JPH0567797A - Transparent conductive substrate for solar battery and solar battery using it - Google Patents

Transparent conductive substrate for solar battery and solar battery using it

Info

Publication number
JPH0567797A
JPH0567797A JP3254556A JP25455691A JPH0567797A JP H0567797 A JPH0567797 A JP H0567797A JP 3254556 A JP3254556 A JP 3254556A JP 25455691 A JP25455691 A JP 25455691A JP H0567797 A JPH0567797 A JP H0567797A
Authority
JP
Japan
Prior art keywords
film
conductive film
transparent conductive
substrate
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3254556A
Other languages
Japanese (ja)
Other versions
JP3132516B2 (en
Inventor
Kunihiko Adachi
邦彦 安達
Kazuo Sato
一夫 佐藤
Yoshio Goto
芳夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP03254556A priority Critical patent/JP3132516B2/en
Publication of JPH0567797A publication Critical patent/JPH0567797A/en
Application granted granted Critical
Publication of JP3132516B2 publication Critical patent/JP3132516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To form a best particle of a laminated tin oxide film by providing a transparent conductive film with a diffraction peak by a (200) surface and a (110) surface and by providing diffraction strength by the (110) surface with specific relation to diffraction strength by the (200) surface in its X-ray diffraction pattern. CONSTITUTION:In an X-ray diffraction pattern which is mainly composed of tin oxide and measured by using a proportional counter tube, etc., it is desirable that an X-ray scattering strength (height of peak) at a strongest diffraction angle has ten or more times X-ray scattering strength in a back ground thereabouts. When an X-ray diffraction pattern of a film is appreciated by a diffraction strength defined by a product of a height of diffraction peak and a peak width at half height, it is desirable that the diffraction strength of the (110) surface is 20 or larger and 120 or smaller when diffraction strength of the (200) surface is 100, and that 30 or larger and 100 or smaller is more desirable. Crystal of an upper layer film of (200) orientation on a lower layer film of (110) orientation is the best.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透光性基体上に酸化錫
を主成分とする透明導電性薄膜が形成された太陽電池用
透明導電性基体および該基体の透明導電膜上に薄膜半導
体、裏面電極を順次形成してなる薄膜太陽電池の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive substrate for solar cells in which a transparent conductive thin film containing tin oxide as a main component is formed on a transparent substrate and a thin film semiconductor on the transparent conductive film of the substrate. , Improvement of a thin film solar cell in which a back electrode is sequentially formed.

【0002】[0002]

【従来の技術】透光性基体上に、薄膜太陽電池の受光側
電極として、酸化錫を主成分とする透明導電膜(以下導
電膜と称する)を作成する手法は広く用いられている
が、膜の微細構造を検討し導電膜を最適化した例として
は、特開昭60−240166号および特開昭61−1
15354号が知られている。
2. Description of the Related Art A method of forming a transparent conductive film containing tin oxide as a main component (hereinafter referred to as a conductive film) on a transparent substrate as a light receiving side electrode of a thin film solar cell is widely used. Examples of optimizing the conductive film by studying the fine structure of the film include JP-A-60-240166 and JP-A-61-1.
No. 15354 is known.

【0003】[0003]

【発明が解決しようとする課題】特開昭60−2401
66号によれば、導電膜を受光面(本発明における透光
性基板)に垂直に起立した柱状結晶により形成すること
により9〜9.6%の変換効率を持った非晶質シリコン
太陽電池が作成可能であるとされている。また、特開昭
61−115354号によれば、X線回折パタンが(2
00)面に極めて強く配向した膜を用いることにより、
非晶質シリコン太陽電池の変換効率が9.2%程度まで
向上するとされている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to Japanese Patent No. 66, an amorphous silicon solar cell having a conversion efficiency of 9 to 9.6% by forming a conductive film with columnar crystals standing upright on a light receiving surface (translucent substrate in the present invention). It is said that can be created. Further, according to JP-A-61-115354, the X-ray diffraction pattern is (2
By using an extremely strongly oriented film on the (00) plane,
It is said that the conversion efficiency of the amorphous silicon solar cell is improved to about 9.2%.

【0004】従来技術による導電膜上に形成された非晶
質シリコン太陽電池の変換効率が7〜8%程度であるこ
とと比較すれば、これらの発明には明らかに技術的進歩
が認められるが、本発明はさらに高い変換効率が得られ
る太陽電池用透明導電性基体を提供するものである。
Compared with the conversion efficiency of an amorphous silicon solar cell formed on a conductive film according to the prior art of about 7 to 8%, these inventions clearly show technological progress. The present invention provides a transparent conductive substrate for solar cells, which can obtain higher conversion efficiency.

【0005】[0005]

【課題を解決するための手段】本発明は、基体上に酸化
錫を主成分とする透明導電膜が形成された太陽電池用透
明導電性基体であって、該透明導電膜はそのX線回折パ
タンにおいて、(200)面および(110)面による
回折ピークを有し、(200)面による回折強度を10
0とした場合に、(110)面による回折強度が20以
上120以下であり、最強回折角度におけるX線散乱強
度が、その近傍のバックグラウンドにおけるX線散乱強
度の10倍以上であることを特徴とする、太陽電池用透
明導電性基体、を提供するものである。
The present invention is a transparent conductive substrate for a solar cell in which a transparent conductive film containing tin oxide as a main component is formed on a substrate, and the transparent conductive film has its X-ray diffraction pattern. In the pattern, there are diffraction peaks due to the (200) plane and the (110) plane, and the diffraction intensity due to the (200) plane is 10
When 0, the diffraction intensity by the (110) plane is 20 or more and 120 or less, and the X-ray scattering intensity at the strongest diffraction angle is 10 times or more the X-ray scattering intensity in the background in the vicinity thereof. And a transparent conductive substrate for a solar cell.

【0006】本発明による導電膜は、酸化錫を主成分と
し、比例係数管等を用いて測定したX線回折パタンにお
いて、最強回折角度におけるX線散乱強度(ピークの高
さ)が、その近傍のバックグラウンドにおけるX線散乱
強度の10倍以上であるようなX線回折パタンを有する
ことが好ましく、以下の実施例が示すように、30倍以
上であれば更に好ましい。
The conductive film according to the present invention contains tin oxide as a main component, and in the X-ray diffraction pattern measured using a proportional coefficient tube or the like, the X-ray scattering intensity (peak height) at the strongest diffraction angle is in the vicinity thereof. It is preferable to have an X-ray diffraction pattern that is 10 times or more of the X-ray scattering intensity in the background (1), and more preferably 30 times or more, as shown in the following examples.

