JPH0568806A - Extraction of metal ions by emulsion method - Google Patents

Extraction of metal ions by emulsion method

Info

Publication number
JPH0568806A
JPH0568806A JP3234929A JP23492991A JPH0568806A JP H0568806 A JPH0568806 A JP H0568806A JP 3234929 A JP3234929 A JP 3234929A JP 23492991 A JP23492991 A JP 23492991A JP H0568806 A JPH0568806 A JP H0568806A
Authority
JP
Japan
Prior art keywords
extraction
metal ions
organic phase
phase
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3234929A
Other languages
Japanese (ja)
Inventor
Fumiyuki Nakashio
文行 中塩
Masahiro Goto
雅宏 後藤
Yuji Miyake
勇治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP3234929A priority Critical patent/JPH0568806A/en
Publication of JPH0568806A publication Critical patent/JPH0568806A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To improve the efficiency of a mixer-settler by increasing the extraction rate and the phase separation rate when making extractive separation of metal ions in water solution. CONSTITUTION:When making extractive separation of metal ions in water solution, extraction operation is done by using extraction solvent to which a water-insoluble surfactant is added. The emulsion thus obtained is phase separated in an electric field to extract metal ions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿式冶金による金属の
製造、廃水からの金属の回収等水溶液からの金属元素の
抽出に関する。特に、希土類金属や稀少金属の交流多段
抽出による分離精製に大きな効果を発揮する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the extraction of metal elements from aqueous solutions such as the production of metals by hydrometallurgy and the recovery of metals from wastewater. In particular, it exerts a great effect on separation and refining of rare earth metals and rare metals by AC multistage extraction.

【0002】[0002]

【従来の技術及びその問題点】従来、希土類金属や稀少
金属を含む水溶液からこれら金属を分離精製する方法と
してイオン交換法が知られているが、この方法はこれら
金属を極めて希薄な水溶液として取り扱う為、精製され
た金属水溶液の濃度が小さく大規模な設備が必要である
上、イオン交換樹脂塔を通過する溶離液の流速が小さい
ため生産性が低い。
2. Description of the Related Art Conventionally, an ion exchange method has been known as a method for separating and refining an aqueous solution containing a rare earth metal or a rare metal, but this method treats these metals as an extremely dilute aqueous solution. Therefore, the concentration of the purified metal aqueous solution is low and a large-scale facility is required, and the flow rate of the eluent passing through the ion exchange resin tower is low, so that the productivity is low.

【0003】上記イオン交換法の欠点を改善する方法と
して溶媒抽出法が提案されている。希土類金属や稀少金
属の溶媒抽出法による分離精製は下記のような種々な抽
出溶媒が使用されている。 A)イオン交換液 ナフテン酸、バーサティク酸などのカルボン酸、および
D2EHPAなどの酸性リン酸エステル。
A solvent extraction method has been proposed as a method for improving the drawbacks of the above ion exchange method. The following various extraction solvents are used for separation and purification of rare earth metals and rare metals by the solvent extraction method. A) Ion exchange solution Carboxylic acid such as naphthenic acid and versatic acid, and acidic phosphoric acid ester such as D2EHPA.

【0004】B)イオン対形成試薬 TOAなどのアミン、TBPなどの中性リン酸、MIB
Kなどのケトン。 C)キレート試薬による金属の抽出 これら抽出溶媒は粘度が高いので、粘度を低下させて抽
出操作を容易にするために有機溶媒により希釈して用い
られる。
B) Ion pair forming reagents: amines such as TOA, neutral phosphates such as TBP, MIB
Ketones such as K. C) Extraction of Metals with Chelating Reagents Since these extraction solvents have high viscosities, they are used by diluting with an organic solvent in order to reduce the viscosity and facilitate the extraction operation.

