JPH056771A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH056771A
JPH056771A JP3145026A JP14502691A JPH056771A JP H056771 A JPH056771 A JP H056771A JP 3145026 A JP3145026 A JP 3145026A JP 14502691 A JP14502691 A JP 14502691A JP H056771 A JPH056771 A JP H056771A
Authority
JP
Japan
Prior art keywords
electrode
fuel
effective area
fuel cell
catalytic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3145026A
Other languages
Japanese (ja)
Inventor
Hideyuki Nomoto
秀幸 野元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3145026A priority Critical patent/JPH056771A/en
Publication of JPH056771A publication Critical patent/JPH056771A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell excellent in reliability having no electrode breakage caused by corrosion by making the effective area of the electrode catalytic layer of an oxidizing agent electrode equal to or smaller than the effective area of the electrode catalytic layer of a fuel electrode. CONSTITUTION:The electrode catalytic layer of an oxidizing agent electrode forms a reacting seed preventing part by partial treatment with a fluorine resin, and has an effective area S1. As oxygen gas and hydrogen ion H<+> never reach the diffusion preventing part, no electrode reaction take place in the diffusion preventing part to form a part which can not be potentially defined. In the effective area S1 part of the electrode catalytic layer, oxygen gas and H<+> ion are supplied thereto, the electrode reaction uniformly takes place to reduce the electrode potential. When the effective area of the electrode catalytic layer of a fuel electrode is S2, both the effective areas satisfy the relation of S1<=S2. Thus, a local reduction of electrode reaction is prevented, a local potential rise is consequently eliminated, causing no breakage of the electrodes, and a fuel cell excellent in reliability can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は燃料電池の電極に係
り、特に酸化剤極の安定性に優れる燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode, and more particularly to a fuel cell having excellent oxidant electrode stability.

【0002】[0002]

【従来の技術】燃料電池は燃料の持つ化学エネルギーを
直接電気エネルギーに変換するものであり、その構成は
図9に示すような電極6を例えばリン酸よりなる電解液
層8を挟んで配置し、外部のガス供給系より前記各電極
へ燃料ガス及び酸化剤ガスを供給し、各電極の電極触媒
上で燃料ガスまたは酸化剤ガスを電気化学的に反応さ
せ、その結果として系外に電気エネルギーを取り出す発
電装置の一種である。
2. Description of the Related Art A fuel cell directly converts the chemical energy of a fuel into electric energy. Its structure is such that electrodes 6 as shown in FIG. 9 are arranged with an electrolyte layer 8 made of phosphoric acid interposed therebetween. , A fuel gas and an oxidant gas are supplied from an external gas supply system to each electrode, and the fuel gas or the oxidant gas is electrochemically reacted on the electrode catalyst of each electrode, and as a result, electric energy is supplied to the outside of the system. It is a type of power generation device that takes out.

【0003】電極6は多孔質のカーボンよりなる電極基
材4の上に電極触媒層5を付着させて構成される。電極
触媒層5は触媒担体2の表面に貴金属微粒子1を担持さ
せた触媒粒子7がフッ素樹脂の粒子3により結着されて
形成される。この電極触媒層5の内部では電極基材側か
らのガスと電解液層からの電解液とが接触し、三相界面
が形成され、電気化学反応が進行する。
The electrode 6 is constructed by adhering an electrode catalyst layer 5 on an electrode substrate 4 made of porous carbon. The electrode catalyst layer 5 is formed by binding the catalyst particles 7 supporting the noble metal fine particles 1 on the surface of the catalyst carrier 2 by the particles 3 of the fluororesin. Inside the electrode catalyst layer 5, the gas from the electrode base material side and the electrolytic solution from the electrolytic solution layer come into contact with each other, a three-phase interface is formed, and an electrochemical reaction proceeds.

【0004】燃料極では、水素ガスの酸化反応が行わ
れ、酸化剤極では、酸素ガスの還元反応が行われる。電
池の運転は、運転効率の面から高温 (約200 ℃) で運転
され、無負荷時に理論電圧が約1.1Vの電圧を発生 (燃
料電極側を0基準とした場合、酸化剤極が+1.1Vの電
位を示す) し、定格負荷時には、電圧が0.8V以下で運
転されている。
At the fuel electrode, an oxidation reaction of hydrogen gas is performed, and at the oxidant electrode, a reduction reaction of oxygen gas is performed. In terms of operating efficiency, the battery is operated at a high temperature (about 200 ° C), and a theoretical voltage of about 1.1 V is generated when there is no load (when the fuel electrode side is set to 0 standard, the oxidizer electrode is +1 It shows a potential of 0.1 V), and the voltage is 0.8 V or less at the rated load.

