JPH056868A - Shape simulation method of semiconductor integrated circuit - Google Patents

Shape simulation method of semiconductor integrated circuit

Info

Publication number
JPH056868A
JPH056868A JP3034770A JP3477091A JPH056868A JP H056868 A JPH056868 A JP H056868A JP 3034770 A JP3034770 A JP 3034770A JP 3477091 A JP3477091 A JP 3477091A JP H056868 A JPH056868 A JP H056868A
Authority
JP
Japan
Prior art keywords
shape
integrated circuit
semiconductor integrated
hole
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3034770A
Other languages
Japanese (ja)
Inventor
Tetsuya Abe
哲哉 安部
Satoshi Tazawa
聰 田沢
Kazuyuki Saito
和之 齋藤
Seitaro Matsuo
誠太郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3034770A priority Critical patent/JPH056868A/en
Publication of JPH056868A publication Critical patent/JPH056868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a technique wherein the prediction of a cross-sectional shape after having executed the working process of an LSI can be executed by taking into consideration the influence of a surface shape in a direction perpendicular to an analytic corss section and in a short computation time. CONSTITUTION:A shielding plate S in which a properly shaped hole A has been made is defined virtually with reference to each movement computation point on the surface according to an anticipation angle theta in a range where the sky can be looked over without being shielded by walls on both sides when the sky is looked up from the point; the movement of the point is computed by taking into consideration the shielding effect of a three-dimensional incident particle by the shielding plate S. Thereby, the shape simulation of a semiconductor integrated circuit which has taken into conseiration the effect of a surface shape in a direction perpendicular to an analytic cross section M can be executed easily. The computation time can be shortened sharply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路の形状
シミュレーション方法に関し、特に、大規模半導体集積
回路(以下、LSIと呼ぶ)の加工プロセス(デポジシ
ョンまたはエッチング)実施後の表面の加工形状を予測
するシミュレーション技術に関するものであり、予想精
度の向上と計算時間の短縮を図ったLSIの形状シミュ
レーション方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simulating a shape of a semiconductor integrated circuit, and more particularly to a processed shape of a surface of a large-scale semiconductor integrated circuit (hereinafter referred to as LSI) after a processing process (deposition or etching). The present invention relates to a simulation technique for predicting the above, and to a shape simulation method for an LSI that improves the prediction accuracy and shortens the calculation time.

【0002】[0002]

【従来の技術】従来の形状シミュレーション(例えば、
田沢ら、“Unified Topography Simulator for Complex
Reaction including both Deposition and Etchin
g”,Symposium on VLSI Technology, 1989.参照)で
は、プロセス実施後の形状をシミュレーション対象物の
断面形状が、解析断面の垂直方向に無限に続くものと仮
定して、2次元の変形計算を行っていた。この場合の、
デポジションまたはエッチングに寄与する入射粒子に対
する遮蔽計算の概念を図4に示す。
2. Description of the Related Art Conventional shape simulation (for example,
Tazawa et al., “Unified Topography Simulator for Complex
Reaction including both Deposition and Etchin
g ", Symposium on VLSI Technology, 1989.), two-dimensional deformation calculation is performed assuming that the cross-sectional shape of the simulation object is infinitely continuous in the vertical direction of the analysis cross-section after the process is performed. In this case,
The concept of shielding calculation for incident particles contributing to deposition or etching is shown in FIG.