【0005】目的の金属を含有する水溶液には硝酸塩、
塩化物等溶解度の大きな塩が用いられ、必要に応じ、錯
化剤、塩析剤等が添加される。希土類金属、稀少金属の
工業的な分離精製は、通常向流多段抽出で行われ、抽出
段数は、抽出系の分離効率、及び目標純度にもよるが、
希土類金属の場合30〜50段を要する。又抽出装置と
しては槽に撹拌翼をとりつけ有機相、水相を混合するミ
キサー(撹拌槽)とこれに続く2相を重力で分離するセ
トラー(静置槽)とを備えたミキサーセトラーが多く用
いられている。この撹拌槽、静置槽の一対が一段の抽出
段数に相当する。そして各段は平面的に配列されるの
で、高段数の場合、大きな占有床面積が必要となる上、
ミキサーセトラー内に滞流する有機相も多くなる。
The aqueous solution containing the target metal contains nitrate,
A salt having a high solubility such as chloride is used, and if necessary, a complexing agent, a salting-out agent and the like are added. Industrial separation and purification of rare earth metals and rare metals is usually carried out by countercurrent multistage extraction, and the number of extraction stages depends on the separation efficiency of the extraction system and the target purity,
In the case of rare earth metal, 30 to 50 steps are required. As the extraction device, a mixer settler equipped with a mixer (stirring tank) for mixing an organic phase and an aqueous phase with a stirring blade attached to the tank and a settler (static tank) for separating the following two phases by gravity is often used. Has been. A pair of the stirring tank and the stationary tank corresponds to one extraction stage. And since each stage is arranged in a plane, in the case of a high number of stages, a large occupied floor area is required and
A large amount of organic phase remains in the mixer settler.

【0006】すなわち、溶媒抽出法による希土類金属、
稀少金属の製造に於いては、生産量の割りに大きな設備
面積を要する上、高価な抽出溶媒を多量に必要とする欠
点を有していた。このため、ミキサーセトラーの効率を
改善し、ミキサーセトラーを小さくすることは、工業的
に重要である。
That is, a rare earth metal by a solvent extraction method,
In the production of rare metals, there is a drawback that a large equipment area is required for the production amount and a large amount of expensive extraction solvent is required. Therefore, it is industrially important to improve the efficiency of the mixer settler and reduce the size of the mixer settler.

【0007】[0007]

【問題点を解決するための手段】本発明者らは従来技術
のかかる問題点を解決すべく鋭意検討した結果、水溶液
中の金属を溶媒抽出法で抽出する場合、有機相に水溶液
に不溶性の界面活性剤を添加し、エマルジョンを形成さ
せた状態で抽出操作を行い、その後、高電圧を用いた電
気的解乳化法を用いて有機相と水相の相分離を行うこと
により、抽出速度、相分離速度を速めミキサーセトラー
の効率を改善出来ることを見出し本発明を完成した。
[Means for Solving the Problems] As a result of intensive studies made by the present inventors in order to solve such problems of the prior art, when the metal in the aqueous solution is extracted by the solvent extraction method, the organic phase is insoluble in the aqueous solution. By adding a surfactant and performing an extraction operation in a state of forming an emulsion, and then performing phase separation of an organic phase and an aqueous phase using an electric demulsification method using a high voltage, an extraction rate, The present invention has been completed by finding that the phase separation speed can be increased and the efficiency of the mixer settler can be improved.

【0008】以下、本発明を詳細に説明する。本発明の
目的は、ミキサーセトラーのような抽出器を用いて水溶
液中の金属を抽出する際、ミキサーセトラーの効率を向
上させることによって小型化し、設備の床占有率の減
少、初期投入抽出溶媒の節減を達成することにある。従
って、対象となる金属として特に限定する必要はない
が、希土類金属のように分離精製に多くの抽出段数を必
要とする場合に特に大きな効果を発揮する。しかし、抽
出段数が少なくても、貴金属の抽出、廃液からの金属の
回収等低濃度溶液から抽出しなければならない場合、ま
た大型の抽出装置を必要とするニッケル、コバルト、銅
のような金属の抽出に対しても有効である。本発明を実
施するに当たって、抽出溶媒への水不溶性の界面活性剤
の添加、セトラーに解乳化のための加電圧装置の設置等
の追加を要すると共に、形成されるエマルジョンがW/
Oである必要がある。しかし、他は、従来行われている
抽出操作、条件を基本的には変更する必要はない。
The present invention will be described in detail below. The object of the present invention is to reduce the size by improving the efficiency of the mixer-settler when extracting the metal in the aqueous solution using an extractor such as a mixer-settler, to reduce the floor occupancy of the equipment, and to reduce the initial charge of the extraction solvent. To achieve savings. Therefore, the target metal is not particularly limited, but it exerts a particularly great effect when a large number of extraction stages are required for separation and refining such as rare earth metals. However, even if the number of extraction stages is small, when extracting from a low-concentration solution such as extraction of precious metals or recovery of metals from waste liquid, and when metals such as nickel, cobalt, and copper that require a large-scale extraction device are used. It is also effective for extraction. In carrying out the present invention, addition of a water-insoluble surfactant to the extraction solvent, addition of a voltage-applying device for demulsification to the settler are required, and the emulsion formed is
Must be O. However, other than that, basically, it is not necessary to change the conventional extraction operation and conditions.

