JPH0567847B2 - - Google Patents

Info

Publication number
JPH0567847B2
JPH0567847B2 JP2197685A JP2197685A JPH0567847B2 JP H0567847 B2 JPH0567847 B2 JP H0567847B2 JP 2197685 A JP2197685 A JP 2197685A JP 2197685 A JP2197685 A JP 2197685A JP H0567847 B2 JPH0567847 B2 JP H0567847B2
Authority
JP
Japan
Prior art keywords
coal
air
boiler
coal feeding
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2197685A
Other languages
Japanese (ja)
Other versions
JPS61184325A (en
Inventor
Masakatsu Kishida
Shigenori Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2197685A priority Critical patent/JPS61184325A/en
Publication of JPS61184325A publication Critical patent/JPS61184325A/en
Publication of JPH0567847B2 publication Critical patent/JPH0567847B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はボイラ給炭系における給炭方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a coal feeding method in a boiler coal feeding system.

(従来の技術) 第4図に従来技術の実施フローを示す。流動床
ボイラ1は流動床燃焼部21の底部に、多数の給
炭吹込管4を介して燃料としての細粒炭及び脱硫
剤としての石灰石等の輸送物が空気とともに吹込
まれる。吹込まれた輸送物は押込送風機2から流
動空気配管3を介して供給される空気で流動状態
を保持しつつ強制攪拌されるため、燃焼性能は極
めて優れている。
(Prior art) FIG. 4 shows an implementation flow of the prior art. In the fluidized bed boiler 1, materials to be transported, such as fine coal as a fuel and limestone as a desulfurizing agent, are blown into the bottom of a fluidized bed combustion section 21 through a large number of coal feed pipes 4 together with air. The blown materials are forcibly stirred while being maintained in a fluidized state by the air supplied from the forced air blower 2 through the fluidized air pipe 3, so that the combustion performance is extremely excellent.

さて、従来方式の給炭フローを以下に説明す
る。図示しない原炭受入バンカに受入れられた原
炭は、石炭乾燥機、破砕機を通じて所定の粒度、
水分に調整された後、細粒炭ホツパ10に貯蔵さ
れる。一方、石灰石も同工程の後又は所定の粒
度、水分に調整されたものを購入して石灰石ホツ
パ9に貯蔵される。各々のホツパに貯蔵された細
粒炭及び石灰石は、ボイラの使用条件に合致した
量を各々切り出され、混合された後一次給炭配管
11に供給される。一方、ブースターブロア8で
送られてくる空気は、ヘツダ7、搬送空気供給配
管6を通して一次給炭配管11に供給され、細粒
炭、石灰石等を空気輸送する。尚、空気輸送条件
は輸送空気量調整装置12でボイラ使用条件に合
致した条件に設定制御される。
Now, the conventional coal feeding flow will be explained below. Raw coal received in a raw coal receiving bunker (not shown) is passed through a coal dryer and a crusher to a predetermined particle size,
After being adjusted to moisture, it is stored in a fine charcoal hopper 10. On the other hand, limestone is also purchased after the same process or after being adjusted to a predetermined particle size and moisture content and stored in the limestone hopper 9. The fine coal and limestone stored in each hopper are cut out in amounts that meet the usage conditions of the boiler, mixed, and then supplied to the primary coal feed pipe 11. On the other hand, the air sent by the booster blower 8 is supplied to the primary coal supply pipe 11 through the header 7 and the conveying air supply pipe 6, and pneumatically transports fine coal, limestone, and the like. Note that the pneumatic transport conditions are set and controlled by the transport air amount adjusting device 12 to conditions that match the boiler usage conditions.