【0003】この従来の方法は、図4に示すように、表
面上の各移動計算点に対して、その点から上空を見上げ
た際に両側の壁の遮蔽を受けずに上空が見渡せる範囲の
見込み角内の入射粒子の寄与を2次元的に積分すること
により、その点の移動量を計算していた。ところが、現
実のLSI上では、解析断面に垂直な方向の表面形状の
影響が無視できない場合が多く、特に、スルーホール部
のような穴の部分では、解析断面の手前と奥に存在する
壁によってデポジションまたはエッチングに寄与する入
射粒子が遮蔽される効果を考慮しなければ、正確な形状
予測ができないという問題があった。
In this conventional method, as shown in FIG. 4, with respect to each movement calculation point on the surface, when the sky is looked up from that point, there is a range in which the sky can be seen without being shielded by the walls on both sides. The amount of movement of the point was calculated by two-dimensionally integrating the contribution of the incident particle within the angle of view. However, on an actual LSI, the influence of the surface shape in the direction perpendicular to the analysis cross section is often not negligible. Especially, in the case of a hole such as a through hole, the walls existing in the front and back of the analysis cross section cause There is a problem that accurate shape prediction cannot be performed unless the effect of blocking incident particles that contribute to deposition or etching is taken into consideration.

【0004】前記問題点を解決する方法としては、LS
Iの形状を3次元データとして扱い、3次元の変形計算
を行う方法(例えば、山口ら、“3次元形状シミュレー
ション”、第36回応用物理学会関連連合講演会講演予
稿集参照)がある。
As a method for solving the above problems, LS is used.
There is a method of treating the shape of I as three-dimensional data and performing a three-dimensional deformation calculation (see, for example, Yamaguchi et al., “Three-dimensional shape simulation”, Proceedings of 36th Joint Lecture of the Applied Physics Society of Japan).

【0005】[0005]

【発明が解決しようとする課題】しかし、通常、LSI
のパターン設計やプロセス設計を行う際には、穴の断面
形状が予測できれば充分であるにもかかわらず、穴の全
体形状の変形を3次元で計算するため、この方法で通常
の2次元シミュレーションと同程度の精度を得るために
は、膨大な計算時間がかかるという問題があった。
However, in general, LSI
Although it is sufficient to predict the cross-sectional shape of the hole when performing the pattern design and process design of the above, since the deformation of the entire shape of the hole is calculated in three dimensions, this method can be used as an ordinary two-dimensional simulation. There has been a problem that a huge amount of calculation time is required to obtain the same degree of accuracy.

【0006】本発明は、前記問題点を解決するためにな
されたものであり、本発明の課題は、半導体集積回路の
加工プロセス実施後の断面形状の予測を、解析断面に垂
直な方向の表面形状の影響を考慮に入れ、かつ、短い計
算時間で実施することができる技術を提供することにあ
る。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to predict the cross-sectional shape of a semiconductor integrated circuit after the fabrication process is performed, and to predict the surface in the direction perpendicular to the analysis cross-section. An object of the present invention is to provide a technique that can be implemented in a short calculation time while taking the influence of the shape into consideration.

【0007】本発明の前記ならびにその他の課題及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かになるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、本発明では、半導体集積回路の表面上で、デポジシ
ョンまたはエッチング後の断面形状を予測する半導体集
積回路の形状シミュレーション方法において、穴の部分
のように、デポジションまたはエッチングに寄与する粒
子の入射が周辺の3次元的な形状の遮蔽効果を受ける場
合に対して、一つのタイムステップ毎に、解析断面上で
表面の形状を表す各点の移動を計算する際に、その点か
ら上空を見上げた際に両側の壁の遮蔽を受けずに上空が
見渡せる範囲の見込み角に応じて、適当な形状の穴のあ
いた遮蔽板を仮想的に定義し、この遮蔽板による入射粒
子の遮蔽効果を考慮にいれて移動計算を実施することに
より、近似的に3次元形状効果を考慮した高速シミュレ
ーションを実現することを最も主要な特徴とする。。
In order to solve the above-mentioned problems, according to the present invention, in a shape simulation method of a semiconductor integrated circuit for predicting a sectional shape after deposition or etching on the surface of the semiconductor integrated circuit, In the case where the incident of particles that contribute to deposition or etching is subject to the shielding effect of the surrounding three-dimensional shape like the part of (3), the surface shape is expressed on the analysis cross section at each time step. When calculating the movement of each point, when looking up at the sky from that point, a shield plate with a hole with an appropriate shape is hypothesized according to the view angle of the range that can be seen without looking at the walls on both sides. By performing the movement calculation by taking into account the shielding effect of the incident particles by this shielding plate, the high-speed simulation considering the three-dimensional shape effect can be realized approximately. The most important feature that. ..

