shows a conventional bubble removing device.
A ring-shaped (lattice-shaped) electrode c is installed concentrically in a container a in which the liquid b is present, and a straight rod electrode d is arranged at the center of the ring-shaped electrode c so that both electrodes c and d are high. Potential difference v
Is applied to make it possible to generate an unequal electric field which becomes weaker from the straight rod electrode d toward the ring electrode c.
By filling with the phase, the bubble e group in the unequal electric field is moved by the electrostatic force F toward the weak direction of the electric field. The electrostatic force F acting on the bubble (polarized particle) e is represented by F = 2πr 3 ε 0 ε 12 −ε 1 ) / (2ε 1 + ε 2 ) · gradE 2 (1).

【0005】但し、r :気泡eの半径 ε0 :真空誘電率 ε1 :液体bの比誘電率 ε2 :気泡eの比誘電率 E :不平等電界 (1) 式でε2 −ε1 <0であるから、静電気力Fの方向
は、常にgradE2 の方向とは逆、すなわち、電界の2乗
の傾きの小さくなる方向で、その大きさはgradE2 に比
例する。
Here, r: radius of bubble e ε 0 : vacuum permittivity ε 1 : relative permittivity of liquid b ε 2 : relative permittivity of bubble e E: non-uniform electric field ε 2 −ε 1 Since <0, the direction of the electrostatic force F is always opposite to the direction of gradE 2 , that is, the direction in which the slope of the square of the electric field decreases, and the magnitude thereof is proportional to gradE 2 .

【0006】次に、従来では、上記(1) 式による静電気
力Fを、直状棒電極dからリング状電極cの方向へ向け
て受けることにより、リング状電極cの外側に集められ
た気泡の除去を、リング状電極cの外側に配置する気体
透過膜と減圧装置により行うようにしてある。すなわ
ち、図6に概略を示す如く、たとえば、テフロンに網目
状の孔を設けて液体は透過できず気泡のみが透過できる
性質を有する気体透過膜fを、リング状電極cを取り囲
むように設け、該気体透過膜fの外側に気体室gを設
け、且つ該気体室gに減圧装置hを設けて、減圧装置h
により気体室gを真空にし、圧力差により気泡eを気体
透過膜fを通して気体室gに吸い出し、気体室gより容
器aの外へ気泡eを除去させるようにしたものが知られ
ている(油圧と空気圧 第20巻第7号 平成元年11
月)。
Next, conventionally, by receiving the electrostatic force F according to the above equation (1) from the straight rod electrode d toward the ring electrode c, the bubbles gathered outside the ring electrode c. Is removed by a gas permeable membrane arranged outside the ring-shaped electrode c and a decompression device. That is, as schematically shown in FIG. 6, for example, a gas-permeable film f having a mesh-like hole in Teflon and having a property of not allowing liquid to pass but only air bubbles is provided so as to surround the ring electrode c, A gas chamber g is provided outside the gas permeable membrane f, and a decompression device h is provided in the gas chamber g.
It is known that the gas chamber g is evacuated by means of the above method, and the bubble e is sucked into the gas chamber g through the gas permeable membrane f due to the pressure difference, and the bubble e is removed from the gas chamber g to the outside of the container a (hydraulic pressure). And air pressure Vol.20 No.7 1989
Month).

【0007】[0007]

【発明が解決しようとする課題】ところが、上記従来の
気泡除去装置では、 (i) 液体b中の気泡eを移動させた後、容器aの外へ排
出するのに気体透過膜fを用いているが、気体透過膜f
は、液体bは透過できず気泡eのみが透過できるもので
あることから、細孔の径は小さく、排気効率が悪いこ
と、 (ii)大きな気泡は除去できないこと、 (iii) 気泡eを移動させた後の液体bを移動させる機能
がないので、残留気泡が液体中に再混入する可能性があ
ること、 (iv)電界傾度が小さいため、気泡eに作用する力が小さ
いこと、等の問題がある。
However, in the above-described conventional bubble removing device, (i) after moving the bubble e in the liquid b, the gas permeable film f is used to discharge the bubble e out of the container a. The gas permeable membrane f
Since the liquid b cannot permeate and only the bubbles e can permeate, the diameter of the pores is small and the exhaust efficiency is poor. (Ii) Large bubbles cannot be removed. (Iii) Move the bubbles e. Since there is no function to move the liquid b after being made to move, residual bubbles may be re-mixed in the liquid, and (iv) the electric field gradient is small, so that the force acting on the bubbles e is small. There's a problem.