【0009】即ち、抽出溶媒として前に述べたようなイ
オン交換液、イオン対形成、キレート試薬の抽出溶媒を
目的の金属に合わせて選定し使用すればよい。また粘度
を低下させて抽出操作を容易にするため、従来と同様ケ
ロセンなどの石油留分、ヘキサン、ヘプタンなどの脂肪
族炭化水素、トルエン、キシレン、エチルベンゼン等の
芳香族炭化水素で所定の濃度に希釈できる。使用される
抽出溶媒の濃度も、従来と同様、0.1〜1.5mol
/lの濃度が好ましい。
That is, as the extraction solvent, the above-mentioned extraction solvent for the ion exchange liquid, the ion pair formation and the chelating reagent may be selected and used according to the target metal. In order to lower the viscosity and facilitate the extraction operation, petroleum fractions such as kerosene, aliphatic hydrocarbons such as hexane and heptane, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene to a predetermined concentration, as in the past. Can be diluted. The concentration of the extraction solvent used is 0.1 to 1.5 mol as in the conventional case.
A concentration of 1 / l is preferred.

【0010】目的の金属を含有する水溶液の塩の形態は
本発明から限定されることはないが、硝酸塩、塩化物が
一般的であり、通常、金属イオン濃度は0.1〜2.0
mol/lである。また必要に応じ、錯化剤、塩析剤等
を添加することもできる。以下に本発明を実施するに当
たって、考慮すべき事について述べる。本発明で使用す
る界面活性剤は、有機相に存在させておく必要があるた
め水不溶性である必要があり、水への溶解度が0.01
mol/l以下であることが好ましい。
The form of the salt of the aqueous solution containing the desired metal is not limited in the present invention, but nitrates and chlorides are generally used, and the metal ion concentration is usually 0.1 to 2.0.
mol / l. If necessary, a complexing agent, a salting-out agent, etc. can be added. The following are points to be considered in carrying out the present invention. The surfactant used in the present invention needs to be insoluble in water because it needs to be present in the organic phase, and its solubility in water is 0.01.
It is preferably not more than mol / l.

【0011】そして界面活性剤のタイプは、金属の抽出
を妨害するカチオン型以外のアニオン、ノニオン型及び
両性型のいずれでも使用できる。その代表的な界面活性
剤として、下記一般式(1)、(2)、(3)、(4)
若しくは(5)で示されるアニオン性化合物及びそのア
ルカリ金属塩、(6)、(7)、(8)で示されるノニ
オン性化合物、(9)、(10)、(11)で示される
両性化合物が上げられる。
As the type of the surfactant, any of anions other than the cation type which interferes with metal extraction, nonionic type and amphoteric type can be used. As typical surfactants thereof, the following general formulas (1), (2), (3) and (4)
Alternatively, an anionic compound represented by (5) and an alkali metal salt thereof, a nonionic compound represented by (6), (7) and (8), and an amphoteric compound represented by (9), (10) and (11) Is raised.

【0012】[0012]

【化1】 [Chemical 1]

【0013】(但し、R1 ,R2 は、炭素数8以上の飽
和または不飽和の炭化水素基であり、互いに同一でも異
なってもよい。)
(However, R 1 and R 2 are saturated or unsaturated hydrocarbon groups having 8 or more carbon atoms and may be the same or different.)

【0014】[0014]

【化2】 [Chemical 2]

【0015】(但し、R3 ,R4 は、炭素数12以上の
飽和または不飽和の炭化水素基であり、互いに同一でも
異なってもよい。lは1〜10の整数を示す。)
(However, R 3 and R 4 are saturated or unsaturated hydrocarbon groups having 12 or more carbon atoms and may be the same or different. L is an integer of 1 to 10.)

【0016】[0016]

【化3】 [Chemical 3]

【0017】(但し、R5 ,R6 は、炭素数8以上の飽
和または不飽和の炭化水素基であり、互いに同一でも異
なってもよい。)
(However, R 5 and R 6 are saturated or unsaturated hydrocarbon groups having 8 or more carbon atoms and may be the same or different.)

【0018】[0018]

【化4】 [Chemical 4]

【0019】(但し、R7 は炭素数8以上の飽和または
不飽和の炭化水素基である。)
(However, R 7 is a saturated or unsaturated hydrocarbon group having 8 or more carbon atoms.)

【0020】[0020]

【化5】 [Chemical 5]

【0021】(但し、R8 は炭素数10以上の飽和また
は不飽和の炭化水素基である。)
(However, R 8 is a saturated or unsaturated hydrocarbon group having 10 or more carbon atoms.)

【0022】[0022]

【化6】 [Chemical 6]

【0023】(但し、R9 は、炭素数10以上の飽和ま
たは不飽和の炭化水素基である。)
(However, R 9 is a saturated or unsaturated hydrocarbon group having 10 or more carbon atoms.)

【0024】[0024]

【化7】 [Chemical 7]

【0025】(但し、R10は、炭素数12以上の飽和ま
たは不飽和の炭化水素基である。)
(However, R 10 is a saturated or unsaturated hydrocarbon group having 12 or more carbon atoms.)

【0026】[0026]

【化8】 [Chemical 8]

【0027】(但し、R11は炭素数10以上の飽和また
は不飽和の炭化水素基であり、nは1〜15の整数を示
す。)
(However, R 11 is a saturated or unsaturated hydrocarbon group having 10 or more carbon atoms, and n is an integer of 1 to 15.)

【0028】[0028]

【化9】 [Chemical 9]

【0029】(但し、R12,R13は、炭素数12以上の
飽和または不飽和の炭化水素基であり、互いに同一でも
異なってもよい。a,bは1〜10の整数を示し、互い
に同一でも異なってもよい。Xはハロゲン原子を示
す。)
(However, R 12 and R 13 are saturated or unsaturated hydrocarbon groups having 12 or more carbon atoms and may be the same or different. A and b are integers of 1 to 10, and They may be the same or different. X represents a halogen atom.)

【0030】[0030]

【化10】 [Chemical 10]

【0031】(但し、R14〜R17は、炭素数2以上の飽
和または不飽和の炭化水素基であり、互いに同一でも異
なってもよい。)
(However, R 14 to R 17 are saturated or unsaturated hydrocarbon groups having 2 or more carbon atoms and may be the same or different from each other.)

【0032】[0032]

【化11】 [Chemical 11]

【0033】(但し、R18〜R21は、炭素数2以上の飽
和または不飽和の炭化水素基であり、互いに同一でも異
なってもよい。)界面活性剤の添加量は同時に使用する
抽出溶媒の0.03〜3mol%、好ましくは0.05
〜1.0mol%が必要である。0.03mol%以下
の時は安定なエマルジョンが生成されない。また3mo
l%以上添加しても特に効果が高まることはない。
(However, R 18 to R 21 are saturated or unsaturated hydrocarbon groups having 2 or more carbon atoms and may be the same or different from each other.) The amount of the surfactant added is the extraction solvent used at the same time. 0.03 to 3 mol%, preferably 0.05
~ 1.0 mol% is required. When it is 0.03 mol% or less, a stable emulsion is not formed. Again 3mo
Even if added in an amount of 1% or more, the effect is not particularly enhanced.

【0034】本願発明の一例として図1の連続抽出装置
を用いて説明すると、抽出成分と界面活性剤を含む有機
相供給槽(<1>)及び、金属成分を含有する水相供給
槽(<2>)よりポンプ(<3>)により攪拌槽(<4
>)に導かれて形成されたエマルジョンは、コック(<
5>)を通じ解乳化器(<6>)に導かれ、<7>の高
圧電極により形成された(尚同装置において<8>は高
圧変換器、<9>はスライダック、<10>は接地)高
圧電場に導かれる。有効加電圧は0.5〜10kV、好
ましくは1〜5kVである。0.5kV以下の場合解乳
化の効率が低下する。また10kV以上の場合解乳化効
率は頭打ちする上、逆に電場による有機相、水相の混合
が起こり相分離の妨げとなる。この電場の作り方は特に
規定されることはない。例えば、陰極、陽極の電極棒ま
たは板でもよいし、一方の電極をセトラー内の水相を用
いることもできる。また電場は交流、直流いずれも使用
できる。ただし、電場下での解乳化を行うためには、エ
マルジョンがW/O型でなくてはならない。従来の抽出
条件で常にW/O型エマルジョンが形成されるとは限ら
ない。中にはO/W型エマルジョンの場合もある。この
場合、ミキサー内での有機相、水相の比率を調整するこ
とによってW/O型に容易に変更できる。即ち水相に比
べ有機相の比率を高めればO/W型をW/O型に変更で
きる。しかしこれは有機相の使用量の増加を意味しな
い。なぜならば、セトラーに滞留している有機相を同じ
段のミキサーに循環させることでミキサー内の有機相の
比率を高めることが出来るからである。解乳化後、解乳
化器の上部から有機相、下部から水相を取り出せばよ
い。尚、図1の装置を使用すれば、<11>のレベラー
によって、攪拌器外で有機相と水相の境界の位置を調整
することができる。
As an example of the present invention, the continuous extraction apparatus of FIG. 1 will be described. An organic phase supply tank containing an extraction component and a surfactant (<1>) and an aqueous phase supply tank containing a metal component (<2>) and pump (<3>) for stirring tank (<4
The emulsion formed by being guided by
5>) to the demulsifier (<6>) and formed by the high-voltage electrode of <7> (wherein <8> is a high-voltage converter, <9> is a slidac, and <10> is a ground). ) Is led to a high piezoelectric field The effective applied voltage is 0.5 to 10 kV, preferably 1 to 5 kV. When it is 0.5 kV or less, the efficiency of demulsification decreases. Further, when the voltage is 10 kV or more, the demulsification efficiency reaches a peak, and conversely, the organic phase and the aqueous phase are mixed by the electric field, which hinders phase separation. How to create this electric field is not specified. For example, it may be an electrode rod or plate for a cathode or an anode, or one of the electrodes may be an aqueous phase in a settler. In addition, the electric field may be alternating current or direct current. However, in order to perform demulsification under an electric field, the emulsion must be of W / O type. W / O emulsions are not always formed under conventional extraction conditions. In some cases, it is an O / W emulsion. In this case, the W / O type can be easily changed by adjusting the ratio of the organic phase and the aqueous phase in the mixer. That is, the O / W type can be changed to the W / O type by increasing the ratio of the organic phase to the water phase. However, this does not mean an increase in the amount of organic phase used. The reason is that the ratio of the organic phase in the mixer can be increased by circulating the organic phase staying in the settler through the mixer in the same stage. After demulsification, the organic phase may be taken out from the upper part of the demulsifier and the aqueous phase may be taken out from the lower part. If the apparatus of FIG. 1 is used, the position of the boundary between the organic phase and the aqueous phase can be adjusted outside the stirrer by the leveler <11>.

【0035】[0035]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り下記実施例に
よって限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0036】実施例1 0.1N硝酸−0.1N硝酸ナトリウムにてpHを2.
0に調整した1mol/m3 塩化イットリウム及び1m
ol/m3 塩化エルビウム溶液を水相とし、抽出溶媒は
大八工業のPC88Aを50mol/m3 、アニオン性
界面活性剤DOLPAを1mol/m3 になるようにヘ
プタンで希釈して調整した。また、界面活性剤を含まな
い抽出溶媒も同時に調整し、抽出速度の比較を行った。
測定は、第1図に示した連続抽出装置で行った。100
mlの容量を持つ撹拌槽(<4>)に、抽出溶媒は60
ml/min、希土類水溶液は60ml/minで供給
した。従って撹拌槽内平均滞留時間は50秒である。撹
拌速度は1000rpmとした。その結果、イットリウ
ム、エルビウムの抽出率はDOLPAを添加しない場
合、それぞれ59%、68%であったが、DOLPAを
添加すると76%、84%に増大した。尚、解乳化器
(<6>)を通過した有機相中の水分量をカールフィッ
シャー滴定法により測定したところ、有機相中の含水率
(攪拌槽(<4>)から流出したエマルジョンの含水率
(0.5)との比)は0.8×10-5であった。また解
乳化における有効加電圧は1kV、解乳化槽内平均滞溜
時間は50秒であった。
Example 1 pH was adjusted to 2. with 0.1N nitric acid-0.1N sodium nitrate.
1 mol / m 3 yttrium chloride and 1 m adjusted to 0
An ol / m 3 erbium chloride solution was used as an aqueous phase, and the extraction solvent was adjusted by diluting PC88A manufactured by Daihachi Kogyo to 50 mol / m 3 and the anionic surfactant DOLPA to 1 mol / m 3 with heptane. In addition, an extraction solvent containing no surfactant was also prepared and the extraction rates were compared.
The measurement was performed by the continuous extraction device shown in FIG. 100
In a stirred tank (<4>) with a capacity of ml, the extraction solvent is 60
ml / min, and the rare earth aqueous solution was supplied at 60 ml / min. Therefore, the average residence time in the stirring tank is 50 seconds. The stirring speed was 1000 rpm. As a result, the extraction rates of yttrium and erbium were 59% and 68%, respectively, when DOLPA was not added, but increased to 76% and 84% when DOLPA was added. The water content in the organic phase that passed through the demulsifier (<6>) was measured by the Karl Fischer titration method, and the water content in the organic phase (the water content of the emulsion flowing out from the stirring tank (<4>)) was measured. (Ratio to (0.5)) was 0.8 × 10 −5 . The effective applied voltage in the demulsification was 1 kV, and the average retention time in the demulsification tank was 50 seconds.

【0037】実施例2 0.1N酢酸−0.1N酢酸ナトリウムにてpH2.0
に調整した1mol/m3 塩化鉄溶液を水相とし、抽出
溶媒はHenkel社のLIX84を20mol/
3 、アニオン性界面活性剤DOLPAを1mol/m
3 になるようにヘプタンで希釈して調整した。また界面
活性剤を含まない抽出溶媒も同時に調整し、抽出速度の
比較を行った。測定は図1に示した連続抽出装置で行っ
た。100mlの容量を持つ撹拌槽(<4>)に、抽出
溶媒は60ml/min、塩化鉄溶液は60ml/mi
nで供給した。従って撹拌槽内平均滞留時間は50秒で
ある。撹拌速度は1000rpmとした。その結果、抽
出率はDOLPAを添加しない場合、3.3%であった
が、DOLPAを添加すると30%まで向上した。尚、
有機相中の含水率は、1.0×10-5、解乳化における
有効加電圧は2kV、解乳化装置内平均滞溜時間は48
秒であった。
Example 2 pH = 2.0 with 0.1N acetic acid-0.1N sodium acetate
The 1 mol / m 3 iron chloride solution adjusted to the above was used as the aqueous phase, and the extraction solvent was LIX84 from Henkel at 20 mol /
m 3, an anionic surfactant DOLPA a 1 mol / m
Was prepared by diluting with heptane so that 3. Moreover, the extraction solvent containing no surfactant was also adjusted and the extraction rates were compared. The measurement was performed by the continuous extraction device shown in FIG. In a stirring tank (<4>) having a capacity of 100 ml, the extraction solvent was 60 ml / min, and the iron chloride solution was 60 ml / mi.
n. Therefore, the average residence time in the stirring tank is 50 seconds. The stirring speed was 1000 rpm. As a result, the extraction rate was 3.3% when DOLPA was not added, but improved to 30% when DOLPA was added. still,
The water content in the organic phase was 1.0 × 10 −5 , the effective applied voltage during demulsification was 2 kV, and the average retention time in the demulsifier was 48.
It was seconds.