【0007】種々の導電膜を作成し、そのX線回折パタ
ンを測定したときに、最強回折角度(本実施例では(2
00)面の回折角度)での散乱強度比が約10倍となっ
た導電膜上に太陽電池を作成し、その特性を測定した結
果を実施例1に、約30倍以上となった導電膜上に太陽
電池を作成した結果を実施例2、3に、逆に散乱強度比
が約3倍となった導電膜上に太陽電池を作成した結果を
例を比較例4にそれぞれ示す。
When various conductive films were formed and the X-ray diffraction patterns thereof were measured, the strongest diffraction angle ((2
A solar cell was prepared on a conductive film having a scattering intensity ratio of (00) plane at a diffraction angle of about 10 times, and the characteristics of the solar cell were measured. The results of forming a solar cell on the above are shown in Examples 2 and 3, and conversely, the result of forming a solar cell on a conductive film having a scattering intensity ratio of about 3 times is shown in Comparative Example 4.

【0008】太陽電池の変換効率は比較例10((20
0)面に強く配向した導電膜を用いた基体上に作成した
太陽電池による結果であり詳細は後述する)を100と
した相対値で示してある。実施例1、2、3は比較例1
0に対して太陽電池の変換効率がそれぞれ約10%、2
0%、15%ほど向上する。これに対して比較例4は比
較例10に対して80%程度に低下してしまうことがわ
かる。
The conversion efficiency of the solar cell is shown in Comparative Example 10 ((20
The result is obtained by a solar cell formed on a substrate using a conductive film strongly oriented on the (0) plane, and the details will be described later) are shown as relative values with 100. Examples 1, 2, and 3 are comparative examples 1.
The conversion efficiency of the solar cell is about 10% compared to 0, and 2
It improves by 0% and 15%. On the other hand, it can be seen that Comparative Example 4 is reduced to about 80% compared to Comparative Example 10.

【0009】さらに、膜のX線回折パタンを、回折ピー
クの高さと半値幅の積により定義される回折強度により
評価した場合、(200)面による回折強度を100と
した時に、(110)面による回折強度が20以上かつ
120以下であることが好ましく、30以上かつ100
以下であればさらに好ましい。
Further, when the X-ray diffraction pattern of the film is evaluated by the diffraction intensity defined by the product of the height of the diffraction peak and the half width, when the diffraction intensity by the (200) plane is 100, the (110) plane is obtained. The diffraction intensity by 20 is preferably 20 or more and 120 or less, and 30 or more and 100 or less.
The following is more preferable.

【0010】実施例1、2、3はいずれもこのような条
件をみたす例であり、いずれも本発明の太陽電池用基体
として好ましい態様である。これに対して、比較例5、
6、7に示すように、導電膜の(110)面からの回折
強度が120以上になると、この上に太陽電池を形成し
ても、本発明による透明導電膜上に太陽電池を形成した
場合(実施例1、2、3)に比べて良好な電池特性を得
ることはできない。また(110)面からの回折強度が
20以下となる導電膜上に太陽電池を形成した場合に
も、比較例3に示すように、本発明になる透明導電基体
を用いた結果に比べると好ましい結果は得られない。
Examples 1, 2 and 3 are examples satisfying such conditions, and all are preferable embodiments as the solar cell substrate of the present invention. On the other hand, Comparative Example 5,
As shown in FIGS. 6 and 7, when the diffraction intensity from the (110) plane of the conductive film is 120 or more, the solar cell is formed on the transparent conductive film according to the present invention even if the solar cell is formed thereon. It is not possible to obtain good battery characteristics as compared with (Examples 1, 2, 3). Also, when a solar cell is formed on a conductive film having a diffraction intensity from the (110) plane of 20 or less, as shown in Comparative Example 3, it is preferable as compared with the result using the transparent conductive substrate according to the present invention. No results are obtained.

【0011】本発明の透明導電膜は2層からなってお
り、基体に近い方の第1透明導電膜(以後下層膜と記
す)はそのX線回折パタンにおいて(110)面による
回折強度が最も強く、基体から遠い方の第2の透明導電
膜(以後上層膜と記す)はそのX線回折パタンにおいて
(200)面による回折強度が最も強いことが好まし
い。
The transparent conductive film of the present invention comprises two layers, and the first transparent conductive film (hereinafter referred to as the lower layer film) closer to the substrate has the highest diffraction intensity in the (110) plane in its X-ray diffraction pattern. It is preferable that the second transparent conductive film (hereinafter referred to as the upper layer film) which is strong and far from the substrate has the strongest diffraction intensity by the (200) plane in its X-ray diffraction pattern.

【0012】「作用」の項において詳細の理由を記述す
るが、第1および第2の透明導電膜の膜厚は、下層膜の
膜厚が500Å以上5000Å以下であり、上層膜の膜
厚が3000Å以上15000Å以下であることが好ま
しく、下層膜の膜厚が1000Å以上4000Å以下で
あり、上層膜の膜厚が3000Å以上6000Å以下で
あればさらに好ましい。
The reason for this will be described in detail in the section "Operation". The thickness of the first and second transparent conductive films is such that the thickness of the lower layer film is 500 Å or more and 5000 Å or less, and the thickness of the upper layer film is It is preferably 3000 Å or more and 15000 Å or less, more preferably 1000 Å or more and 4000 Å or less and the upper layer film is 3000 Å or more and 6000 Å or less.

【0013】本発明の基体には、ガラス、プラスチック
等を使用することが可能である。基体がソーダライムガ
ラスのように、その成分としてアルカリ金属を含む場合
には、基体から導電膜へのアルカリ金属の拡散を防止す
るために、基体と導電膜の間にSi、Al、Zr等の金
属の酸化物を主成分とする下地層を形成することがより
好ましい。
Glass, plastic or the like can be used for the substrate of the present invention. When the substrate contains an alkali metal as its component, such as soda lime glass, in order to prevent the diffusion of the alkali metal from the substrate to the conductive film, Si, Al, Zr or the like is added between the substrate and the conductive film. It is more preferable to form an underlayer containing a metal oxide as a main component.

【0014】本発明の導電膜の形成方法に関しては特に
限定されないが、基体がガラス等の高温に耐える材料で
ある場合には、スプレー法、常圧CVD法等の化学蒸着
法による方が、スパッタ法等の物理蒸着法によるよりも
良好な導電膜特性が得られる。さらに本発明を実現する
ためには、導電膜を明瞭に2層に分離して成膜する必要
があるため、化学蒸着法のなかでも2段の成膜室を持っ
た常圧CVD法によることが特に好ましい。
The method of forming the conductive film of the present invention is not particularly limited, but when the substrate is a material such as glass that can withstand high temperatures, the chemical vapor deposition method such as the spray method or atmospheric pressure CVD method is more preferable. Better conductive film characteristics can be obtained than those obtained by physical vapor deposition methods such as the method. Further, in order to realize the present invention, it is necessary to clearly separate the conductive film into two layers to form a film. Therefore, among the chemical vapor deposition methods, the atmospheric pressure CVD method having a two-stage film formation chamber is preferable. Is particularly preferable.