【0008】そこで、本発明は、液体中に存在する気泡
を移動させると、気体透過膜を用いることなく気体と接
触させて排出できるようにすると共に、電界傾度を大き
くして排出効果を大きくし、又、大きな気泡の除去もで
きるようにし、更に、液体の移動もできるようにしよう
とするものである。
Therefore, according to the present invention, when the bubbles existing in the liquid are moved, the bubbles can be discharged by contacting with the gas without using the gas permeable membrane, and the electric field gradient is increased to enhance the discharging effect. Also, it is intended to enable the removal of large bubbles and also the movement of liquid.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために、液体の存在する容器内の上部に、電源に
接続したメッシュ状電極を液面に沿わせて水平に配設
し、且つ上記容器の外側には、3相以上の多相交流電源
に接続した3相以上の多相交流電極を並列させてスパイ
ラル状に巻き付けてなる電気流体力学ポンプ素子を配設
する。又、上記容器に、上部の液体を底部に戻す循環ラ
インを設け、気泡を除去した後の液体を循環させること
ができるようにする。
In order to solve the above-mentioned problems, the present invention provides a mesh electrode connected to a power source, which is horizontally arranged along the liquid surface in the upper part of a container in which a liquid exists. An electrohydrodynamic pump element is provided outside the container, in which three or more multi-phase AC electrodes connected to a three-phase or more multi-phase AC power supply are arranged in parallel and spirally wound. Further, a circulation line for returning the liquid at the top to the bottom is provided in the container so that the liquid after removing the bubbles can be circulated.

【0010】[0010]

【作用】3相以上の多相交流電極に印加することによ
り、容器内の液体は、容器内に発生する不平等進行波電
界による電気流体力学効果により移動させられ、液体中
の気泡もメッシュ状電極の方へ移動させられる。メッシ
ュ状電極に運ばれた気泡は、電界の弱いメッシュ状電極
の中央部へ押しやられる。この際、メッシュ状電極は、
電界の傾きが大きいので、気泡に作用する力が大きく、
したがって、気泡はメッシュ状電極の中央部に容易に集
められる。集められた気泡は、外部空間にも発生する電
気力線に比例する力により外部空間に押し出され、外部
空間の気体と接触することにより排出される。循環ライ
ンを設けておけば、気泡とともにメッシュ状電極の方へ
移動させられた液体を容器の底部に戻せるので、気泡を
分離した後の液体に気泡が再混入することが防げる。
By applying the multi-phase AC electrodes of three or more phases, the liquid in the container is moved by the electrohydrodynamic effect due to the unequal traveling wave electric field generated in the container, and the bubbles in the liquid also form a mesh. It is moved towards the electrodes. The bubbles carried to the mesh electrode are pushed to the center of the mesh electrode where the electric field is weak. At this time, the mesh electrode is
Since the gradient of the electric field is large, the force acting on the bubbles is large,
Therefore, the bubbles are easily collected in the central portion of the mesh electrode. The collected bubbles are pushed out to the external space by a force proportional to the lines of electric force generated in the external space, and are discharged by coming into contact with the gas in the external space. If the circulation line is provided, the liquid moved to the mesh-shaped electrode together with the bubbles can be returned to the bottom of the container, so that the bubbles can be prevented from being remixed in the liquid after the bubbles are separated.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1乃至図3は本発明の一実施例を示すも
ので、気泡3が存在する液体(たとえば、シリコンオイ
ル)2を入れた容器1の上端部に、心線部6を絶縁材7
で被覆してなる電線4と5を織物の平織り状に織って構
成したメッシュ状電極8を、水平状態にして配置し、電
線4と5を交流電源9に接続して電線4と5間に電気力
線10が生じるようにする。
1 to 3 show one embodiment of the present invention, in which a core portion 6 is made of an insulating material at the upper end portion of a container 1 containing a liquid (for example, silicon oil) 2 in which bubbles 3 are present. 7
The mesh-shaped electrode 8 formed by weaving the electric wires 4 and 5 covered with the above in a plain weave shape is arranged in a horizontal state, and the electric wires 4 and 5 are connected to an AC power source 9 to connect between the electric wires 4 and 5. The lines of electric force 10 are generated.