一次給炭配管11と給炭吹込管4の間には、流
体分配器5が設けられ、1本の一次給炭配管で輸
送されてきた細粒炭と石灰石を多数の給炭吹込管
4に均等に分配している。所定の分配数に分配さ
れた輸送物は、流動床ボイラ1の底部から吹込ま
れ燃焼する。
A fluid distributor 5 is provided between the primary coal feeding pipe 11 and the coal feeding pipe 4, and distributes fine coal and limestone transported through one primary coal feeding pipe to a large number of coal feeding pipes 4. It is distributed evenly. The transported materials distributed into a predetermined number of distributions are blown into the bottom of the fluidized bed boiler 1 and combusted.

(発明が解決しようとする問題点) 従来技術の問題点を説明する前に、流動床ボイ
ラ1に使われる流体分配器5に要求される性能を
以下に説明する。
(Problems to be Solved by the Invention) Before explaining the problems of the prior art, the performance required of the fluid distributor 5 used in the fluidized bed boiler 1 will be explained below.

流動床ボイラ1は細粒炭と石灰石を同時に吹込
んで850〜950℃の範囲内で燃焼させることによ
り、NOxの発生及びSOxの脱硫を行いつつ高効
率燃焼を可能にした無公害ボイラである。この目
的を達成するための条件として個々の給炭吹込管
における細粒炭中S分と石灰石の比率が一定であ
り、かつ細粒炭と輸送空気との混合比率が0.8〜
1.0の範囲に入つていることが必要である。
The fluidized bed boiler 1 is a pollution-free boiler that enables highly efficient combustion while generating NOx and desulfurizing SOx by simultaneously injecting fine coal and limestone and burning them within the range of 850 to 950°C. The conditions for achieving this purpose are that the ratio of S content in the fine coal to limestone in each coal feed pipe is constant, and the mixing ratio of fine coal and transport air is 0.8 to 0.8.
It must be within the range of 1.0.

この理由は流動床ボイラ内で脱硫するために
は、細粒炭中S分に見あつた石灰石が必要である
からである。又、細粒炭と輸送空気との混合比率
が変ると、細粒炭中の揮発可燃分と輸送空気との
混合比率が変り、流動床ボイラに吹込まれた直後
の揮発分燃焼により、炉内温度分布が均一になら
ず、NOxの発生(温度の高い領域)、石炭の燃焼
不良による未燃分の増大(低温領域)等好ましく
ない事象が発生するからである。
The reason for this is that in order to desulfurize in a fluidized bed boiler, limestone, which has a S content found in fine coal, is required. In addition, when the mixing ratio of fine coal and transport air changes, the mixing ratio of volatile combustible content in the fine coal and transport air changes, and the combustion of volatile content immediately after being blown into the fluidized bed boiler causes This is because the temperature distribution is not uniform, and undesirable phenomena such as the generation of NOx (in high temperature regions) and an increase in unburned coal due to poor combustion of coal (in low temperature regions) occur.

以上の事象を左右するのが流体分配器5の性能
である。流体分配器5は従つて細粒炭と石灰石の
混合比率を極力一定に保持しつつ必要な給炭吹込
管本数に、固気比(細粒炭と輸送空気の比率)一
定になる様に、いかに精度よく分配するかでその
優劣が決定される。
The performance of the fluid distributor 5 influences the above phenomena. Therefore, the fluid distributor 5 maintains the mixing ratio of fine coal and limestone as constant as possible, and maintains the required number of coal feeding pipes and the solid-air ratio (ratio of fine coal to transport air) to be constant. Its superiority or inferiority is determined by how precisely it is distributed.

第3図に従来型流体分配器の断面図を示す。従
来の流体分配器の分配精度と使用条件の関係は、
本発明者等の研究の結果では下記の傾向を有して
いることが判つた。
FIG. 3 shows a cross-sectional view of a conventional fluid distributor. The relationship between the dispensing accuracy and usage conditions of conventional fluid distributors is as follows:
The results of research conducted by the present inventors revealed the following trends.

1 給炭配管33内気体流速が速くなるほど分配
精度が悪くなる。
1. The faster the gas flow rate inside the coal feeding pipe 33, the worse the distribution accuracy becomes.