【0009】[0009]

【作用】前述の手段によれば、穴の部分で、解析断面の
手前と奥に存在する壁によって、デポジションまたはエ
ッチングに寄与する入射粒子が遮蔽される効果を考慮し
たシミュレーションを行うことができる。また、膜に穴
を開けたり、穴に膜を付けたりする場合に、穴の形状が
丸くなったり、尖ったりする現状が現れる場合がある
が、本発明では、例えば、楕円、矩形、星型の中から、
適当な穴形状を仮定(適当な穴形状近似方程式の係数を
設定)することにより、この効果を考慮した計算も行う
ことができる。さらに、各タイムステップ毎に、穴形状
を変化(穴形状の近似方程式の係数を変化)させること
によって、経時的な穴形状変化を考慮した計算も行うこ
とができる。
According to the above-described means, it is possible to perform a simulation in consideration of the effect that the particles existing in the front and the back of the analysis cross section shield the incident particles that contribute to deposition or etching at the hole. .. Further, when a hole is formed in a film or a film is added to a hole, there may be a situation in which the shape of the hole is rounded or sharpened. In the present invention, for example, an ellipse, a rectangle, or a star shape is used. From
By assuming an appropriate hole shape (setting the coefficient of an appropriate hole shape approximation equation), calculation considering this effect can also be performed. Furthermore, by changing the hole shape (changing the coefficient of the approximate equation of the hole shape) at each time step, it is possible to perform calculation taking into consideration the hole shape change over time.

【0010】[0010]

【実施例】以下、本発明を一実施例を図面を用いて具体
的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the drawings.

【0011】図1は、本発明の半導体集積回路の形状シ
ミュレーション方法の一実施例の概念を説明するための
図、図2は、実際のプロセス(金属膜のスパッタデポジ
ション)実施後の穴形状を上から見た走査型電子顕微鏡
(SEM)写真の一例の複写であり、(a)は楕円型の
例、(b)は星型である。図3は、本実施例の穴形状の
近似図形の例に示す図であり、(a)は楕円型の例、
(b)は矩形型の例、(c)は星型例である。
FIG. 1 is a view for explaining the concept of an embodiment of a semiconductor integrated circuit shape simulation method of the present invention, and FIG. 2 is a hole shape after an actual process (sputter deposition of a metal film) is carried out. 3 is a copy of an example of a scanning electron microscope (SEM) photograph viewed from above, in which (a) is an elliptical shape and (b) is a star shape. FIG. 3 is a diagram showing an example of a hole-shaped approximate figure of the present embodiment, where (a) is an elliptical example,
(B) is a rectangular type, and (c) is a star type.

【0012】本実施例の半導体集積回路の形状シミュレ
ーション方法は、表面の形状を表す各点の移動を計算す
る際の遮蔽計算の概念は、図1に示すように、その計算
点Pのから上空を見上げた際に両側の壁の遮蔽を受けず
に上空が見渡せる範囲の見込み角θに応じて、適当な形
状の穴Aを有する遮蔽板Sを仮想的に定義し、この遮蔽
板Sによる入射粒子の遮蔽効果を考慮にいれて移動計算
を実施する。即ち、この計算点の遮蔽板Sの穴Aに対す
る立体角の内側(計算点Pと遮蔽板Sの穴Aが形成する
錘の内側)で、入射粒子の寄与を3次元的に積分するこ
とにより、その点の移動量を計算する。図1中、Mは解
析断面である。
In the semiconductor integrated circuit shape simulation method according to the present embodiment, the concept of the shielding calculation when calculating the movement of each point representing the surface shape is as shown in FIG. When the user looks up, the shielding plate S having a hole A of an appropriate shape is virtually defined according to the angle of view θ of the range in which the sky can be seen without being shielded by the walls on both sides, and the incidence by this shielding plate S The movement calculation is performed taking into consideration the particle shielding effect. That is, inside the solid angle of the calculation point with respect to the hole A of the shield plate S (inside the weight formed by the calculation point P and the hole A of the shield plate S), the contribution of the incident particles is three-dimensionally integrated. , Calculate the amount of movement at that point. In FIG. 1, M is an analysis cross section.