【0013】上記容器1の外周部には、下端部から上端
部にかけて、心線部を絶縁材で被覆してなる3本1組の
電線(ビニール電線)11a,11b,11cを電極と
して並列状態でスパイラル状に密に巻き付けることによ
り、電気流体力学ポンプ素子12を構成し、該電気流体
力学ポンプ素子12における各電線11a,11b,1
1cを3相交流電源13に接続し、該3相交流電源13
から各電線11a,11b,11cに電圧を印加するこ
とにより電気流体力学ポンプ素子12の内周部及び外周
部に不平等進行波電界を発生させ、この不平等進行波電
界による電気流体力学効果により容器1内に入れられた
液体2を容器1の下部から上部へ移動させる力を付与さ
せるようにする。
On the outer peripheral portion of the container 1, a set of three electric wires (vinyl electric wires) 11a, 11b, 11c formed by covering the core portion with an insulating material from the lower end to the upper end is used as an electrode. The electrohydrodynamic pump element 12 is configured by closely winding in a spiral shape with each of the electric wires 11a, 11b, 1 in the electrohydrodynamic pump element 12.
1c is connected to a three-phase AC power supply 13, and the three-phase AC power supply 13
By applying a voltage to each of the electric wires 11a, 11b, and 11c, an unequal traveling wave electric field is generated in the inner peripheral portion and the outer peripheral portion of the electrohydrodynamic pump element 12, and the electrohydrodynamic effect due to the unequal traveling wave electric field is generated. A force for moving the liquid 2 contained in the container 1 from the lower part to the upper part of the container 1 is applied.

【0014】なお、上記電気流体力学ポンプ素子自体に
ついては、本出願人が既に特許出願している(特願平3
−89416号)。
The applicant of the present invention has already applied for a patent for the electrohydrodynamic pump element itself (Japanese Patent Application No. Hei 3).
-89416).

【0015】又、上記容器1の上部と底部との間には、
上方へ移動させられた液体2を循環させるための循環ラ
インとしてのパイプ14を設ける。
Between the top and bottom of the container 1,
A pipe 14 is provided as a circulation line for circulating the liquid 2 moved upward.

【0016】容器1内に気泡3が存在する液体2を入れ
ると、該容器1内の液体2及び気泡3は、容器1の外周
部の電気流体力学ポンプ素子12により発生させられる
不平等進行波電界による電気流体力学効果により上方位
置のメッシュ状電極8の方へ運ばれると同時に、上方へ
行くに従い中央方向へ寄せられる。
When a liquid 2 containing bubbles 3 is put in the container 1, the liquid 2 and the bubbles 3 in the container 1 are unequal traveling waves generated by the electrohydrodynamic pump element 12 on the outer peripheral portion of the container 1. Due to the electrohydrodynamic effect of the electric field, it is carried toward the mesh-shaped electrode 8 at the upper position, and at the same time, it is moved toward the center as it goes upward.

【0017】メッシュ状電極8の位置に運ばれた液体2
中の気泡3は、メッシュ状電極8の電線4,5間に生じ
る電気力線10の接線に沿う電界による気泡の分極電荷
と電界との間で相互作用力を受けるので、気泡3は前記
(1) 式に従って電界の弱い方向、すなわち、メッシュ状
電極8の中央部(図2のAの位置)に集められる。又、
図1(ロ)に示す如く、メッシュ状電極8の電線4,5
間に生じる電気力線10は、外部空間15にも存在する
ので、メッシュ状電極8の中央部に集められた気泡3
は、外部空間15に押し出される。16は液面である。
この際、メッシュ状電極8は、縦糸に相当する電線4と
横糸に相当する電線5で織られている構成上、電界の傾
きが大きい(すなわち、前記(1) 式のgradE2 が大き
い)ので、気泡3に作用する力が大きく、気泡を分離し
て集める作用を確実に行わせることができる。
Liquid 2 carried to the position of mesh electrode 8
The bubble 3 in the inside receives the interaction force between the polarized electric charge of the bubble and the electric field due to the electric field along the tangent line of the electric force line 10 generated between the electric wires 4 and 5 of the mesh-shaped electrode 8.
According to the equation (1), the electric field is collected in the weak direction, that is, in the central portion of the mesh electrode 8 (position A in FIG. 2). or,
As shown in FIG. 1B, the electric wires 4, 5 of the mesh electrode 8
Since the lines of electric force 10 generated between them also exist in the external space 15, the bubbles 3 collected in the central portion of the mesh electrode 8 are formed.
Are extruded into the external space 15. 16 is a liquid surface.
At this time, since the mesh-shaped electrode 8 is woven by the electric wire 4 corresponding to the warp thread and the electric wire 5 corresponding to the weft thread, the gradient of the electric field is large (that is, gradE 2 in the above formula (1) is large). Since the force acting on the bubbles 3 is large, the action of separating and collecting the bubbles can be surely performed.