【0038】実施例3 0.1N酢酸−0.1N酢酸ナトリウムにてpH6.5
に調整した各々1mol/m3 の塩化ニッケル、コバル
ト溶液を水相とし、抽出溶媒はHenkel社のLIX
84を20mol/m3 、アニオン性界面活性剤DOL
PAを0,0.1,0.5,1.0mol/m3 になる
ようにヘプタンで希釈して調整し、抽出速度の比較を行
った。測定は図1に示した連続抽出装置で行った。10
0mlの容量を持つ撹拌槽(<4>)に、抽出溶媒は1
7ml/min、ニッケル、コバルトの混合塩化物溶液
は17ml/minで供給した。従って、撹拌槽内平均
滞留時間は180秒である。また撹拌速度は1000r
pmとした。得られた結果を第2図に示したが、DOL
PAの添加によって抽出率が大幅に向上していることが
判る。尚、有機相中の含水率は、8.9×10-5、解乳
化における有効加電圧は2kV、解乳化装置内平均滞溜
時間は140秒であった。
Example 3 0.1N acetic acid-0.1N sodium acetate at pH 6.5
Each of the 1 mol / m 3 nickel chloride and cobalt solutions adjusted to the above was used as an aqueous phase, and the extraction solvent was LIX from Henkel.
20 mol / m 3 84, anionic surfactant DOL
PA was diluted and adjusted with heptane so as to be 0, 0.1, 0.5, 1.0 mol / m 3 , and the extraction rates were compared. The measurement was performed by the continuous extraction device shown in FIG. 10
The extraction solvent is 1 in a stirred tank (<4>) with a capacity of 0 ml.
The mixed chloride solution of 7 ml / min and nickel and cobalt was supplied at 17 ml / min. Therefore, the average residence time in the stirring tank is 180 seconds. The stirring speed is 1000r
pm. The results obtained are shown in FIG.
It can be seen that the addition rate of PA significantly improves the extraction rate. The water content in the organic phase was 8.9 × 10 −5 , the effective applied voltage during demulsification was 2 kV, and the average retention time in the demulsifier was 140 seconds.

【0039】[0039]

【発明の効果】水に不溶性の界面活性剤を抽出溶媒に添
加し、エマルジョンを形成して抽出速度を速めミキサー
容量の減少を可能にし、かつ生成したエマルジョンを高
電圧を用いた電気的解乳化法によって有機相と水相の相
分離を行うことによってセトラー容量の減少を可能にし
た。このことからミキサーセトラーが小型化され、設備
の小型化、抽出溶媒の初期投入量の削減を達成できる。
[Effects of the Invention] A water-insoluble surfactant is added to an extraction solvent to form an emulsion, which accelerates the extraction speed and enables reduction of the mixer capacity, and the produced emulsion is electrically demulsified using a high voltage. By the method, it was possible to reduce the settler capacity by performing the phase separation of the organic phase and the aqueous phase. As a result, the mixer settler can be downsized, the equipment can be downsized, and the initial amount of extraction solvent can be reduced.

【0040】このように、本発明は工業的に極めて有用
なものである。
As described above, the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜3で用いた連続抽出装置の模式図で
あり、<1>は有機相供給槽、<2>は水相供給槽、<
3>はマイクロチューブポンプ、<4>は攪拌槽、<5
>はサンプリングコック、<6>は解乳化器、<7>は
高圧電極、<8>は高圧変換器、<9>はスライダッ
ク、<10>は接地、<11>はレベラーを示す。
FIG. 1 is a schematic diagram of a continuous extraction apparatus used in Examples 1 to 3, where <1> is an organic phase supply tank, <2> is an aqueous phase supply tank, and <
3> is a microtube pump, <4> is a stirring tank, <5
> Is a sampling cock, <6> is a demulsifier, <7> is a high-voltage electrode, <8> is a high-voltage converter, <9> is a slidac, <10> is a ground, and <11> is a leveler.