【0013】実際のプロセス(金属膜のスパッタデポジ
ション)実施後の穴形状を上から見たSEM写真の例を
図2に示す。左の写真(a)は丸い穴へのデポジショ
ン、右の写真(b)は矩形の穴へのデポジション結果を
示している。この例では、丸い穴では丸い形状が維持さ
れ、矩形の穴の場合は星型の形状になっていることがわ
かる。
FIG. 2 shows an example of an SEM photograph of the hole shape seen from above after the actual process (sputter deposition of a metal film). The left photograph (a) shows the deposition result on a round hole, and the right photograph (b) shows the deposition result on a rectangular hole. In this example, it can be seen that the round hole maintains the round shape and the rectangular hole has the star shape.

【0014】前記本実施例の穴形状は、例えば、図3に
示すように、楕円型(a)、矩形型(b)、星型(c)
に分類し、以下のような方程式数1,数2でこの形状を
近似する。
The hole shape of the present embodiment is, for example, as shown in FIG. 3, an elliptical shape (a), a rectangular shape (b), and a star shape (c).
This shape is approximated by the following equations 1 and 2.

【0015】楕円型(a)の場合In case of elliptical type (a)

【0016】[0016]

【数1】 xn/an+yn/βn=1 数1においてn→∝のとき矩形型(b)となる。## EQU1 ## x n / a n + y n / β n = 1 In Equation 1, when n → ∝, a rectangular type (b) is obtained.

【0017】星型(c)の場合In case of star type (c)

【0018】[0018]

【数2】 x=α(pm+qm) y=β(pm+qm) |p|+|q|=1 数2において、m→1のとき矩形型(b)となる。[Number 2] x = α (p m + q m) y = β (p m + q m) | p | + | q | in = 1 Equation 2, a rectangular type (b) when m → 1.

【0019】ここで、αとβは、穴の解析断面方向の長
さと、穴の解析断面垂直方向の幅の比率を示す係数であ
る。最初は穴の初期形状に合うように係数を決める。そ
の後は、例えば、長さ方向の寸法の変化に合わせて、幅
方向の寸法も同様に変化すると仮定すれば、各ステップ
毎に係数を自動的に決定することができる。また、nお
よびmは曲率に係わるパラメータであり、この値を時間
的に変化させることによって、矩形型の穴が徐々に楕円
型に変化する場合(n=∝→2)や、矩形型の穴が徐々
に星型に変化する場合(m=1→∝)のシミュレーショ
ンも可能である。
Here, α and β are coefficients showing the ratio of the length of the hole in the analysis cross section direction to the width of the hole in the analysis cross section vertical direction. Initially, the coefficient is determined to match the initial shape of the hole. After that, for example, assuming that the dimension in the width direction also changes in accordance with the change in the dimension in the length direction, the coefficient can be automatically determined for each step. Further, n and m are parameters relating to the curvature, and when the rectangular hole gradually changes to an elliptical shape by changing these values with time (n = ∝ → 2), the rectangular hole is changed. It is also possible to perform a simulation when changes gradually to a star shape (m = 1 → ∝).

【0020】本実施例によれば、解析断面に垂直な方向
の表面形状の影響を考慮に入れた半導体集積回路の形状
シミュレーションを、従来の2次元シミュレータの移動
計算部を一部修正するだけで、容易に実施することがで
きる。
According to the present embodiment, the shape simulation of the semiconductor integrated circuit in which the influence of the surface shape in the direction perpendicular to the analysis cross section is taken into consideration can be achieved by only partially modifying the movement calculation section of the conventional two-dimensional simulator. , Can be easily implemented.