【0018】上記メッシュ状電極8で集められた気泡3
は、容器1の頂部の外部空間15の気体と接触し、図1
で矢印Bの方向へ自然に排出される。
Bubbles 3 collected by the mesh electrode 8
Contact the gas in the external space 15 at the top of the container 1,
Is naturally discharged in the direction of arrow B.

【0019】移動中に気泡3を分離した液体2は、循環
パイプ14を通り容器1の底部に循環移動できるため、
上記分離した気泡3が液中に再混入するおそれはない。
この際、循環パイプ14の上方位置を、気泡3の少ない
容器1の壁付近とすれば、より効果を高めることができ
る。
Since the liquid 2 in which the bubbles 3 are separated during the movement can be circulated and moved to the bottom of the container 1 through the circulation pipe 14,
There is no risk that the separated bubbles 3 will be mixed again in the liquid.
At this time, if the position above the circulation pipe 14 is near the wall of the container 1 having few bubbles 3, the effect can be further enhanced.

【0020】なお、上記実施例では、メッシュ状電極8
の電源を、交流電源9とした場合を示したが、図4に示
す如く、直流電源15に電線4,5を接続させるように
してもよいこと、メッシュ状電極8のメッシュの大きさ
は任意に変えて、大きな径の気泡をも容易に除去できる
ようにすることができること、液体移送用の電気流体力
学ポンプ素子12は3相交流電極の場合を示したが、3
相以上多相交流電極としてもよいこと、メッシュ状電極
8は電線4と5を平織り状に織った構成のものを示した
が、平行に配した電線4と5を単に直角方向に重ね合わ
せた構成のものとしても同様であること、その他本発明
の要旨を逸脱しない範囲内で種々変更を加え得ることは
勿論である。
In the above embodiment, the mesh electrode 8
Although the AC power source 9 is used as the power source of the above, the wires 4 and 5 may be connected to the DC power source 15 as shown in FIG. 4, and the mesh size of the mesh electrode 8 is arbitrary. In addition, it is possible to easily remove bubbles having a large diameter, and the electrohydrodynamic pump element 12 for liquid transfer has a three-phase AC electrode.
Although the multi-phase AC electrode having more than one phase may be used, and the mesh-shaped electrode 8 has a structure in which the electric wires 4 and 5 are woven in a plain weave shape, the electric wires 4 and 5 arranged in parallel are simply superposed in a right angle direction. It goes without saying that the configuration is the same and that various changes can be made without departing from the scope of the invention.

【0021】[0021]