【0015】[0015]

【作用】透光性基体上に酸化錫を主成分とする透明導電
膜、薄膜半導体、裏面電極を順次形成してなる薄膜太陽
電池に用いられる透明導電性基体としては、透明導電膜
の抵抗が低く、光透過率が高いことが第一の要件であ
る。しかしそれに加えて、透明導電膜を構成する粒子に
粒界等がある場合、これを起点としてその上に形成され
る太陽電池層内に欠陥が発生し、結果として太陽電池の
変換効率が低下することが想像されるため、その透明導
電膜が粒界等の少ない、言い換えれば、粒子を十分に成
長させた膜であることが好ましい。
[Function] As a transparent conductive substrate used in a thin film solar cell in which a transparent conductive film containing tin oxide as a main component, a thin film semiconductor, and a back electrode are sequentially formed on a transparent substrate, the resistance of the transparent conductive film is Low and high light transmission are the first requirements. However, in addition to that, when the particles forming the transparent conductive film have a grain boundary or the like, a defect occurs in the solar cell layer formed on the grain boundary as a starting point, and as a result, the conversion efficiency of the solar cell decreases. Therefore, it is preferable that the transparent conductive film has few grain boundaries, in other words, a film in which particles are sufficiently grown.

【0016】一方、ガラス等の基体の上に膜を成長させ
る場合には、基体に接触している膜の粒子は大きく成長
せず、また電気的、光学的性能に乏しい膜が成長しやす
いため、この様な目的にかなう膜を作成する手法とし
て、基体と成長させたい膜の界面に適切な下地層をさし
挟む等の対策が一般的に行われている。
On the other hand, when a film is grown on a substrate such as glass, the particles of the film in contact with the substrate do not grow large, and a film having poor electrical and optical performance easily grows. As a method for forming a film that meets such a purpose, measures such as inserting an appropriate underlayer at the interface between the substrate and the film to be grown are generally taken.

【0017】本発明は、このような公知の技術に加え
て、導電膜の成長過程を詳細に検討することにより、低
抵抗、高透過率を保ちながら適切な粒子構造を実現し、
太陽電池用としてより好ましい透明導電性基体を作成す
る手法を提供するものである。
According to the present invention, in addition to such a known technique, the growth process of the conductive film is examined in detail to realize an appropriate grain structure while maintaining low resistance and high transmittance.
It is intended to provide a method for producing a more preferable transparent conductive substrate for a solar cell.

【0018】詳細な実験を行った結果、酸化錫膜の場
合、厳密な理由は明らかでないが、ガラス等の基体面か
ら膜を成長させる時には、(110)配向の膜を堆積し
た場合に、膜を構成する結晶の粒子が最も大きく成長
し、さらにその比抵抗が他の面に配向した膜と比べて最
も低下することがわかった。この様な膜の例を比較例1
に示す。
As a result of detailed experiments, in the case of the tin oxide film, the exact reason is not clear, but when the film is grown from the substrate surface such as glass, when the film of (110) orientation is deposited, the film is It was found that the grains of the crystal forming the crystal grow the largest and the specific resistance thereof is the lowest as compared with the film oriented on other planes. An example of such a film is Comparative Example 1
Shown in.

【0019】しかし膜が単層構造の場合には、基体上に
適当な下地層を形成しても膜の結晶粒子の成長には限度
があり、単層構造を用いて太陽電池用として好ましい、
結晶粒子が十分に大きな膜を得ることは困難であること
がわかった。本発明は導電膜を2層構造とすることによ
り、太陽電池層と接触する上層膜の粒子を十分に成長さ
せ、この問題を解決しようとするものである。
However, when the film has a single-layer structure, the growth of the crystal grains of the film is limited even if an appropriate underlayer is formed on the substrate, and the single-layer structure is preferably used for solar cells.
It has been found that it is difficult to obtain a film with sufficiently large crystal grains. The present invention intends to solve this problem by allowing the conductive film to have a two-layer structure to sufficiently grow the particles of the upper layer film in contact with the solar cell layer.

【0020】一連の実験結果から、酸化錫膜(第1の透
明導電膜)上に酸化錫を再積層すると、再積層した上層
膜(第2の透明導電膜)の結晶は単層膜のときよりも成
長し、しかも、上層膜の結晶の成長は下層膜の結晶状態
と密接な関係を持っており、下層膜の結晶状態が良好で
あるほど上層膜も結晶が成長する傾向にあることがわか
った。
From a series of experimental results, when tin oxide is re-laminated on the tin oxide film (first transparent conductive film), the re-laminated upper layer film (second transparent conductive film) has a single-layer film. In addition, the crystal growth of the upper layer film has a close relationship with the crystal state of the lower layer film, and the better the crystal state of the lower layer film, the more the crystal of the upper layer film tends to grow. all right.

【0021】すなわち本発明の場合にも、(110)に
配向した酸化錫を下層膜として用いた場合に、その上に
積層する酸化錫膜の粒子が最も良好に成長した。また、
これも詳細の理由は明らかでないが、(110)配向の
下層膜の上に上層膜を堆積する場合には、該上層膜を
(200)配向とすると上層膜の結晶が最も良好に成長
することがわかった。さらに、このような膜構成とする
ことにより、導電膜全体の光透過率を変化させることな
く、導電膜の比抵抗を低下させることが可能であること
もわかった。
That is, also in the case of the present invention, when tin oxide oriented in (110) was used as the lower layer film, the particles of the tin oxide film laminated thereon grew best. Also,
The reason for this is also not clear, but when the upper layer film is deposited on the lower layer film of (110) orientation, the crystal of the upper layer film grows best when the upper layer film has the (200) orientation. I understood. Furthermore, it was also found that with such a film configuration, it is possible to reduce the specific resistance of the conductive film without changing the light transmittance of the entire conductive film.

【0022】上記検討結果をまとめると、高透過率、低
抵抗を実現し、かつ、粒界等の少ない、言い換えれば、
粒子を十分に成長させた導電膜を作成するためには、
(110)配向の下層膜上に(200)配向の上層膜を
形成することが好ましく、導電膜をこのような構造とす
ることにより、この上に作成される太陽電池は高い変換
効率を示すことができるようになると判断された。
To summarize the above-mentioned examination results, high transmittance and low resistance are realized, and there are few grain boundaries, in other words,
In order to create a conductive film in which particles are sufficiently grown,
It is preferable to form an upper layer film of (200) orientation on a lower layer film of (110) orientation, and by making the conductive film have such a structure, the solar cell formed on this has high conversion efficiency. It was decided that he would be able to.

【0023】なお導電膜の粒成長という観点から下層膜
の膜厚を検討した結果によれば、(110)に配向した
下層膜の膜厚を500Å未満にすると上層膜は十分に粒
成長せず、下層膜の膜厚を5000Åより大きくしても
粒成長の促進効果が飽和してしまうことから、下層膜と
しての有効膜厚範囲は500Å以上、5000Å以下で
あることがわかった。
According to the result of examining the film thickness of the lower layer film from the viewpoint of grain growth of the conductive film, when the film thickness of the lower layer film oriented in (110) is less than 500Å, the upper layer film does not grow sufficiently. Since the effect of promoting grain growth is saturated even when the film thickness of the lower layer film is more than 5000Å, it was found that the effective film thickness range as the lower layer film is 500Å or more and 5000Å or less.

【0024】一方導電膜の比抵抗から下層膜を検討する
と、下層膜の膜厚が1000Å以下の場合には導電膜全
体の比抵抗が十分に低下しない。この原因としては結晶
粒子の成長度が低いことに加えて、より低比抵抗である
(110)配向の下層膜が薄いことも影響しているもの
と推定している。下層膜の膜厚と、導電膜全体の比抵抗
およびヘイズ率(粒成長の程度と相関が有ると推定され
る)の関係を図16に示す。これらの検討を通じて、下
層膜の好ましい膜厚が、1000Å以上、5000Å以
下であることがわかった。
On the other hand, when the lower layer film is examined from the specific resistance of the conductive film, the specific resistance of the entire conductive film is not sufficiently reduced when the thickness of the lower layer film is 1000 Å or less. It is estimated that the cause of this is that, in addition to the low degree of growth of crystal grains, the lower layer film of (110) orientation, which has a lower specific resistance, is also affected. FIG. 16 shows the relationship between the film thickness of the lower layer film and the specific resistance and haze ratio (estimated to have a correlation with the degree of grain growth) of the entire conductive film. Through these studies, it was found that the preferable thickness of the lower layer film is 1000 Å or more and 5000 Å or less.

【0025】さらに上層膜自体にも、粒成長が生じるた
めにはある程度の膜厚が必要であることがわかった。上
層膜の膜厚が2000Å未満の場合には、1000Å以
上の下層膜があっても上層膜にほとんど粒成長が認めら
れない。一方他の薄膜と同様、酸化錫膜も膜厚の増加に
ともなって粒子は成長するが、膜厚の増加により光吸収
量も増加するため、太陽電池用導電膜の場合には全体の
膜厚の上限を15000Å程度とすることが望ましい。
すなわち上層膜の膜厚の範囲としては、2000Å以
上、14000Å以下ということができる。
Further, it has been found that the upper layer film itself needs to have a certain thickness in order for grain growth to occur. When the film thickness of the upper layer film is less than 2000 Å, almost no grain growth is observed in the upper layer film even if there is a lower layer film of 1000 Å or more. On the other hand, as with other thin films, particles grow in the tin oxide film as the film thickness increases, but the amount of light absorption also increases as the film thickness increases. It is desirable to set the upper limit of about 15000Å.
That is, the range of the film thickness of the upper layer film can be 2000 Å or more and 14000 Å or less.

【0026】実験結果によれば、上層膜の膜厚が300
0Å以上あれば、結晶が太陽電池用基体として十分に機
能する大きさに成長することから、上層膜による導電膜
の光吸収を最小限にとどめる意味で、上層膜の膜厚を3
000Å以上、6000Å以下程度とすることはさらに
好ましい選択である。
According to the experimental results, the film thickness of the upper layer film is 300.
If it is 0 Å or more, the crystal grows to a size that can sufficiently function as a substrate for solar cells. Therefore, in order to minimize the light absorption of the conductive film by the upper layer film, the film thickness of the upper layer film is set to 3
It is a more preferable option to set it to about 000Å or more and 6000Å or less.

【0027】[0027]

【実施例】SnCl4 、CH3OH 、HF、H2O を原料とし、基板
温度を540℃に設定した常圧CVD法により、約50
0ÅのSiO2をコートしたソーダライムガラス基板上に、
各種の導電膜を積層した。比較例2,3,10において
は同様の方法により、ソーダライムガラス基板上に導電
膜を積層した。導電膜のX線回折測定は、銅のKα線を
使用し、比例計数管を用いたレートメーターにより行っ
た。結果を表1及び表2に示す。
[Example] Using SnCl 4 , CH 3 OH, HF, and H 2 O as raw materials, the substrate temperature was set to 540 ° C. and the atmospheric pressure CVD method was performed to obtain about 50
On a soda lime glass substrate coated with 0Å SiO 2 ,
Various conductive films were laminated. In Comparative Examples 2, 3 and 10, the conductive film was laminated on the soda lime glass substrate by the same method. The X-ray diffraction measurement of the conductive film was performed by using a copper Kα ray and a rate meter using a proportional counter. The results are shown in Tables 1 and 2.

【0028】表中の原料組成の SnCl4、CH3OH 、HFの欄
に記入した数字は、各原料を装置に送り込むためのキャ
リヤガス量を示している。ただしH2O に関しては、実際
に装置に供給した水の量を測定し、その値を記入してあ
る。またX線強度は、(200)面による回折強度を1
00とした時の相対強度比を示している。
The numbers entered in the columns of SnCl 4 , CH 3 OH, and HF of the raw material compositions in the table indicate the carrier gas amounts for feeding the respective raw materials into the apparatus. However, for H 2 O, the amount of water actually supplied to the equipment was measured and the value was entered. The X-ray intensity is the diffraction intensity of the (200) plane of 1
The relative intensity ratio when 00 is shown.

【0029】以下、番号に従って説明する。本発明によ
る導電膜の下層膜として好ましい膜の例を比較例1に、
好ましくない膜の例を比較例2に示す。比較例1に示し
た膜が強く(110)面に配向しているのに対して比較
例2に示した膜は強く(200)に配向している。下層
膜の(110)配向が強い程、上層膜を積層した太陽電
池基板としては好ましい結果を与える傾向が高く、さら
に下層膜の(110)面への配向度が強いほど導電膜自
体の電気抵抗が低下することは「作用」の項に記した通
りである。なお、導電膜の配向と膜の光吸収量との間に
は直接の相関はなかった。
Hereinafter, description will be made according to the numbers. An example of a preferable film as the lower layer film of the conductive film according to the present invention is shown in Comparative Example 1.
An example of an unfavorable film is shown in Comparative Example 2. The film shown in Comparative Example 1 has a strong (110) orientation, whereas the film shown in Comparative Example 2 has a strong (200) orientation. The stronger the (110) orientation of the lower layer film is, the higher the tendency is to give a preferable result as a solar cell substrate having the upper layer film laminated. Furthermore, the stronger the degree of orientation of the lower layer film to the (110) plane is, the electric resistance of the conductive film itself The decrease in is as described in the section "Action". Note that there was no direct correlation between the orientation of the conductive film and the light absorption amount of the film.

【0030】太陽電池用透明導電性基体としての性能を
評価するために、実施例として挙げた各導電膜上にp、
i、n各タイプのa−Si(合計約4000Å)および
銀裏面電極(約3000Å)を順に積層して太陽電池を
作成し、変換効率を測定した。
In order to evaluate the performance as a transparent conductive substrate for solar cells, p, p
i-type and a-type a-Si (total of about 4000Å) and a silver back electrode (about 3000Å) were sequentially laminated to form a solar cell, and the conversion efficiency was measured.

【0031】表中の比較例10は、比較例2と同様にし
て形成した下層膜上に表中の原料比にて上層膜を積層し
たものであり、特開昭61−115354号に示されて
いるような、(200)面に極めて強く配向した導電膜
の例である。以後説明する実施例における電池変換効率
とは、この比較例に示す導電膜上に作成した太陽電池の
変換効率を100として各実施例での変換効率を相対値
で示したものである。
In Comparative Example 10 in the table, an upper layer film was laminated on the lower layer film formed in the same manner as in Comparative Example 2 in the ratio of raw materials in the table, and is shown in JP-A-61-115354. It is an example of a conductive film that is extremely strongly oriented on the (200) plane as described above. The cell conversion efficiencies in the examples described below are conversion efficiency of each example shown as a relative value with the conversion efficiency of the solar cell formed on the conductive film shown in this comparative example as 100.

【0032】実施例1、2、3は比較例1と同様にして
形成した膜を下層膜として、その上に表中に示す原料比
による上層膜を積層した結果である。下層膜では、(2
00)面の回折強度に対する(110)面の回折強度
(以後強度比と記す)が約350あるのに対して、上層
膜を積層した後の強度比は約40〜80となっている。
Examples 1, 2, and 3 are the results of laminating the film formed in the same manner as in Comparative Example 1 as the lower layer film, and laminating the upper layer film according to the raw material ratio shown in the table thereon. In the lower layer film, (2
The diffraction intensity of the (110) plane with respect to the diffraction intensity of the (00) plane (hereinafter referred to as the intensity ratio) is about 350, whereas the intensity ratio after the upper layer film is laminated is about 40-80.

【0033】比較例3は比較例2と同様にして形成した
下層膜上に表中の原料比にて上層膜を積層した結果であ
る。この場合の強度比は約13となり(200)配向の
強い膜が得られる。評価結果から直ちにわかるように、
(200)配向の強い下層膜を用いた場合には、電池の
変換効率は比較例10と同等またはそれ以下となる。な
お、比較例3におけるX線回折の強度比が20より小さ
くなっている点にも留意する必要が有る。
Comparative Example 3 is a result of laminating the upper layer film on the lower layer film formed in the same manner as in Comparative Example 2 in the raw material ratio shown in the table. In this case, the strength ratio is about 13, and a film having a strong (200) orientation can be obtained. As you can see immediately from the evaluation results,
When the lower layer film having a strong (200) orientation is used, the conversion efficiency of the battery is equal to or lower than that of Comparative Example 10. It should be noted that the intensity ratio of X-ray diffraction in Comparative Example 3 is smaller than 20.

【0034】比較例4は、比較例1と同様にして形成し
た下層膜上に表中の原料比で上層膜を積層したものであ
り、「課題を解決するための手段」の項にも記したよう
に、最強回折角度での散乱強度がバックグラウンドの強
度の約3倍しかない導電膜の例である。導電膜の比抵抗
が十分低いにもかかわらず、このような導電基体を用い
て太陽電池を作成すると電池性能は大幅に低下する。
In Comparative Example 4, an upper layer film was laminated on the lower layer film formed in the same manner as in Comparative Example 1 in the raw material ratio shown in the table, and is also described in "Means for Solving the Problems". As described above, this is an example of a conductive film in which the scattering intensity at the strongest diffraction angle is only about three times the intensity of the background. Even if the specific resistance of the conductive film is sufficiently low, when a solar cell is produced using such a conductive substrate, the cell performance is significantly reduced.

【0035】比較例5、6、7も、比較例1と同様にし
て形成した下層膜上に表中の原料比で上層膜を積層した
ものであり、「課題を解決するための手段」の項で記述
した例である。これらの例の様に強度比が120を越え
る導電膜を用いた基体上に電池を作成しても変換効率は
改善されない。
Comparative Examples 5, 6, and 7 are also those in which the upper layer film was laminated at the raw material ratio shown in the table on the lower layer film formed in the same manner as in Comparative Example 1, and the "means for solving the problem" was obtained. This is an example described in section. Even if a battery is formed on a substrate using a conductive film having a strength ratio exceeding 120 as in these examples, the conversion efficiency is not improved.

【0036】比較例8、9は比較例1と同様にして形成
した膜を下層膜とし、表中の原料比で上層膜を積層して
導電膜を作成し、積層する上下の膜厚配分を変化させた
例である。比較例8のように下層膜を厚く、上層膜を薄
くしても、比較例9のように下層膜を薄く、上層膜を厚
くしても、電池変換効率は低下することがわかる。
In Comparative Examples 8 and 9, the film formed in the same manner as in Comparative Example 1 was used as the lower layer film, and the upper layer film was laminated at the raw material ratio shown in the table to form a conductive film, and the film thickness distribution between the upper and lower layers was determined. This is an example of changing. It can be seen that even if the lower layer film is thick and the upper layer film is thin as in Comparative Example 8, and the lower layer film is thin and the upper layer film is thick as in Comparative Example 9, the battery conversion efficiency decreases.

【0037】なお、本発明になる導電膜において、上層
膜を積層することによって下層膜の配向が変化すること
は無い。本発明による2層構造の導電膜を作成し、(こ
のX線回折パタンを図14に示す)、その後、その表面
をダイヤモンドペーストを用いて研磨し、上層膜を除去
した導電膜のX線回折パタンを測定した結果を図15に
示す。研磨により上層膜を除去した導電膜のX線回折パ
タンが下層膜単独のパタンと良く一致することから、上
層膜を積層しても下層膜には何等変化が生じないことが
わかる。
In the conductive film according to the present invention, the orientation of the lower layer film does not change by stacking the upper layer film. The conductive film having a two-layer structure according to the present invention was prepared (this X-ray diffraction pattern is shown in FIG. 14), and then the surface thereof was polished with diamond paste to remove the upper layer film by X-ray diffraction. The result of measuring the pattern is shown in FIG. Since the X-ray diffraction pattern of the conductive film obtained by removing the upper layer film by polishing agrees well with the pattern of the lower layer film alone, it can be seen that even if the upper layer film is laminated, the lower layer film does not change at all.

【0038】また、表1および表2には(211)面お
よび(101)面による回折強度も併記したが、これら
の回折線の強度が(200)面による強度の20%以下
程度であれば、これらの回折線の強度と太陽電池の性能
の間には直接の相関はなかった。
Tables 1 and 2 also show the diffraction intensities of the (211) plane and the (101) plane, but if the intensity of these diffraction lines is about 20% or less of the intensity of the (200) plane. , There was no direct correlation between the intensity of these diffraction lines and the solar cell performance.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】特開昭61−115354号に開示され
る、スプレー法による導電膜の成長温度は400〜45
0℃と一般的なスプレー法による導電膜の成長温度より
も低温であり、このような低い温度で膜を成長させるこ
とは、膜の成長速度の観点から判断すれば明らかに不利
な方法である。実際、特許の中に開示してあるように、
これらの導電膜の成長速度は10〜30Å/秒と工業的
応用の観点から致命的な問題点を有していた。
The growth temperature of the conductive film by the spray method disclosed in JP-A-61-115354 is 400 to 45.
The temperature is 0 ° C., which is lower than the growth temperature of a conductive film by a general spray method, and growing a film at such a low temperature is obviously a disadvantageous method from the viewpoint of the growth rate of the film. . In fact, as disclosed in the patent,
The growth rate of these conductive films was 10 to 30 Å / sec, which was a fatal problem from the viewpoint of industrial application.

【0042】本発明になる導電膜の場合、下層膜と基体
の界面に例えばSiO2アンダーコート(下地層)をさし挟
むことにより、導電膜の堆積温度を500℃以上に上昇
させることができる。公知の常圧CVD法を用いて、5
00℃以上の十分に高い温度で成膜すれば、導電膜の成
長速度を数100Å/秒以上に向上させることも可能で
あるため、本発明は適切な下地層と組合わせることによ
り、実用的な成膜速度で膜を成長できるという効果も有
している。
In the case of the conductive film of the present invention, the deposition temperature of the conductive film can be raised to 500 ° C. or higher by inserting, for example, a SiO 2 undercoat (underlayer) at the interface between the lower layer film and the substrate. .. Using the known atmospheric pressure CVD method, 5
If the film is formed at a sufficiently high temperature of 00 ° C. or higher, it is possible to improve the growth rate of the conductive film to several hundred Å / sec or more. Therefore, the present invention can be practically combined with a suitable underlayer. It also has the effect that the film can be grown at various film forming rates.

【0043】なお、一般に導電膜を高温で成膜した場合
には、基体の成長表面に微小な欠陥が存在すると、膜の
粒子が異常成長するために良質の導電膜が得られないこ
ともあるが、適当な下地層(Si、Al、Zr等の酸化
物が好ましい)を用いることにより、このような問題点
も同時に解決することができる。
In general, when a conductive film is formed at a high temperature, if minute defects are present on the growth surface of the substrate, the particles of the film may grow abnormally, so that a good-quality conductive film may not be obtained. However, such problems can be solved at the same time by using an appropriate underlayer (preferably oxides of Si, Al, Zr, etc.).

【0044】粒子が異常成長した導電膜の上に太陽電池
を積層した場合、巨大な粒子が電池の欠陥になることは
容易に想像できるから、高い変換効率を実現するために
は、導電膜を均質な粒子により構成することが極めて重
要であると推定されるが、本発明による透明導電性基体
を用いた太陽電池が安定して高い変換効率を示すことか
ら、本発明になる導電膜は数100Å/秒以上の膜成長
速度を有しながらも、極めて均質な粒子によって膜が構
成されているものと推定される。
When a solar cell is laminated on a conductive film on which particles are abnormally grown, it can be easily imagined that huge particles become a defect of the battery. Therefore, in order to realize high conversion efficiency, the conductive film should be formed. Although it is presumed that it is extremely important to constitute by homogeneous particles, the solar cell using the transparent conductive substrate according to the present invention shows stable and high conversion efficiency. It is presumed that the film is composed of extremely homogeneous particles while having a film growth rate of 100 Å / sec or more.

【0045】本発明になる導電膜は、そのX線回折パタ
ンからも想像されるように、膜表面を構成する結晶の粒
子の大きさとの方位が揃っていることが特徴である。こ
のような膜を断面方向から観察すると、結晶粒子はピラ
ミッド状をなし、その頂点はほぼ90〜120度の交差
角度を持っていることが指摘できる。この交差角度は、
例えば特開昭60−240166号において推奨されて
いる膜の頂角に比較すると明らかに交差角度がゆるやか
である。
The conductive film according to the present invention is characterized in that the grain size of the crystals constituting the surface of the film is aligned, as can be imagined from the X-ray diffraction pattern. When observing such a film from the cross-sectional direction, it can be pointed out that the crystal grains have a pyramid shape and the apexes thereof have a crossing angle of approximately 90 to 120 degrees. This intersection angle is
For example, the crossing angle is obviously gentle as compared with the apex angle of the film recommended in JP-A-60-240166.

【0046】一方本発明の導電膜の結晶粒子は、粒子表
面が平面で構成されているため、特開昭61−2168
9号において示されているように、頂部に丸みがつけら
れた膜とも異なった構造である。本発明の導電膜上に太
陽電池を形成した場合に良好な特性が得られる原因は、
頂角の交差角度がゆるやかなために、太陽電池層に構造
的な欠陥が発生しにくいことに加えて、導電膜の頂部に
丸みが無いため、十分な光閉込め効果を確保できるため
と想像される。
On the other hand, the crystal grains of the conductive film of the present invention have a flat grain surface, and therefore, they are disclosed in JP-A-61-2168.
As shown in No. 9, it is also a different structure than the rounded top membrane. The reason why good characteristics are obtained when a solar cell is formed on the conductive film of the present invention is
Imagine that because the intersection angle of the apex angles is gentle, structural defects are unlikely to occur in the solar cell layer, and because the top of the conductive film is not rounded, a sufficient light confinement effect can be secured. To be done.

【0047】さらに、本発明による導電膜が、十分に成
長し、かつ粒径が均一な粒子によって構成されているこ
とは、X線回折図からも理解することができる。すなわ
ち、(200)面に関する回折パタンの半値幅(回折ピ
ーク強度の半分の値での回折角度2θの幅)は実施例3
の場合には約0.2度であるのに比較例4の場合には約
0.7度〜1度である。
Further, it can be understood from the X-ray diffraction diagram that the conductive film according to the present invention is composed of particles that have grown sufficiently and have a uniform particle size. That is, the full width at half maximum of the diffraction pattern for the (200) plane (the width of the diffraction angle 2θ at half the value of the diffraction peak intensity) is the same as in Example 3.
In the case of Comparative Example 4, it is about 0.7 degree to 1 degree.

【0048】X線回折パタンの広がりに関する一般的な
理論に従えば、実施例3の膜は比較例4の膜の数倍〜数
十倍の粒径を持っているものと考えられる。すなわち、
導電膜が約90〜120度の頂角を持ち、十分に成長し
た均一で欠陥の少ない粒子により構成されていること
が、薄膜太陽電池の変換効率を向上させる上に最も効果
が有るものと推定される。
According to the general theory regarding the spread of the X-ray diffraction pattern, it is considered that the film of Example 3 has a particle size several times to several tens of times that of the film of Comparative Example 4. That is,
It is presumed that it is most effective for improving the conversion efficiency of the thin-film solar cell that the conductive film has an apex angle of about 90 to 120 degrees and is composed of sufficiently grown uniform particles with few defects. To be done.

【0049】このような導電性基体は、単に薄膜太陽電
池の受光側の電極として効果があるだけではなく、この
ような基体を裏面電極として太陽電池を堆積し、本発明
とは逆の構成の太陽電池(この場合、光透過型の太陽電
池となる)を作成する場合にも好ましい効果が期待でき
る。
Such a conductive substrate is not only effective as an electrode on the light-receiving side of a thin film solar cell, but a solar cell is deposited by using such a substrate as a back electrode, and the structure opposite to that of the present invention is obtained. A favorable effect can be expected also when producing a solar cell (in this case, a light-transmissive solar cell).

【0050】さらに、本発明になる導電膜の表面が太陽
電池用として好ましい頂角(90〜120度)で構成さ
れている点を利用し、本基体の表面に銀やステンレス等
の金属薄膜を堆積し、これを裏面電極として用いて太陽
電池を作成するることも可能である。すなわち、本導電
基体を加工すれば、良好な光閉込め効果を持ち、裏面の
防食封止が不要の太陽電池用金属電極として利用するこ
とも可能である。
Further, taking advantage of the fact that the surface of the conductive film of the present invention has a vertical angle (90 to 120 degrees) preferable for solar cells, a metal thin film such as silver or stainless steel is formed on the surface of the base. It is also possible to deposit and use this as a back electrode to make a solar cell. That is, if the conductive substrate is processed, it can be used as a metal electrode for a solar cell that has a good light confinement effect and does not require anticorrosion sealing on the back surface.

【0051】本発明の透明導電性基体は単に太陽電池用
としてのみならず、他の導電基板用途(例えば表示素子
や発熱体)にも十分に使用可能であることは言うまでも
ない。
It goes without saying that the transparent conductive substrate of the present invention can be used not only for solar cells but also for other conductive substrate applications (for example, display elements and heating elements).

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のX線回折パタンを示す図FIG. 1 is a diagram showing an X-ray diffraction pattern of Example 1.

【図2】実施例2のX線回折パタンを示す図FIG. 2 is a diagram showing an X-ray diffraction pattern of Example 2.

【図3】実施例3のX線回折パタンを示す図FIG. 3 is a diagram showing an X-ray diffraction pattern of Example 3.

【図4】比較例1のX線回折パタンを示す図FIG. 4 is a diagram showing an X-ray diffraction pattern of Comparative Example 1.

【図5】比較例2のX線回折パタンを示す図FIG. 5 is a diagram showing an X-ray diffraction pattern of Comparative Example 2.

【図6】比較例3のX線回折パタンを示す図FIG. 6 is a diagram showing an X-ray diffraction pattern of Comparative Example 3.

【図7】比較例4のX線回折パタンを示す図FIG. 7 is a diagram showing an X-ray diffraction pattern of Comparative Example 4.

【図8】比較例5のX線回折パタンを示す図FIG. 8 is a diagram showing an X-ray diffraction pattern of Comparative Example 5.

【図9】比較例6のX線回折パタンを示す図FIG. 9 is a diagram showing an X-ray diffraction pattern of Comparative Example 6.

【図10】比較例7のX線回折パタンを示す図FIG. 10 is a diagram showing an X-ray diffraction pattern of Comparative Example 7.

【図11】比較例8のX線回折パタンを示す図FIG. 11 is a diagram showing an X-ray diffraction pattern of Comparative Example 8.

【図12】比較例9のX線回折パタンを示す図FIG. 12 is a diagram showing an X-ray diffraction pattern of Comparative Example 9.

【図13】比較例10のX線回折パタンを示す図FIG. 13 is a diagram showing an X-ray diffraction pattern of Comparative Example 10.

【図14】本発明の2層構造の導電膜のX線回折パタン
を示す図
FIG. 14 is a diagram showing an X-ray diffraction pattern of a conductive film having a two-layer structure of the present invention.

【図15】図14の導電膜の上層膜を除去した導電膜の
X線回折パタンを示す図
15 is a diagram showing an X-ray diffraction pattern of the conductive film obtained by removing the upper layer film of the conductive film of FIG.

【図16】下層膜の膜厚と積層後の導電膜の比抵抗
(ρ)およびヘイズ率との関係を示すグラフ
FIG. 16 is a graph showing the relationship between the film thickness of the lower layer film and the specific resistance (ρ) and haze ratio of the conductive film after lamination.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基体上に酸化錫を主成分とする透明導電膜
が形成された太陽電池用透明導電性基体であって、該透
明導電膜はそのX線回折パタンにおいて、(200)面
および(110)面による回折ピークを有し、(20
0)面による回折強度を100とした場合に、(11
0)面による回折強度が20以上120以下であり、最
強回折角度におけるX線散乱強度が、その近傍のバック
グラウンドにおけるX線散乱強度の10倍以上であるこ
とを特徴とする、太陽電池用透明導電性基体。
1. A transparent conductive substrate for a solar cell, wherein a transparent conductive film containing tin oxide as a main component is formed on a substrate, the transparent conductive film having a (200) plane and an X-ray diffraction pattern in the X-ray diffraction pattern. It has a diffraction peak due to the (110) plane,
When the diffraction intensity by the (0) plane is 100, (11
Diffraction intensity by the 0) plane is 20 or more and 120 or less, and the X-ray scattering intensity at the strongest diffraction angle is 10 times or more the X-ray scattering intensity in the background in the vicinity thereof. Conductive substrate.
【請求項2】透明導電膜は2層からなっており、基体に
近い方の第1の透明導電膜はそのX線回折パタンにおい
て(110)面による回折強度が最も強く、基体から遠
い方の第2の透明導電膜はそのX線回折パタンにおいて
(200)面による回折強度が最も強いことを特徴とす
る請求項1記載の太陽電池用透明導電性基体。
2. The transparent conductive film is composed of two layers, and the first transparent conductive film closer to the substrate has the strongest diffraction intensity by the (110) plane in the X-ray diffraction pattern, and the first transparent conductive film is closer to the substrate. The transparent conductive substrate for a solar cell according to claim 1, wherein the second transparent conductive film has the strongest diffraction intensity by the (200) plane in its X-ray diffraction pattern.
【請求項3】請求項1または2記載の太陽電池用透明導
電性基体の透明導電膜上に、光電変換層、裏面電極を順
次形成してなる太陽電池。
3. A solar cell in which a photoelectric conversion layer and a back electrode are sequentially formed on the transparent conductive film of the transparent conductive substrate for a solar cell according to claim 1.
JP03254556A 1991-09-06 1991-09-06 Transparent conductive substrate for solar cell and solar cell using the same Expired - Lifetime JP3132516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03254556A JP3132516B2 (en) 1991-09-06 1991-09-06 Transparent conductive substrate for solar cell and solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03254556A JP3132516B2 (en) 1991-09-06 1991-09-06 Transparent conductive substrate for solar cell and solar cell using the same