【0021】また、図形データの内容及び変形計算を完
全に3次元化した場合に比べて、大幅な計算時間を短縮
することができる。
Further, it is possible to significantly reduce the calculation time as compared with the case where the content of the graphic data and the deformation calculation are completely three-dimensionalized.

【0022】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲において種々変更し得
るこというまでもない。
Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention. ..

【0023】[0023]

【発明の効果】以上、説明したように、本発明によれ
ば、解析断面に垂直な方向の表面形状の影響を考慮に入
れた半導体集積回路の形状シミュレーションを、容易に
実施することができる。また、大幅な計算時間を短縮す
ることができる。
As described above, according to the present invention, it is possible to easily carry out a shape simulation of a semiconductor integrated circuit in consideration of the influence of the surface shape in the direction perpendicular to the analysis cross section. In addition, it is possible to significantly reduce the calculation time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の半導体集積回路の形状シミュレーシ
ョン方法の一実施例の概念を説明するための図、
FIG. 1 is a view for explaining the concept of one embodiment of a semiconductor integrated circuit shape simulation method of the present invention;

【図2】本実施例の実際のプロセス(金属膜のスパッタ
デポジション)実施後の穴形状を上から見た走査型電子
顕微鏡(SEM)写真の一例の複写、
FIG. 2 is a copy of an example of a scanning electron microscope (SEM) photograph in which the hole shape after the actual process (sputter deposition of a metal film) of the present embodiment is performed,

【図3】 本実施例の穴形状の近似図形の例を示す図、FIG. 3 is a diagram showing an example of an approximate figure of a hole shape according to the present embodiment,

【図4】 従来の2次元シミュレーションにおける遮蔽
計算の概念図。
FIG. 4 is a conceptual diagram of shielding calculation in a conventional two-dimensional simulation.

【符号の説明】[Explanation of symbols]

M…解析断面、P…計算点、θ…見込み角、S…遮蔽
板、A…穴。
M ... Analysis cross section, P ... Calculation point, θ ... View angle, S ... Shield plate, A ... Hole.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年8月7日[Submission date] August 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】図1は、本発明の半導体集積回路の形状シ
ミュレーション方法の一実施例の概念を説明するための
図、図2は、実際のプロセス(金属膜のスパッタデポジ
ション)実施後の穴形状を上から見た走査型電子顕微鏡
(SEM)写真の一例に基づく外観を示す模式図であ
り、(a)は楕円型の例、(b)は星型である。図3
は、本実施例の穴形状の近似図形の例に示す図であり、
(a)は楕円型の例、(b)は矩形型の例、(c)は星
型である。
FIG. 1 is a view for explaining the concept of an embodiment of a semiconductor integrated circuit shape simulation method of the present invention, and FIG. 2 is a hole shape after an actual process (sputter deposition of a metal film) is carried out. 3A and 3B are schematic views showing an appearance based on an example of a scanning electron microscope (SEM) photograph viewed from above, (a) is an elliptical shape, and (b) is a star shape. Figure 3
Is a diagram showing an example of a hole-shaped approximate figure of the present embodiment,
(A) is an example of an elliptical shape, (b) is an example of a rectangular shape, and (c) is a star shape.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 本実施例の実際のプロセス(金属膜のスパッ
タデポジション)実施後の穴形状を上から見た走査型電
子顕微鏡(SEM)写真の一例に基づく外観 を示す模式
FIG. 2 is a schematic view showing an appearance based on an example of a scanning electron microscope (SEM) photograph of a hole shape seen from above after the actual process (sputter deposition of a metal film) of this embodiment is performed.
Figure ,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 誠太郎 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seitaro Matsuo 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 【請求項1】 半導体集積回路の表面上で、デポジショ
ンまたはエッチング後の断面形状を予測する半導体集積
回路の形状シミュレーション方法において、表面上の各
移動計算点に対して、その点から上空を見上げた際に両
側の壁の遮蔽を受けずに上空が見渡せる範囲の見込み角
に応じて、適当な形状の穴のあいた遮蔽板を仮想的に定
義し、その遮蔽板による3次元的な入射粒子の遮蔽効果
を考慮にいれて、その点の移動を計算することを特徴と
する半導体集積回路の形状シミュレーション方法。
Claim: What is claimed is: 1. A semiconductor integrated circuit shape simulation method for predicting a cross-sectional shape after deposition or etching on a surface of a semiconductor integrated circuit, for each movement calculation point on the surface. From that point, when you look up at the sky, you can virtually define a shield plate with a hole of an appropriate shape according to the angle of view of the area where you can see the sky without being shielded by the walls on both sides. A shape simulation method for a semiconductor integrated circuit, characterized in that the movement of a point is calculated in consideration of a three-dimensional incident particle shielding effect.
JP3034770A 1991-02-28 1991-02-28 Shape simulation method of semiconductor integrated circuit Pending JPH056868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034770A JPH056868A (en) 1991-02-28 1991-02-28 Shape simulation method of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034770A JPH056868A (en) 1991-02-28 1991-02-28 Shape simulation method of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH056868A true JPH056868A (en) 1993-01-14

Family

ID=12423544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034770A Pending JPH056868A (en) 1991-02-28 1991-02-28 Shape simulation method of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH056868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171549A (en) * 1994-12-20 1996-07-02 Nec Corp Shape simulating method
JP2002324089A (en) * 2001-04-25 2002-11-08 Dainippon Printing Co Ltd Modeling apparatus for shape of hole

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171549A (en) * 1994-12-20 1996-07-02 Nec Corp Shape simulating method
JP2002324089A (en) * 2001-04-25 2002-11-08 Dainippon Printing Co Ltd Modeling apparatus for shape of hole
JP4662404B2 (en) * 2001-04-25 2011-03-30 大日本印刷株式会社 Hole shape modeling device

Similar Documents

Publication Publication Date Title
US5241185A (en) Proximity correction method for e-beam lithography
US7327360B2 (en) Hair rendering method and apparatus
US11645443B2 (en) Method of modeling a mask by taking into account of mask pattern edge interaction
Smith et al. The development of a general three‐dimensional surface under ion bombardment
EP0097417A2 (en) Electron beam lithography
US5149975A (en) Pattern fabrication method using a charged particle beam and apparatus for realizing same
JP6539142B2 (en) Process error correction when transferring a mask layout onto a mask substrate
CN1424743A (en) Mask pattern forming method, computer programme product and optical mask production
JPH0721405A (en) Volume rendering method
Lee et al. PYRAMID-a hierarchical, rule-based approach toward proximity effect correction. I. Exposure estimation
TW200933700A (en) Exposure data preparation method and exposure method
JPH056868A (en) Shape simulation method of semiconductor integrated circuit
Greeneich et al. Model for exposure of electron-sensitive resists
JP2002313693A (en) Forming method for mask pattern
Peckerar et al. Proximity correction algorithms and a co‐processor based on regularized optimization. I. Description of the algorithm
Okuno et al. Numerical algorithm based on the mode-matching method with a singular-smoothing procedure for analyzing edge-type scattering problems
JP3649160B2 (en) Stencil mask, method for manufacturing the same, and method for manufacturing a semiconductor device using the stencil mask
WO2012049901A1 (en) Image rendering method and image rendering device
Marrian et al. Proximity correction for electron beam lithography
Ohdomari et al. Computer simulation of high‐resolution transmission electron microscope images based on ball‐and‐spoke models of (100) Si/SiO2 interface
Vatova et al. ABSORBED ENERGY DISTRIBUTION IN ELECTRON LITHOGRAPHY OF SINIPLE PATTERNS
JP2002518840A (en) Method and apparatus for correcting proximity effects
Moniwa et al. Effect of EB acceleration voltage and beam sharpness on process latitude of 0.2 µm lines
JPH065502A (en) Method and equipment for conversion of exposure data
JPH06349718A (en) Electron beam drawing device and method therefor