【図2】DOLPA濃度と抽出率の関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between the DOLPA concentration and the extraction rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水溶液中の金属イオンを抽出分離するに
際し、水不溶性の界面活性剤を添加した抽出溶媒を用い
て抽出操作を行い、得られたエマルジョンを電場下で相
分離することを特徴とする金属イオンの抽出法
1. When extracting and separating metal ions from an aqueous solution, extraction operation is performed using an extraction solvent to which a water-insoluble surfactant is added, and the obtained emulsion is phase-separated under an electric field. Method for extracting metal ions
JP3234929A 1991-09-13 1991-09-13 Extraction of metal ions by emulsion method Pending JPH0568806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234929A JPH0568806A (en) 1991-09-13 1991-09-13 Extraction of metal ions by emulsion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234929A JPH0568806A (en) 1991-09-13 1991-09-13 Extraction of metal ions by emulsion method

Publications (1)

Publication Number Publication Date
JPH0568806A true JPH0568806A (en) 1993-03-23

Family

ID=16978494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234929A Pending JPH0568806A (en) 1991-09-13 1991-09-13 Extraction of metal ions by emulsion method

Country Status (1)

Country Link
JP (1) JPH0568806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289975A (en) * 2007-05-23 2008-12-04 Japan Atomic Energy Agency Continuous liquid-liquid extraction apparatus utilizing emulsion flow
JP2010524666A (en) * 2007-04-17 2010-07-22 ナショナル・タンク・カンパニー High-speed electrostatic combined oil / water separator
CN104169471A (en) * 2012-07-19 2014-11-26 吉坤日矿日石金属株式会社 Method for recovering rare earth from rare earth element-containing alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524666A (en) * 2007-04-17 2010-07-22 ナショナル・タンク・カンパニー High-speed electrostatic combined oil / water separator
JP2008289975A (en) * 2007-05-23 2008-12-04 Japan Atomic Energy Agency Continuous liquid-liquid extraction apparatus utilizing emulsion flow
CN104169471A (en) * 2012-07-19 2014-11-26 吉坤日矿日石金属株式会社 Method for recovering rare earth from rare earth element-containing alloy

Similar Documents

Publication Publication Date Title
Draxler et al. Separation of metal species by emulsion liquid membranes
JP5499353B2 (en) Extraction and separation method of rare earth elements
CN106191447B (en) The substep purifying technique of scandium, titanium, vanadium in a kind of acid solution
JP5392828B2 (en) Extraction and separation method of rare earth elements
CN103451427B (en) Heavy rare earth and light rare earth separation method and extraction agent
CN107828961B (en) Extraction method of rare earth element ions and obtained rare earth enrichment liquid
JPS6152085B2 (en)
Kumbasar et al. Separation and concentration of gallium from acidic leach solutions containing various metal ions by emulsion type of liquid membranes using TOPO as mobile carrier
CN1169119A (en) Method for recovering extractant
CN106906369B (en) A kind of technique recycling copper, zinc, nickel, cadmium from heavy metal wastewater thereby using synergic solvent extraction technology
Hirato et al. Concentration of uranyl sulfate solution by an emulsion-type liquid membrane process
JP5299914B2 (en) Extraction and separation method of rare earth elements
Yang et al. Extraction and separation of scandium from rare earths by electrostatic pseudo liquid membrane
JPH0445570B2 (en)
JPH0568806A (en) Extraction of metal ions by emulsion method
Wejman-Gibas et al. solvent extraction of zinc (II) from ammonia leaching solution by LIX 54-100, LIX 84 I and TOA
US4246240A (en) Process for separating cobalt and nickel from a solution containing cobalt and nickel
KR940000109B1 (en) Process for separating yttrium
RU2339713C1 (en) Method for copper extraction from sulfuric solution
Yang et al. Extraction of rare-earth ions with an 8-hydroxyquinoline derivative in an ionic liquid
Hua et al. Design of a liquid membrane system for extracting rare earths
US3089750A (en) Recovery of values from ores by use of electric fields
Zhou et al. A microextraction approach for rapid extraction and separation of Mn (II) and Co (II) using saponified D2EHPA system
Lin et al. Electrophoretic mobility of oil drops in the presence of solvent extraction reagents
Nagaosa et al. Purification of unrefined Nickel (II) sulfate solution by a continuous countercurrent multistage extraction with bis (2‐ethylhexyl) phosphinic acid