【0005】燃料極側では、燃料となる水素ガスが三相
界面で、水素イオンと電子になり、水素イオンは電解液
層8中を移動し、また、電子は外部回路を通り対極の酸
化剤極へ到達する。酸化剤極では、三相界面で活性化し
た酸素ガスと燃料極にて発生し、電解液層を移動してき
た水素イオンと外部回路を通ってきた電子が電気化学的
に反応して、水を生成する。
On the fuel electrode side, the hydrogen gas serving as the fuel becomes hydrogen ions and electrons at the three-phase interface, the hydrogen ions move in the electrolyte layer 8, and the electrons pass through the external circuit and the oxidizer of the counter electrode. Reach the pole. At the oxidizer electrode, oxygen gas activated at the three-phase interface and hydrogen ions generated at the fuel electrode, which have moved through the electrolyte layer, and electrons that have passed through the external circuit electrochemically react to generate water. To generate.

【0006】[0006]

【発明が解決しようとする課題】燃料電池は、先に述べ
たように燃料極と酸化剤極の電気化学的反応によりイオ
ンの移動がおこる。そのため、どちらか一方の極でも反
応が阻害されると、水素イオンの移動が妨げられ、対極
に影響がおよぶようになる。
As described above, in the fuel cell, the migration of ions occurs due to the electrochemical reaction between the fuel electrode and the oxidant electrode. Therefore, if the reaction is hindered at either one of the electrodes, the movement of hydrogen ions is hindered and the counter electrode is affected.

【0007】例えば、酸化剤極の反応が妨げられると、
燃料極の電位は、水素の電位に近くなる。又、燃料極の
反応が妨げられると、酸化剤極の電位は、酸素の電位に
近くなり、水素基準で+1.1Vの電位に近づくことにな
る。
For example, if the reaction of the oxidizer electrode is hindered,
The potential of the fuel electrode is close to that of hydrogen. Further, when the reaction of the fuel electrode is disturbed, the potential of the oxidant electrode becomes close to the potential of oxygen and approaches the potential of +1.1 V on the basis of hydrogen.

【0008】ところで、運転温度が160 ℃以上のリン酸
型燃料電池において、電位が0.85Vを越えると電極の腐
食電流が増え (図6参照) 、電池特性の劣化が増大する
ことが判っている (図7, 図8参照) 。そのため実際の
燃料電池の運転される200 ℃程度の運転においては、0.
85Vを越えないようにしている。しかし、実際の燃料電
池では、図10に示すように酸化剤極の電極触媒層 (三相
界面形成可能部分) が実反応部分 (電解液層を介して燃
料極の接する部分) よりも大きい場合や、燃料極にリザ
ーバ (電極基材に電解液を保持している部分) を付して
いる電池の場合などは、リザーバ部分の燃料極が、保持
電解液によって燃料ガスの拡散阻害を起こし、対極の酸
化剤極へのイオン移動を妨げて、酸化剤極に0.85Vをこ
える部分的な高電位部を生じる。このような場合、腐食
により酸化剤極が破壊して電池の性能低下が生じるとい
う問題があった。
By the way, it has been known that in a phosphoric acid fuel cell with an operating temperature of 160 ° C. or higher, when the potential exceeds 0.85 V, the corrosion current of the electrode increases (see FIG. 6) and the deterioration of the cell characteristics increases. (See FIGS. 7 and 8). Therefore, in actual fuel cell operation at 200 ℃, 0.
I try not to exceed 85V. However, in an actual fuel cell, as shown in Fig. 10, when the electrode catalyst layer of the oxidizer electrode (portion where the three-phase interface can be formed) is larger than the actual reaction portion (portion where the fuel electrode contacts via the electrolyte layer). Alternatively, in the case of a battery in which the fuel electrode has a reservoir (the part that holds the electrolytic solution on the electrode substrate), the fuel electrode in the reservoir part causes diffusion inhibition of the fuel gas due to the retained electrolytic solution, Interfering with the migration of ions to the oxidant electrode of the counter electrode, a partial high potential portion exceeding 0.85 V is generated at the oxidant electrode. In such a case, there is a problem that the oxidizer electrode is destroyed due to corrosion and the performance of the battery is degraded.

【0009】この発明は上述の点に鑑みてなされ、その
目的は酸化剤極が部分的に高電位化することを防止し
て、腐食による電極破壊がなく信頼性に優れる燃料電池
を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a fuel cell which prevents the oxidizer electrode from partially increasing in electric potential and is free from electrode destruction due to corrosion and excellent in reliability. It is in.

【0010】[0010]

【課題を解決するための手段】上述の目的はこの発明に
よれば酸化剤極と、電解液層と、燃料極とを有し、電解
液層は対向する酸化剤極と燃料極の間にはさまれて、両
電極に電解液を供給し、酸化剤極と燃料極はそれぞれ反
応ガスを拡散させる電極基材上に電極触媒層を有してな
り、酸化剤極の電極触媒層の有効面積をS1 、燃料極の
電極触媒層の有効面積をS2 とするときにS1 とS2
次式 S1 ≦S2 (I) を満足するとすることにより達成される。ここで反応種
は反応ガスや電解液中のイオンを指す。
According to the present invention, the above object has an oxidizer electrode, an electrolyte solution layer, and a fuel electrode, and the electrolyte solution layer is provided between the opposing oxidizer electrode and fuel electrode. It is sandwiched to supply the electrolytic solution to both electrodes, and the oxidizer electrode and the fuel electrode each have an electrode catalyst layer on the electrode substrate that diffuses the reaction gas. the area S 1, the effective area of the electrode catalyst layer of the fuel electrode S 1 and S 2 when the S 2 is achieved by a satisfies the following equation S 1 ≦ S 2 (I) . Here, the reactive species refers to ions in the reaction gas or the electrolytic solution.

【0011】[0011]

【作用】酸化剤極の電極触媒層の有効面積S1 が燃料極
の電極触媒層の有効面積S2 と同等かこれより小さい時
は水素イオンの部分的な拡散阻害をおさえることができ
る。
When the effective area S 1 of the electrode catalyst layer of the oxidant electrode is equal to or smaller than the effective area S 2 of the electrode catalyst layer of the fuel electrode, partial diffusion inhibition of hydrogen ions can be suppressed.

【0012】[0012]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。図1はこの発明の実施例に係る燃料電池の電極を示
す分解図である。酸化剤極の電極触媒層は一部フッ素樹
脂で処理され反応種拡散防止部となっている。酸素ガス
および水素イオンH+ が到達しないので、拡散防止部で
は電極反応がおこらず電位的には定義できない部分とな
る。電極触媒層の有効面積部分においては酸素ガスとH
+ イオンが供給され、電極反応が一様におこり電極電位
を低下させる。フッ素樹脂で処理されないとこの部分は
高電位化する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is an exploded view showing an electrode of a fuel cell according to an embodiment of the present invention. The electrode catalyst layer of the oxidant electrode is partly treated with a fluororesin to form a reactive species diffusion preventing portion. Since oxygen gas and hydrogen ions H + do not reach, no electrode reaction occurs in the diffusion prevention portion, and the portion cannot be defined in terms of potential. Oxygen gas and H in the effective area of the electrode catalyst layer
As + ions are supplied, the electrode reaction occurs uniformly and lowers the electrode potential. If not treated with a fluororesin, this portion will have a high potential.

【0013】図2はこの発明の実施例に係る燃料電池の
セル電圧時間依存性10を従来のもの11と対比して示す線
図である。電極の破壊がおこらず信頼性の高い電池とな
っている。
FIG. 2 is a diagram showing the cell voltage time dependency 10 of the fuel cell according to the embodiment of the present invention in comparison with the conventional one 11. The battery is highly reliable because the electrodes are not destroyed.

【0014】図3はこの発明の異なる実施例に係る燃料
電池を示す分解斜視図である。電極基材の所定部がフッ
素樹脂処理される。酸化剤極電極触媒層の酸素ガス拡散
を防止する。酸素ガスの拡散が防止されると、この部分
は電極反応がおこらず電極の高電位化が起こらない。
FIG. 3 is an exploded perspective view showing a fuel cell according to another embodiment of the present invention. A predetermined portion of the electrode base material is treated with a fluororesin. Prevents oxygen gas diffusion in the oxidizer electrode catalyst layer. When the diffusion of oxygen gas is prevented, the electrode reaction does not occur in this portion and the potential of the electrode is not raised.