【発明の効果】以上述べた如く、本発明の液体中の気泡
除去装置によれば、気泡が存在する液体を入れる容器の
外周部に、液体移送用の3相又は多相交流電極を並列に
且つ密にしてスパイラル状に巻き付けて電気流体力学ポ
ンプ素子を構成し、且つ該電気流体力学ポンプ素子に発
生する不平等電界により移動させられた液体及び気泡
を、分離させて電界の弱い方向へ集めるメッシュ状電極
を、容器の上部に配置した構成としてあるので、容器内
の液体と液体中の気泡が電気流体力学効果によりメッシ
ュ状電極に運ばれると、メッシュ状電極の電界が弱い中
央部分へ気泡は集められ、集められた気泡は外部の気体
に接触して分離排出されるため、従来の如き気体透過膜
を圧力差で透過させることなく気泡の除去が容易にで
き、しかも、メッシュ状電極は、電界傾度が大きいた
め、気泡に作用する力が大きく、排出効果が大きく、更
に、静電界のため電力消費が零である、という効果があ
り、又、容器に循環パイプを設けて移動させられた液体
を循環させるようにすることにより分離された気泡が液
体中に再混入するおそれがなく、更に、メッシュ状電極
はメッシュの目開きを変えることにより容器に大きな径
の気泡除去を可能にできる、という効果も奏し得る。
As described above, according to the apparatus for removing bubbles in a liquid of the present invention, three-phase or multi-phase AC electrodes for liquid transfer are arranged in parallel on the outer peripheral portion of a container containing a liquid containing bubbles. Further, the electrohydrodynamic pump element is formed by densely winding it in a spiral shape, and liquid and bubbles moved by an unequal electric field generated in the electrohydrodynamic pump element are separated and collected in a weak electric field direction. Since the mesh electrode is arranged on the upper part of the container, when the liquid in the container and the bubbles in the liquid are carried to the mesh electrode by the electrohydrodynamic effect, the electric field of the mesh electrode is bubbled to the central part where the electric field is weak. The air bubbles are collected, and the collected air bubbles are separated and discharged by contacting the outside gas. Therefore, it is possible to easily remove the air bubbles without passing through the gas permeable membrane due to the pressure difference as in the conventional method, and the mesh Since the electrode has a large electric field gradient, the force acting on the bubbles is large, the discharge effect is large, and the electrostatic field causes no power consumption, and the circulation pipe is installed in the container to move the electrode. By circulating the generated liquid, there is no risk that the separated bubbles will be re-mixed in the liquid, and the mesh-shaped electrode can remove bubbles with a large diameter in the container by changing the mesh openings. There is also an effect that it can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液体中の気泡除去装置の一実施例の概
要を示すもので、(イ)は側面図であり、(ロ)はメッ
シュ状電極の一部の拡大斜視図である。
FIG. 1 shows an outline of an embodiment of an apparatus for removing bubbles in liquid of the present invention, (a) is a side view, and (b) is an enlarged perspective view of a part of a mesh electrode.

【図2】メッシュ状電極の部分を拡大して示す概略図で
ある。
FIG. 2 is a schematic view showing an enlarged portion of a mesh electrode.

【図3】メッシュ状電極を構成する電線の断面図であ
る。
FIG. 3 is a cross-sectional view of an electric wire forming a mesh electrode.

【図4】本発明の他の例を示すメッシュ状電極の概略図
である。
FIG. 4 is a schematic view of a mesh electrode showing another example of the present invention.

【図5】従来の気泡除去装置の概要を示す図である。FIG. 5 is a diagram showing an outline of a conventional bubble removing device.

【図6】従来の気泡除去機構の部分を示す断面図であ
る。
FIG. 6 is a sectional view showing a part of a conventional bubble removing mechanism.

【符号の説明】[Explanation of symbols]

1 容器 2 液体 3 気泡 4,5 電線 6 心線部 7 絶縁材 8 メッシュ状電極 9 交流電源 11a,11b,11c 電線(3相交流電極) 12 電気流体力学ポンプ素子 13 3相交流電源 14 循環パイプ(循環ライン) 15 外部空間 17 直流電源 DESCRIPTION OF SYMBOLS 1 container 2 liquid 3 bubble 4,5 electric wire 6 core part 7 insulating material 8 mesh electrode 9 AC power supply 11a, 11b, 11c electric wire (three-phase AC electrode) 12 electrohydrodynamic pump element 13 three-phase AC power supply 14 circulation pipe (Circulation line) 15 External space 17 DC power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体の存在する容器内の上部に、心線部
を絶縁材で被覆してなる電線を織物状に配列させて構成
したメッシュ状の電極を水平に配置し、該メッシュ状電
極を交流又は直流電源に接続し、且つ上記容器の外周部
に、3相以上多相交流電源に接続した3相以上多相交流
電極を並列させてスパイラル状に巻き付けてなる電気流
体力学ポンプ素子を配設したことを特徴とする液体中の
気泡除去装置。
1. A mesh-shaped electrode formed by arranging electric wires each having a core portion coated with an insulating material in a woven pattern is horizontally arranged above a container in which a liquid is present, and the mesh-shaped electrode Is connected to an AC or DC power supply, and an electrohydrodynamic pump element is formed by arranging three or more multiphase AC electrodes connected to a three-phase or more polyphase AC power supply in parallel on the outer peripheral portion of the container and spirally winding the electrodes. A device for removing bubbles in a liquid, which is characterized by being provided.
【請求項2】 容器内の液体を上部位置から底部へ循環
させる循環ラインを、容器の側部に設けた請求項1記載
の液体中の気泡除去装置。
2. The apparatus for removing bubbles in liquid according to claim 1, wherein a circulation line for circulating the liquid in the container from the upper position to the bottom is provided on the side of the container.
JP03261377A 1991-09-13 1991-09-13 Device for removing bubbles in liquid Expired - Fee Related JP3079687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03261377A JP3079687B2 (en) 1991-09-13 1991-09-13 Device for removing bubbles in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03261377A JP3079687B2 (en) 1991-09-13 1991-09-13 Device for removing bubbles in liquid