2 流体分配器円塔部32の平均空塔上昇流速が
速くなるほど分配精度が悪くなる。
2. The faster the average upward flow velocity of the fluid distributor column 32, the worse the distribution accuracy becomes.

3 流体分配器の給炭配管33から供給される輸
送物の固気比が小さくなるほど分配精度が悪く
なる。
3. The smaller the solid-gas ratio of the transported material supplied from the coal feed pipe 33 of the fluid distributor, the worse the distribution accuracy becomes.

又、第4図に示す給炭システムの輸送固気比、
管内流速は、輸送空気量調整装置12でボイラ使
用条件の固気比0.8〜1.0になる様制御している。
又輸送管路内流速は、石炭粒子の堆積防止のため
従来20m/s以上の流速がとられている。
In addition, the transport solid-air ratio of the coal feeding system shown in Fig. 4,
The flow velocity in the pipe is controlled by the transportation air amount adjusting device 12 so that the solid-gas ratio is 0.8 to 1.0, which is the boiler operating condition.
Furthermore, the flow velocity in the transport pipe is conventionally set at a flow velocity of 20 m/s or more to prevent coal particles from accumulating.

以上述べてきた様に流体分配器の分配精度を満
足する条件とボイラでの使用条件が異るにもかか
わらず、給炭システムにおける空気量調整装置は
従来システムでは輸送空気量調整装置12しか具
備していないため、下記問題点を有している。
As mentioned above, although the conditions for satisfying the distribution accuracy of the fluid distributor and the conditions for use in the boiler are different, the conventional system has only the transport air amount adjusting device 12 as the air amount adjusting device in the coal feeding system. Because this is not done, the following problems arise.

(イ) 一次給炭配管11の固気比0.8〜1.0で安定空
気輸送を達成するために管内流速が20m/s以
上必要となり、配管摩耗が激しく、かつ、配管
口径が大きくなり設備費、運転費とも高くな
る。又、設備信頼性も劣る。
(b) In order to achieve stable air transport with a solid-air ratio of 0.8 to 1.0 in the primary coal feeding pipe 11, the flow velocity in the pipe is required to be 20 m/s or more, which causes severe wear on the pipe and increases the equipment cost and operation due to the large pipe diameter. The cost will also be high. Furthermore, equipment reliability is also poor.

(ロ) 流体分配器5の給炭配管内固気比が小さいた
め、分配精度が悪くボイラ内での温度分布の偏
差が大きくなり、NOx,SOxの発生が増えか
つ燃焼効率も低下する。
(b) Since the solid-air ratio in the coal feed pipe of the fluid distributor 5 is low, the distribution accuracy is poor and the deviation in temperature distribution within the boiler becomes large, which increases the generation of NOx and SOx and reduces combustion efficiency.

(ハ) 固気比が0.8〜1.0であるため輸送物を搬送す
るための空気量が多くなり、輸送設備(配管、
弁類、流体分配器等)が大きくなる。
(c) Since the solid-air ratio is between 0.8 and 1.0, the amount of air required to transport the cargo is large, and transportation equipment (piping,
valves, fluid distributors, etc.) become larger.

本発明の給炭方法は給炭吹込管に空気を供給す
ることにより従来システムの問題点を解決せんと
するものである。
The coal feeding method of the present invention attempts to solve the problems of conventional systems by supplying air to the coal feeding pipe.

(発明の構成・作用) 第1図及び第2図に本発明による給炭システム
の一実施例を示す。
(Structure and operation of the invention) FIGS. 1 and 2 show an embodiment of a coal feeding system according to the present invention.

本発明の構成は従来システムで設けられていた
一次給炭配管輸送空気量調整装置12の他に、給
炭吹込管空気量調整装置14を設置することによ
り、流体分配器5、給炭吹込管4の輸送条件又は
分配条件を最適点に調整可能にするものである。
The configuration of the present invention is such that, in addition to the primary coal feeding pipe transportation air amount adjusting device 12 provided in the conventional system, a coal feeding pipe air amount adjusting device 14 is installed, so that the fluid distributor 5, the coal feeding pipe This makes it possible to adjust the transport conditions or distribution conditions of No. 4 to the optimum point.

本発明の機能を以下に説明する。 The functions of the present invention will be explained below.

給炭吹込管4によつて流動床ボイラに吹込まれ
る輸送物(石炭、石炭灰、石灰石等)は、図示し
ないホツパ(例えば第4図に示す細粒炭ホツパ1
0,石灰石ホツパ9又は石炭灰ホツパ等)からの
機械的切出し又は流動化切出し等によつて、輸送
物供給管41を通して一次給炭配管11に供給さ
れる。
The materials to be transported (coal, coal ash, limestone, etc.) that are blown into the fluidized bed boiler through the coal feed pipe 4 are transferred to a hopper (not shown) (for example, the fine coal hopper 1 shown in FIG. 4).
The coal is supplied to the primary coal feed pipe 11 through the conveyance supply pipe 41 by mechanical cutting or fluidized cutting from a limestone hopper 9 or a coal ash hopper, etc.

一方、一次給炭配管11に供給された輸送物を
空気輸送するための空気は、図示しないエア源よ
りヘツダ7に供給され、搬送空気供給配管6、一
次給炭配管輸送空気量調整装置12を介して一次
給炭配管11に供給され、輸送物は空気輸送され
る。
On the other hand, air for pneumatically transporting the transported material supplied to the primary coal feeding pipe 11 is supplied to the header 7 from an air source (not shown), and is connected to the transport air supply pipe 6 and the primary coal feeding pipe transport air amount adjusting device 12. The coal is supplied to the primary coal feeding pipe 11 through the coal feed pipe, and the transported material is transported by pneumatic transport.

一次給炭配管11は流体分配器5に接続され、
ここで必要な給炭吹込管本数に輸送物は均等分配
される。この時輸送物の粒度分布、比重等により
分配性能を達成するための流体分配器入口流速、
固気比、器内平均空塔上昇流速等が変る。この条
件を最適値にし分配精度を達成するために、必要
な固気比が供給空気量決定に大きく寄与する。
The primary coal feed pipe 11 is connected to the fluid distributor 5,
Here, the transported material is evenly distributed among the required number of coal feed blowing pipes. At this time, the flow rate at the inlet of the fluid distributor to achieve distribution performance based on the particle size distribution, specific gravity, etc. of the transported material,
The solid-gas ratio, average superficial upward flow rate in the vessel, etc. change. In order to optimize this condition and achieve distribution accuracy, the required solid-air ratio greatly contributes to determining the amount of air to be supplied.

次に、流体分配器で均一分配された輸送物は、
多数の給炭吹込管4を介して流動床ボイラに吹込
まれる。本発明では給炭吹込管の途中に、給炭吹
込管空気量調整装置14からヘツダ15を介して
空気を供給して、流動床ボイラの燃焼に最適な固
気比に調整している。給炭吹込管空気量調整装置
14から吹込まれる空気量は、最適固気比にする
ための空気量から一次給炭配管11の空気量を引
いた空気量が望ましい。
Next, the transported goods uniformly distributed by the fluid distributor,
The coal is blown into the fluidized bed boiler through a large number of coal feed blowing pipes 4. In the present invention, air is supplied from the coal feed pipe air amount adjusting device 14 through the header 15 to the middle of the coal feed pipe to adjust the solid-gas ratio to be optimal for combustion in the fluidized bed boiler. The amount of air blown from the coal feed blowing pipe air amount adjusting device 14 is preferably the amount of air obtained by subtracting the amount of air in the primary coal feed pipe 11 from the amount of air for achieving the optimum solid-air ratio.

本発明者等の実験では、一次給炭配管の固気比
20、従つて流体分配器内固気比20、給炭吹込
管の固気比0.8で給炭システムは安定した性能を
発揮した。この時の空気量調整を下記すると、一
次給炭配管輸送空気量は、輸送物供給管41より
供給された輸送物の重量より固気比20になる空
気量を演算させて、空気量調整装置に指令信号を
出して自動調整させた。
In experiments conducted by the present inventors, the coal feeding system exhibited stable performance at a solid-air ratio of 20 in the primary coal feeding pipe, a solid-air ratio in the fluid distributor of 20, and a solid-air ratio of 0.8 in the coal feeding pipe. The air amount adjustment at this time is as follows: The amount of air transported by the primary coal feeding pipe is determined by calculating the air amount that will give a solid-air ratio of 20 from the weight of the transported material supplied from the transported material supply pipe 41, and the air amount adjusting device A command signal was sent to the system to automatically adjust it.

次に給炭吹込管空気量調整装置14から供給す
る空気量は、輸送物供給管から供給される輸送物
の重量より固気比0.83になる様演算させて自動調
整させた。
Next, the amount of air supplied from the coal feed blowing pipe air amount adjusting device 14 was automatically adjusted by calculating the solid-air ratio to be 0.83 based on the weight of the material to be transported from the material supply pipe.

次に、ボイラセル22について説明する。ボイ
ラセルはボイラの負荷可変範囲を広くするために
設けられたボイラの流動燃焼部の1区分をセルと
称し、負荷可変範囲幅に応じて数セルから十数セ
ルに分割されている。従つて、セルはボイラ負荷
に応じて稼動したり停止したりするため、給炭も
吹込中、停止中がある。
Next, the boiler cell 22 will be explained. A boiler cell is a section of the fluidized combustion section of a boiler provided to widen the load variable range of the boiler, and is divided into several cells to more than ten cells depending on the width of the load variable range. Therefore, since the cell operates or stops depending on the boiler load, the coal feeding may be in progress or stopped.

この運転方法にマツチした給炭吹込管群として
本発明者等は、給炭吹込管空気量調整装置14の
設置区分をセル毎にすべきであることを発案し
た。この場合供給空気量がバラツクと分配精度が
低下するため、空気量調整装置14の後流側に空
気ヘツダを設置して供給空気量のバラツキをなく
した。
As a group of coal feed blowing pipes suitable for this operating method, the present inventors proposed that the coal feed blow pipe air amount adjusting device 14 should be installed in each cell. In this case, since the amount of supplied air varies and the distribution accuracy decreases, an air header was installed on the downstream side of the air amount adjusting device 14 to eliminate variations in the amount of supplied air.

(発明の効果) イ 本発明方法により空気量調整装置14を各給
炭吹込管毎に設置する方法に比し、設備が非常
に簡単にでき、かつ分配精度も干渉による悪影
響がさけられたため向上した。
(Effects of the invention) (a) Compared to the method of installing the air amount adjusting device 14 for each coal feed pipe by the method of the present invention, the equipment can be made very simple, and the distribution accuracy is improved because the adverse effects of interference are avoided. did.

ロ 一次給炭配管の輸送条件として高濃度(固気
比20)、低流速(5m/s)の採用が可能とな
つたため配管の摩耗が大幅に軽減され、配管に
径が小さくでき、輸送空気量が低減され、大幅
な設備費および運転費の削減、設備信頼性が向
上できた。
(b) It has become possible to use high concentration (solid-air ratio 20) and low flow velocity (5 m/s) as transportation conditions for the primary coal feeding piping, which greatly reduces wear on the piping, allows the diameter of the piping to be made smaller, and transports air The amount was reduced, significantly reducing equipment and operating costs and improving equipment reliability.

ハ 流体分配器5の分配精度がボイラ負荷変動に
関係なく安定して達成できるため、ボイラの
NOx,SOx発生量が低位安定し、かつ石炭の
燃焼効率が向上した。
C. Because the distribution accuracy of the fluid distributor 5 can be stably achieved regardless of boiler load fluctuations, the boiler
NOx and SOx emissions have stabilized at a low level, and coal combustion efficiency has improved.

ニ 給炭吹込管の最適固気比がボイラ負荷変動に
関係なく安定して達成できるため、ボイラの
NOx,SOx発生量が低位安定し、かつ石炭の
燃焼効率が向上した。
D. The optimum solid-air ratio of the coal feed pipe can be stably achieved regardless of boiler load fluctuations, so the boiler
NOx and SOx emissions have stabilized at a low level, and coal combustion efficiency has improved.

ホ 空気量調整装置14を追加したため、使用空
気圧が下り空気源を各々独立して設けることに
より、空気源設備の消費電力が軽減された。
E. By adding the air amount adjusting device 14, the air pressure used is reduced, and by providing each air source independently, the power consumption of the air source equipment is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明による給炭システ
ムの一実施例、第3図は従来型の流体分配器、第
4図は従来型の給炭システムの一実施例を示す。 1……流動床ボイラ、2……押込送風機、3…
…流動空気配管、4……給炭吹込管、5……流体
式分配器、6……搬送空気供給配管、7……ヘツ
ダー、8……ブースタブロア、9……石灰石ホツ
パ、10……細粒炭ホツパ、11……一次給炭配
管、12……一次給炭配管輸送空気量調整装置、
14……給炭吹込管空気量調整装置、21……流
動燃焼部、22……ボイラセル、31……円錐
部、32……円塔部、33……給炭配管、34…
…分配枝管、35……盲板、41……輸送物供給
管。
1 and 2 show an embodiment of a coal feeding system according to the present invention, FIG. 3 shows a conventional fluid distributor, and FIG. 4 shows an embodiment of a conventional coal feeding system. 1... Fluidized bed boiler, 2... Forced blower, 3...
... Fluid air piping, 4 ... Coal feed blowing pipe, 5 ... Fluid type distributor, 6 ... Conveying air supply pipe, 7 ... Header, 8 ... Booster blower, 9 ... Limestone hopper, 10 ... Thin Granulated coal hopper, 11...Primary coal feeding pipe, 12...Primary coal feeding pipe transportation air amount adjustment device,
14... Coal feed blowing pipe air amount adjustment device, 21... Fluid combustion section, 22... Boiler cell, 31... Conical part, 32... Round tower part, 33... Coal feed pipe, 34...
...Distribution branch pipe, 35...Blind plate, 41...Transportation material supply pipe.

Claims (1)

【特許請求の範囲】 1 複数本の給炭吹込管とこれらに均一に輸送物
を分配する流体分配器を具備し、ボイラに流体輸
送によつて輸送物を吹き込むようにしてなるボイ
ラ給炭系における給炭方法において、 前記流体分配器までの固気比は、少なくともボ
イラでの使用最適固気比より高くすると共に、該
流体分配器に接続する全ての給炭吹込管に流体ヘ
ツダーを介し各管均等に空気を供給して、ボイラ
内の固気比を使用最適固気比にすることを特徴と
するボイラ給炭系における給炭方法。 2 ボイラセル毎の流体分配器に接続する全ての
給炭吹込管に前記セル毎の流体ヘツダーを介して
各管均等な空気を供給することを特徴とする特許
請求の範囲第1項記載の給炭方法。 3 数セル共通に設けられた流体分配器に接続さ
れた複数本の給炭吹込管に対し、各セル毎の全て
の給炭吹込管にセル毎の前記流体ヘツダーを介し
て各管均等な空気を供給し、各セル毎に独立した
ボイラでの使用最適固気比にすることを特徴とす
る特許請求の範囲第1項記載の給炭方法。
[Scope of Claims] 1. A boiler coal feeding system comprising a plurality of coal feed blowing pipes and a fluid distributor that uniformly distributes the transported material to these pipes, and which blows the transported material into the boiler by fluid transport. In the coal feeding method, the solid-air ratio up to the fluid distributor is at least higher than the optimum solid-air ratio for use in the boiler, and all the coal feeding pipes connected to the fluid distributor are connected to each other through a fluid header. A coal feeding method in a boiler coal feeding system characterized by supplying air evenly through tubes and adjusting the solid-air ratio in the boiler to the optimum solid-air ratio for use. 2. The coal feeding system according to claim 1, characterized in that air is supplied uniformly to all the coal feeding pipes connected to the fluid distributor for each boiler cell through the fluid header for each cell. Method. 3. For multiple coal feeding pipes connected to a fluid distributor provided in common for several cells, uniform air is distributed to all coal feeding pipes for each cell through the fluid header for each cell. The coal feeding method according to claim 1, characterized in that the solid-air ratio is set to the optimum solid-air ratio for use in an independent boiler for each cell.
JP2197685A 1985-02-08 1985-02-08 Coal feeding in coal feeding system for boiler Granted JPS61184325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2197685A JPS61184325A (en) 1985-02-08 1985-02-08 Coal feeding in coal feeding system for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2197685A JPS61184325A (en) 1985-02-08 1985-02-08 Coal feeding in coal feeding system for boiler