Publications (2)

Publication Number Publication Date
JPH0567797A true JPH0567797A (en) 1993-03-19
JP3132516B2 JP3132516B2 (en) 2001-02-05

Family

ID=17266688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03254556A Expired - Lifetime JP3132516B2 (en) 1991-09-06 1991-09-06 Transparent conductive substrate for solar cell and solar cell using the same

Country Status (1)

Country Link
JP (1) JP3132516B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025029A1 (en) * 1997-11-10 1999-05-20 Kaneka Corporation Method of producing silicon thin-film photoelectric transducer and plasma cvd apparatus used for the method
US6281429B1 (en) 1999-11-19 2001-08-28 Fuji Xerox Co., Ltd. Photoelectric conversion element
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
WO2005050675A1 (en) 2003-11-18 2005-06-02 Nippon Sheet Glass Company, Limited Transparent base with transparent conductive film, method for producing same, and photoelectric converter comprising such base
US7179527B2 (en) 2001-10-19 2007-02-20 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
JP2008244467A (en) * 2007-02-28 2008-10-09 Sharp Corp Metal compound film, method of forming same, and base for forming metal compound film
US7718091B2 (en) * 2003-10-02 2010-05-18 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Coating which is applied to substrate, a solar cell, and method for applying the coating to the substrate
WO2011051050A3 (en) * 2009-10-30 2012-06-14 Schüco Tf Gmbh & Co. Kg Assembly comprising a transparent electrically conductive layer, assembly comprising a photoelectric device and method for producing a transparent electrode
CN105408270A (en) * 2013-03-08 2016-03-16 康宁公司 Layered transparent conductive oxide thin films
US10672921B2 (en) * 2015-03-12 2020-06-02 Vitro Flat Glass Llc Article with transparent conductive layer and method of making the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337224B1 (en) 1997-11-10 2002-01-08 Kaneka Corporation Method of producing silicon thin-film photoelectric transducer and plasma CVD apparatus used for the method
WO1999025029A1 (en) * 1997-11-10 1999-05-20 Kaneka Corporation Method of producing silicon thin-film photoelectric transducer and plasma cvd apparatus used for the method
US6281429B1 (en) 1999-11-19 2001-08-28 Fuji Xerox Co., Ltd. Photoelectric conversion element
US7179527B2 (en) 2001-10-19 2007-02-20 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US7364808B2 (en) 2001-10-19 2008-04-29 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US7883789B2 (en) 2001-10-19 2011-02-08 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
US7718091B2 (en) * 2003-10-02 2010-05-18 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Coating which is applied to substrate, a solar cell, and method for applying the coating to the substrate
WO2005050675A1 (en) 2003-11-18 2005-06-02 Nippon Sheet Glass Company, Limited Transparent base with transparent conductive film, method for producing same, and photoelectric converter comprising such base
US7608294B2 (en) 2003-11-18 2009-10-27 Nippon Sheet Glass Company, Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
EP2091053A2 (en) 2003-11-18 2009-08-19 Nippon Sheet Glass Company Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
US7846562B2 (en) 2003-11-18 2010-12-07 Nippon Sheet Glass Company, Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
JP2008244467A (en) * 2007-02-28 2008-10-09 Sharp Corp Metal compound film, method of forming same, and base for forming metal compound film
WO2011051050A3 (en) * 2009-10-30 2012-06-14 Schüco Tf Gmbh & Co. Kg Assembly comprising a transparent electrically conductive layer, assembly comprising a photoelectric device and method for producing a transparent electrode
CN105408270A (en) * 2013-03-08 2016-03-16 康宁公司 Layered transparent conductive oxide thin films
US10672921B2 (en) * 2015-03-12 2020-06-02 Vitro Flat Glass Llc Article with transparent conductive layer and method of making the same

Also Published As

Publication number Publication date
JP3132516B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US4694116A (en) Thin-film solar cell
JP5012793B2 (en) Substrate with transparent conductive oxide film and photoelectric conversion element
JP5621764B2 (en) Transparent conductive film, transparent conductive film laminate, manufacturing method thereof, and silicon-based thin film solar cell
Nicolay et al. Control of CVD-deposited ZnO films properties through water/DEZ ratio: Decoupling of electrode morphology and electrical characteristics
JPS627716B2 (en)
WO2002043079A1 (en) Conductive film, production method therefor, substrate provided with it and photoelectric conversion device
US20110132442A1 (en) Transparent conductive film substrate and solar cell using the substrate
EA016990B1 (en) Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method
JPH0567797A (en) Transparent conductive substrate for solar battery and solar battery using it
JP2000252500A (en) Silicon thin-film photoelectric conversion device
WO2006098185A1 (en) Process for producing substrate for thin-film photoelectric transducer, and thin-film photoelectric transducer
JPH11195801A (en) Photovoltaic element
JPH0438147B2 (en)
Suhariadi et al. Growth mechanism of ZnO deposited by nitrogen mediated crystallization
JP2012084843A (en) Substrate with transparent conductive oxide film and photoelectric conversion element
JPH0413301B2 (en)
JPH0477281B2 (en)
CN103572238A (en) Preparation method of double-frosted surface ZnO-based film
JPH02382A (en) Metallic substrate for solar cell, manufacture thereof and solar cell using said metallic substrate
CN116626796B (en) Large-angle incidence range long-wave pass filter and preparation method thereof
JPH0510835B2 (en)
JPH0258876A (en) Manufacture of substrate for solar cell and solar cell
JPH03218682A (en) Hydrogenated crystal silicon thin film and solar cell
Bdchle et al. BUILDING BLOCKS FOR MICRO-CRYSTALLINE THIN FILM SI SOLAR CELLS ON GLASS SUBSTRATE
JPH021182A (en) Substrate for solar battery and solar battery using said substrate

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11