【0015】図4, 図5はこの発明のさらに異なる実施
例に係る燃料電池の電極を示す対応図である。ともに電
極にリザーバを有するが、前者はリザーバが同一サイ
ズ、後者は酸化剤極のリザーバをより大きくして対称に
配置している。リザーバは電解液の貯蔵部であり、反応
ガスの拡散防止部となる。
4 and 5 are corresponding views showing electrodes of a fuel cell according to still another embodiment of the present invention. Both have a reservoir in the electrode. In the former, the reservoir has the same size, and in the latter, the reservoir for the oxidant electrode is made larger and arranged symmetrically. The reservoir is a storage portion for the electrolytic solution and serves as a diffusion preventing portion for the reaction gas.

【0016】[0016]

【発明の効果】この発明によれば酸化剤極と、電解液層
と、燃料極とを有し、電解液層は対向する酸化剤極と燃
料極の間にはさまれて、両電極に電解液を供給し、酸化
剤極と燃料極はそれぞれ反応ガスを拡散させる電極基材
上に電極触媒層を有して、酸化剤極の電極触媒層の有効
面積をS1 、燃料極の電極触媒層の有効面積をS2 とす
るときにS1 とS2 が次式 S1 ≦S2 (I) を満足するので、局部的な電極反応の低下が防止され、
その結果局部的な電位上昇がなくなって、電極の破損が
生ぜず、信頼性に優れる燃料電池が得られる。
According to the present invention, it has an oxidizer electrode, an electrolyte layer, and a fuel electrode, and the electrolyte layer is sandwiched between the oxidizer electrode and the fuel electrode which are opposed to each other. The electrolytic solution is supplied, and the oxidant electrode and the fuel electrode each have an electrode catalyst layer on the electrode substrate that diffuses the reaction gas. The effective area of the electrode catalyst layer of the oxidant electrode is S 1 , the electrode of the fuel electrode is since S 1 and S 2 satisfies the following equation S 1 ≦ S 2 (I) when the effective area of the catalyst layer and S 2, reduction of local electrode reaction can be prevented,
As a result, there is no local increase in the potential, the electrode is not damaged, and a highly reliable fuel cell can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る燃料電池の電極を示す
分解図
FIG. 1 is an exploded view showing an electrode of a fuel cell according to an embodiment of the present invention.

【図2】この発明の実施例に係る燃料電池のセル電圧時
間依存性を従来のものと対比して示す線図
FIG. 2 is a diagram showing cell voltage time dependence of a fuel cell according to an embodiment of the present invention in comparison with a conventional one.

【図3】この発明の異なる実施例に係る燃料電池を示す
分解斜視図
FIG. 3 is an exploded perspective view showing a fuel cell according to another embodiment of the present invention.

【図4】この発明のさらに異なる実施例に係る燃料電池
の電極を示す分解図
FIG. 4 is an exploded view showing electrodes of a fuel cell according to still another embodiment of the present invention.

【図5】この発明のさらに異なる実施例に係る燃料電池
の電極を示す分解図
FIG. 5 is an exploded view showing electrodes of a fuel cell according to still another embodiment of the present invention.

【図6】電極電位および温度と腐食電流の関係を示す線
FIG. 6 is a diagram showing the relationship between electrode potential and temperature and corrosion current.

【図7】電極電位とセル劣化速度の関係を示す線図FIG. 7 is a diagram showing the relationship between electrode potential and cell deterioration rate.

【図8】セル温度とセル劣化速度の関係を示す線図FIG. 8 is a diagram showing the relationship between cell temperature and cell deterioration rate.

【図9】燃料電池を示す断面図FIG. 9 is a sectional view showing a fuel cell.

【図10】従来の燃料電池を示し、図10(a) は斜視図、
図10(b) は電極を示す分解図
FIG. 10 shows a conventional fuel cell, FIG. 10 (a) is a perspective view,
Figure 10 (b) is an exploded view showing the electrodes.

【符号の説明】[Explanation of symbols]

1 貴金属微粒子 2 触媒担体 3 フッ素樹脂粒子 4 電極基材 5 電極触媒層 6 電極 7 触媒粒子 8 電解液層 1 Precious metal particles 2 Catalyst carrier 3 Fluororesin particles 4 electrode base material 5 Electrode catalyst layer 6 electrodes 7 catalyst particles 8 Electrolyte layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化剤極と、電解液層と、燃料極とを有
し、電解液層は対向する酸化剤極と燃料極の間にはさま
れて、両電極に電解液を供給し、酸化剤極と燃料極はそ
れぞれ反応ガスを拡散させる電極基材上に電極触媒層を
有してなり、酸化剤極の電極触媒層の有効面積をS1
燃料極の電極触媒層の有効面積をS2 とするときにS1
とS2 が次式 S1 ≦S2 (I) を満足することを特徴とする燃料電池。
1. An oxidant electrode, an electrolytic solution layer, and a fuel electrode, wherein the electrolytic solution layer is sandwiched between the oxidant electrode and the fuel electrode facing each other, and the electrolytic solution is supplied to both electrodes. , The oxidizer electrode and the fuel electrode each have an electrode catalyst layer on the electrode substrate for diffusing the reaction gas, and the effective area of the electrode catalyst layer of the oxidizer electrode is S 1 ,
When the effective area of the electrode catalyst layer of the fuel electrode is S 2 , S 1
And S 2 satisfy the following formula S 1 ≦ S 2 (I).
【請求項2】請求項1記載の電池において、電極は電極
触媒層の有効面積を決める反応種拡散防止部を有するこ
とを特徴とする燃料電池。
2. The fuel cell according to claim 1, wherein the electrode has a reactive species diffusion preventing portion for determining an effective area of the electrode catalyst layer.
【請求項3】請求項2記載の電池において、反応種拡散
防止部は電極触媒層に設けられた充填剤であることを特
徴とする燃料電池。
3. The fuel cell according to claim 2, wherein the reactive species diffusion preventing portion is a filler provided in the electrode catalyst layer.
【請求項4】請求項2記載の電池において、反応種拡散
防止部は電極基材に設けられたリザーバであることを特
徴とする燃料電池。
4. The fuel cell according to claim 2, wherein the reactive species diffusion preventing portion is a reservoir provided on the electrode base material.
JP3145026A 1991-06-18 1991-06-18 Fuel cell Pending JPH056771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3145026A JPH056771A (en) 1991-06-18 1991-06-18 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3145026A JPH056771A (en) 1991-06-18 1991-06-18 Fuel cell

Publications (1)

Publication Number Publication Date
JPH056771A true JPH056771A (en) 1993-01-14

Family

ID=15375708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3145026A Pending JPH056771A (en) 1991-06-18 1991-06-18 Fuel cell

Country Status (1)

Country Link
JP (1) JPH056771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040681A1 (en) * 2002-10-29 2004-05-13 Honda Motor Co., Ltd. Membrane-electrode structure and method for producing same
WO2006019419A3 (en) * 2004-03-31 2006-06-08 Corning Inc Fuel cell device with varied active area sizes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040681A1 (en) * 2002-10-29 2004-05-13 Honda Motor Co., Ltd. Membrane-electrode structure and method for producing same
WO2006019419A3 (en) * 2004-03-31 2006-06-08 Corning Inc Fuel cell device with varied active area sizes
US7494732B2 (en) 2004-03-31 2009-02-24 Corning Incorporated Fuel cell device with varied active area sizes

Similar Documents

Publication Publication Date Title
JP4679148B2 (en) Membrane electrode assembly, power generating fuel cell system, and method of operating a fuel cell
US3080440A (en) Storage battery
Kinoshita Electrochemical oxygen technology
FI92445C (en) Two-chamber anode structure and method for its use
JP3460793B2 (en) How the fuel cell works
EP1253655A1 (en) Fuel cell
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JP3360485B2 (en) Fuel cell
JP3211378B2 (en) Polymer electrolyte fuel cell
US5217821A (en) High current acid fuel cell electrodes
JP3029934B2 (en) Corrosion-resistant cathode electrode and its manufacturing method
JPH10270057A (en) Solid high molecular fuel cell
JPH01227361A (en) Manufacture of anode for fuel cell
WO2007119130A1 (en) Fuel cell
JPH056771A (en) Fuel cell
JPH10208757A (en) Fuel cell generating set
JPH0622144B2 (en) Fuel cell
JPH069143B2 (en) Fuel cell storage method
JP2007087617A (en) Fuel cell
US3625768A (en) Method of operating fuel cell with molten-oxygen-containing electrolyte and non-porous hydrogen-diffusing nickel electrode
JP3340445B2 (en) Operating method of molten carbonate fuel cell
JPH06260197A (en) Solid polymer electrolytic fuel cell system
JP2017174562A (en) Electrode catalyst for fuel cell
KR100195091B1 (en) Molten carbonate fuel cell
US3493435A (en) Fuel cell and method of generating electricity