Publications (2)

Publication Number Publication Date
JPS61184325A JPS61184325A (en) 1986-08-18
JPH0567847B2 true JPH0567847B2 (en) 1993-09-27

Family

ID=12070056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2197685A Granted JPS61184325A (en) 1985-02-08 1985-02-08 Coal feeding in coal feeding system for boiler

Country Status (1)

Country Link
JP (1) JPS61184325A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105757654A (en) * 2016-05-04 2016-07-13 山西平朔煤矸石发电有限责任公司 Flue gas backward-flow preventing coal feeding device of CFB boiler and flue gas backward-flow preventing method of device
CN112325277A (en) * 2020-12-16 2021-02-05 无锡华光环保能源集团股份有限公司 Coal-spreading air arrangement structure for boiler spiral coal feeder
CN112856397A (en) * 2021-01-15 2021-05-28 神华神东电力有限责任公司 Coal feeding control method of circulating fluidized bed boiler

Also Published As

Publication number Publication date
JPS61184325A (en) 1986-08-18

Similar Documents

Publication Publication Date Title
US4259911A (en) Fluidized bed boiler feed system
US4856460A (en) Fluidized bed combustion
CA1048761A (en) Conduit
JPS6233485B2 (en)
US5567919A (en) Gravimetric feeding system for boiler fuel and sorbent
JPH0567847B2 (en)
CN104696951A (en) Boiler-in integrated coupled desulfurization and denitrification method for circulating fluidized bed boiler
US3962128A (en) Coal dust fuel distribution system and method of manufacturing activated carbon
CN102519223B (en) Wide size distributed material dehumidifying pretreatment device
JP2000119666A (en) Supplying system for pulverized coal for coal gasification furnace
JPS61175410A (en) Coaling method for boiler
JPS61175401A (en) Method of feeding coal to boiler
CN1019074B (en) Compartmented gas injection device
JPS61184326A (en) Fluid flow regulating method for fluid distributor in boiler coal feeding system
US5215017A (en) System and method for feeding paste material or slurry into a furnace
CN107654997B (en) Circulating ash control system and method for circulating fluidized bed boiler
CN208124279U (en) A kind of circulating fluidized bed boiler agstone transportation system fluidisation wind apparatus
JPH0128288B2 (en)
CZ107398A3 (en) Process and apparatus for transporting and feeding dry brown coal dust into a furnace of steam producer
CN220299738U (en) Air conveying chute capable of conveying slaked lime with high water content
US5081938A (en) Method and apparatus for controlled bidirectional feeding of particulate matter
JPS59211513A (en) Blowing device for fine powder fuel to blast furnace
JPS61175409A (en) Fluid distributor for boiler coaling system and operation thereof
CN1040047A (en) The discharge control device of air feed pipe
JPS60248516A (en) Method and device for distributing and carrying pulverized coal