Publications (2)

Publication Number Publication Date
JPH0568810A true JPH0568810A (en) 1993-03-23
JP3079687B2 JP3079687B2 (en) 2000-08-21

Family

ID=17361004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03261377A Expired - Fee Related JP3079687B2 (en) 1991-09-13 1991-09-13 Device for removing bubbles in liquid

Country Status (1)

Country Link
JP (1) JP3079687B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158169A (en) * 2004-11-29 2006-06-15 Kanazawa Inst Of Technology Electrohydrodynamic pump
JP2007090135A (en) * 2005-09-27 2007-04-12 Yamaha Corp Microchip
JP2013158758A (en) * 2012-02-08 2013-08-19 Panasonic Corp Gas dissolution device
JP2013184128A (en) * 2012-03-08 2013-09-19 Panasonic Corp Gas dissolving apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158169A (en) * 2004-11-29 2006-06-15 Kanazawa Inst Of Technology Electrohydrodynamic pump
JP2007090135A (en) * 2005-09-27 2007-04-12 Yamaha Corp Microchip
JP4646125B2 (en) * 2005-09-27 2011-03-09 ヤマハ株式会社 Microchip and bubble separation method using the same
JP2013158758A (en) * 2012-02-08 2013-08-19 Panasonic Corp Gas dissolution device
JP2013184128A (en) * 2012-03-08 2013-09-19 Panasonic Corp Gas dissolving apparatus

Also Published As

Publication number Publication date
JP3079687B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP2767574B2 (en) Compact and efficient gas / liquid separation method and apparatus
US3891528A (en) Electrostatic filtering for cleaning dielectric fluids
US2611490A (en) Apparatus for separating immiscible liquids
US3613889A (en) Floating settler for separation of liquid and solid phases
AU2002366590B2 (en) An electrostatic separator
US1558382A (en) Electrocentrifugal separator
US5006260A (en) Coalescer device and method using movable filling
US3218781A (en) Electrostatic apparatus for removal of dust particles from a gas stream
US3797203A (en) Means for separating heavier from lighter components of comingled fluid
JPH0568810A (en) Equipment for removing bubbles in liquid
US3032403A (en) Liquid-liquid contacting apparatus
US4372837A (en) Radial flow electrofilter
JP4527816B2 (en) Purification device by levitation of filled liquid
US3550356A (en) Gas purification process and apparatus
EP0166479B1 (en) Apparatus and process for separating a dispersed liquid phase from a continuous liquid phase by electrostatic coalescence
US3506562A (en) Dewatering of sludge
US3412003A (en) Method for removing oil and foreign bodies from water
US4269681A (en) Radial flow electrofilter
JP3134477B2 (en) Device for controlling bubbles in liquids
KR20010052563A (en) Liquid Transport of Solid Material
US3772163A (en) Electrochemical processing of inner surfaces of large vessels
JP3104300B2 (en) Gas-liquid separation device
CA1255072A (en) High capacity reciprocating plate extractor
IL33083A (en) A method of raising the separation rate of emulsions by means of an electric field
US871366A (en) Tailings-settler.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees