JPH056764A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH056764A
JPH056764A JP3156884A JP15688491A JPH056764A JP H056764 A JPH056764 A JP H056764A JP 3156884 A JP3156884 A JP 3156884A JP 15688491 A JP15688491 A JP 15688491A JP H056764 A JPH056764 A JP H056764A
Authority
JP
Japan
Prior art keywords
positive electrode
component
polyaniline
alkylene oxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3156884A
Other languages
Japanese (ja)
Inventor
Michiyuki Kono
通之 河野
Shigeo Mori
茂男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP3156884A priority Critical patent/JPH056764A/en
Publication of JPH056764A publication Critical patent/JPH056764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a secondary battery having a large capacity and a high energy density in which the manufacture of a positive electrode material is easy, compared with other positive electrode materials requiring pressure mold ing, because it can be manufactured with a simple method such as application. CONSTITUTION:A conductive polymer composite consisting of (A) polyaniline and at least one selected from the group consisting of simple polymers, block copolymers, and random copolymers of (B) alkylene oxide monomer, and cross- linked bodies obtained by cross-linking them, and at least one selected from the group consisting of anions, alkali metal salts and alkaline earth metal salts of (C) protonic acid is used as a positive electrode active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池に関する。FIELD OF THE INVENTION The present invention relates to a secondary battery.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】最近、電
子機器の小型化、薄型化、軽量化などに伴って電源に用
いる電池に対しても同様の要望が強くなっている。殊
に、電圧の高くとれるリチウム二次電池で、正極材料に
ポリピロール、ポリアニリン、ポリアセチレン等の電気
化学的に活性な導電性高分子材料を用いたものが、この
要望を達成するのに有力な電池として注目を集めてい
る。中でも、ポリアニリンを正極材料として用いた電池
は、放電容量が大きく、また充放電の繰返し寿命に優れ
た電池として注目されている。
2. Description of the Related Art Recently, as electronic devices have become smaller, thinner and lighter, similar demands have been made for batteries used as power sources. In particular, a lithium secondary battery with high voltage, which uses an electrochemically active conductive polymer material such as polypyrrole, polyaniline, or polyacetylene as a positive electrode material, is a powerful battery for achieving this demand. Is attracting attention as. Among them, a battery using polyaniline as a positive electrode material has been attracting attention as a battery having a large discharge capacity and an excellent repeated charge / discharge life.

【0003】しかしながら、従来のポリアニリンを用い
た二次電池においては、放電電流が数mAの小さい電池
については比較的満足な結果が得られているものの、放
電電流が数十〜数百mAの電池を設計した場合には正極
材料の大きさの割に十分な容量が得られないという問題
点があった。この原因は、大容量の電池を設計した場合
には、それに対応して正極材料の厚みが増し、電解質ア
ニオンの正極材料への拡散が律速となるため、と考えら
れている。
However, in the conventional secondary battery using polyaniline, although a relatively satisfactory result has been obtained for a battery having a small discharge current of several mA, a battery having a discharge current of several tens to several hundreds mA. However, there is a problem in that sufficient capacity cannot be obtained for the size of the positive electrode material in the case of designing. This is considered to be because, when a large-capacity battery is designed, the thickness of the positive electrode material is correspondingly increased, and diffusion of electrolyte anions into the positive electrode material is rate-determining.

【0004】本発明の課題は、上記のような従来の正極
材料の問題を解消し得て、大容量でエネルギー密度の高
い二次電池を提供する処にある。
An object of the present invention is to provide a secondary battery having a large capacity and a high energy density, which can solve the problems of the conventional positive electrode material as described above.

【0005】[0005]

【課題を解決するための手段】本発明の二次電池は、
(A)ポリアニリン、(B)アルキレンオキシド単量体
の単独重合体、ブロック共重合体、ランダム共重合体お
よびそれらを架橋させて得られる架橋体からなる群より
選択された少なくとも1種、ならびに(C)プロトン酸
のアニオン、アルカリ金属塩およびアルカリ土類金属塩
からなる群より選択された少なくとも1種からなる導電
性高分子組成物を正極活物質に用いてなる。
The secondary battery of the present invention comprises:
(A) polyaniline, (B) alkylene oxide monomer homopolymer, block copolymer, random copolymer and at least one selected from the group consisting of crosslinked products obtained by crosslinking them, and ( C) A conductive polymer composition comprising at least one selected from the group consisting of anions of protonic acids, alkali metal salts and alkaline earth metal salts is used as a positive electrode active material.

【0006】本発明の二次電池において正極材料として
使用される導電性高分子組成物においては、(A)成分
と(B)成分が分子分散してポリマーアロイを形成し、
さらに(C)成分がドープされている。従って、実質
上、正極活物質と電解質が分子分散された構造となって
おり、界面抵抗が少なく、またアニオンの拡散もすみや
かに行なわれるために、本発明の二次電池においては大
容量、高エネルギー密度が達成される。
In the conductive polymer composition used as the positive electrode material in the secondary battery of the present invention, the component (A) and the component (B) are molecularly dispersed to form a polymer alloy,
Further, the component (C) is doped. Therefore, it has a structure in which the positive electrode active material and the electrolyte are substantially molecularly dispersed, has a low interfacial resistance, and promptly diffuses anions. Therefore, the secondary battery of the present invention has a large capacity and high capacity. Energy density is achieved.

【0007】本発明においては、(A)成分、(B)成
分、または、(A)成分および(B)成分の複合体に
(C)成分を加えて錯体形成せしめることを「ドープ」
という。
In the present invention, "doping" means adding the component (C) to the component (A), the component (B), or the complex of the components (A) and (B) to form a complex.
That.

【0008】本発明に用いる(A)成分のポリアニリン
は、例えば、水、メタノール等の溶媒にアニリンを分散
または溶解せしめ、硫酸、塩酸等のプロトン酸の存在下
で過硫酸アンモニウム、過酸化水素、二酸化マンガン等
の酸化剤を加えて重合させてドープ状態のポリアニリン
を得、さらにこれをアンモニア、水酸化ナトリウム等の
塩基で脱ドープ処理することにより容易に得ることがで
きる。さらに、脱ドープ処理したポリアニリンをヒドラ
ジン、フェニルヒドラジン、塩酸ヒドラジン等の還元剤
で処理した還元型ポリアニリンも好適に使用できる。特
に、非水系で二次電池を構成する場合には、後者の還元
型ポリアニリンが好ましい。
The polyaniline of the component (A) used in the present invention is obtained by dispersing or dissolving aniline in a solvent such as water or methanol, and ammonium persulfate, hydrogen peroxide, or dioxide in the presence of a protic acid such as sulfuric acid or hydrochloric acid. It can be easily obtained by adding an oxidizing agent such as manganese and polymerizing it to obtain a doped polyaniline, and further dedoping the polyaniline with a base such as ammonia and sodium hydroxide. Furthermore, reduced polyaniline obtained by treating deanidized polyaniline with a reducing agent such as hydrazine, phenylhydrazine, or hydrazine hydrochloride can also be preferably used. In particular, the latter reduced polyaniline is preferable when the secondary battery is composed of a non-aqueous system.

【0009】(B)成分のアルキレンオキシド重合体ま
たはその架橋体とは、アルキレンオキシド単量体の単独
重合体、ブロック共重合体、ランダム共重合体またはそ
れらを架橋させて得られる架橋体であり、通常は、下記
の如き活性水素化合物にアルキレンオキシドを付加(開
環)重合反応させて得られた重合体、またはその重合体
を適当な架橋剤を用いて架橋反応させて得られたもので
ある。
The alkylene oxide polymer as the component (B) or a crosslinked product thereof is a homopolymer, a block copolymer, a random copolymer of an alkylene oxide monomer or a crosslinked product obtained by crosslinking them. Usually, a polymer obtained by subjecting an active hydrogen compound to an alkylene oxide addition (ring-opening) polymerization reaction as described below, or a polymer obtained by subjecting the polymer to a crosslinking reaction using a suitable crosslinking agent. is there.

【0010】活性水素化合物としては、メタノール、エ
タノール等の一価アルコール類、エチレングリコール、
プロピレングリコール、1,4−ブタンジオール等の二
価アルコール類、グリセリン、トリメチロールプロパ
ン、ソルビトール、シュークローズ、ポリグリセリン等
の多価アルコール類、モノエタノールアミン、エチレン
ジアミン、ジエチレントリアミン、2−エチルヘキシル
アミン、ヘキサメチレンジアミン等のアミン類、ビスフ
ェノールA、ハイドロキノン等のフェノール性活性水素
含有化合物類等がある。
As the active hydrogen compound, monohydric alcohols such as methanol and ethanol, ethylene glycol,
Propylene glycol, 1,4-butanediol and other dihydric alcohols, glycerin, trimethylolpropane, sorbitol, sucrose, polyglycerin and other polyhydric alcohols, monoethanolamine, ethylenediamine, diethylenetriamine, 2-ethylhexylamine, hexa Examples include amines such as methylenediamine, compounds containing phenolic active hydrogen such as bisphenol A and hydroquinone.

【0011】アルキレンオキシド単量体としては、エチ
レンオキシド、プロピレンオキシド、1,2−エポキシ
ブタン、1,2−エポキシペンタン、1,2−エポキシ
ヘキサン、1,2−エポキシヘプタン、1,2−エポキ
シオクタン、1,2−エポキシノナン等の炭素数2〜9
のα−オレフィンオキシド、さらに炭素数10以上のα
−オレフィンオキシド、スチレンオキシド等がいずれも
使用できるが、エチレンオキシド、プロピレンオキシ
ド、1,2−エポキシブタンの使用が特に好ましい。
The alkylene oxide monomers include ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxypentane, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxyoctane. 2 to 9 carbon atoms such as 1,2-epoxynonane
Α-Olefin oxide, and α having 10 or more carbon atoms
-Olefin oxide, styrene oxide and the like can be used, but ethylene oxide, propylene oxide and 1,2-epoxybutane are particularly preferable.

【0012】重合反応に際しては、ナトリウムメトキシ
ド、水酸化ナトリウム、水酸化カリウム、炭酸リチウ
ム、トリエチルアミン、カリウム−t−ブトキシド等の
塩基性触媒や過塩素酸、ボロントリフルオライド等の酸
性触媒を用いるが、特に塩基性触媒が好適に用いられ
る。
In the polymerization reaction, basic catalysts such as sodium methoxide, sodium hydroxide, potassium hydroxide, lithium carbonate, triethylamine, potassium-t-butoxide and acidic catalysts such as perchloric acid and boron trifluoride are used. Especially, a basic catalyst is preferably used.

【0013】アルキレンオキシド重合体の数平均分子量
は100〜20,000が好ましい。
The number average molecular weight of the alkylene oxide polymer is preferably 100 to 20,000.

【0014】アルキレンオキシド重合体の架橋方法とし
ては、イソシアネート架橋、エステル架橋等の方法が挙
げられる。
Examples of the method for crosslinking the alkylene oxide polymer include isocyanate crosslinking and ester crosslinking.

【0015】それぞれの架橋に用いられる架橋剤として
は、イソシアネート架橋の場合、例えば、2,4−トリ
レンジイソシアネート(2,4−TDI)、2,6−ト
リレンジイソシアネート(2,6−TDI)、4,4′
−ジフェニルメタンジイソシアネート(MDI)、ヘキ
サメチレンジイソシアネート(HMDI)、イソホロン
ジイソシアネート、リジンエステルトリイソシアネー
ト、1,8−ジイソシアネート−4−イソシアネートメ
チルオクタン、1,6,11−ウンデカントリイソシア
ネート、1,3,6−ヘキサメチレントリイソシアネー
ト、トリフェニルメタンジイソシアネート、トリス(イ
ソシアネートフェニル)チオホスフェート、ビシクロヘ
プタントリイソシアネート、ビューレット結合HMD
I、イソシアヌレート結合HMDI、トリメチロールプ
ロパンTDI3モル付加物、又はこれらの混合物等が挙
げられ、エステル架橋の場合、例えば、マロン酸、コハ
ク酸、マレイン酸、フマル酸、アジピン酸、セバシン
酸、フタル酸、イソフタル酸、テレフタル酸、イタコン
酸、トリメリト酸、ピロメリト酸、ダイマー酸等の多価
カルボン酸;これらの多価カルボン酸のモノメチルエス
テル、ジメチルエステル、モノエチルエステル、ジエチ
ルエステル、モノプロピルエステル、ジプロピルエステ
ル、モノブチルエステル、ジブチルエステル等の低級ア
ルキルエステル;前記多価カルボン酸の酸無水物等が挙
げられる。
As the cross-linking agent used for each cross-linking, in the case of isocyanate cross-linking, for example, 2,4-tolylene diisocyanate (2,4-TDI) or 2,6-tolylene diisocyanate (2,6-TDI) is used. , 4, 4 '
-Diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HMDI), isophorone diisocyanate, lysine ester triisocyanate, 1,8-diisocyanate-4-isocyanate methyl octane, 1,6,11-undecane triisocyanate, 1,3,6- Hexamethylene triisocyanate, triphenylmethane diisocyanate, tris (isocyanatophenyl) thiophosphate, bicycloheptane triisocyanate, burette-bonded HMD
I, isocyanurate-bonded HMDI, trimethylolpropane TDI 3 mol adduct, or a mixture thereof. In the case of ester crosslinking, for example, malonic acid, succinic acid, maleic acid, fumaric acid, adipic acid, sebacic acid, phthalic acid Polycarboxylic acids such as acids, isophthalic acid, terephthalic acid, itaconic acid, trimellitic acid, pyromellitic acid and dimer acid; monomethyl ester, dimethyl ester, monoethyl ester, diethyl ester, monopropyl ester of these polyvalent carboxylic acids, Lower alkyl esters such as dipropyl ester, monobutyl ester and dibutyl ester; and acid anhydrides of the above polyvalent carboxylic acids.

【0016】イソシアネート架橋を行なう場合、その反
応は、例えば、イソシアネート類とアルキレンオキシド
重合体とをNCO/OH当量比1.5〜0.5の範囲で
混合し、温度80〜150℃で1〜5時間行なう。
When isocyanate crosslinking is carried out, the reaction is carried out, for example, by mixing isocyanates and an alkylene oxide polymer in the NCO / OH equivalent ratio range of 1.5 to 0.5, and at a temperature of 80 to 150 ° C. Do it for 5 hours.

【0017】また、エステル架橋を行なう場合、その反
応(例えば、エステル化反応又はエステル交換反応)
は、例えば、アルキレンオキシド重合体と多価カルボン
酸、その低級アルキルエステル、又はその酸無水物と
を、官能比として1:2〜2:1で混合し、温度120
〜250℃、10−4〜10Torrの条件下で行な
う。
When ester cross-linking is performed, the reaction (for example, esterification reaction or transesterification reaction)
Is, for example, a mixture of an alkylene oxide polymer and a polyvalent carboxylic acid, a lower alkyl ester thereof, or an acid anhydride thereof at a functional ratio of 1: 2 to 2: 1 and a temperature of 120.
It is carried out under the conditions of ˜250 ° C. and 10 −4 -10 Torr.

【0018】本発明において正極材料として用いられる
導電性高分子組成物は、例えば、(A)成分及び(B)
成分をこれらの共通溶媒であるジメチルスルホキシド、
ジメチルホルムアミド、N−メチル−2−ピロリドン等
に溶解し、(A)成分及び(B)成分からなる複合体を
形成し、この複合体に(C)成分をドープすることによ
り得られる。ただし、(C)成分をドープする方法は、
後述するように、種々の実施態様が可能であり、複合体
形成前あるいは複合体形成後のいずれにおいても実施可
能である。
The conductive polymer composition used as the positive electrode material in the present invention is, for example, the component (A) and the component (B).
Dimethyl sulfoxide, which is a common solvent for these components,
It is obtained by dissolving in dimethylformamide, N-methyl-2-pyrrolidone or the like to form a complex composed of the components (A) and (B), and doping the complex with the component (C). However, the method of doping the component (C) is
As will be described later, various embodiments are possible and can be carried out either before complex formation or after complex formation.

【0019】還元処理していない脱ドープポリアニリン
を(A)成分として用いた場合には、前記したような方
法で複合体を形成した後、過塩素酸、硫酸、パラトルエ
ンスルホン酸等のプロトン酸にこの複合体を浸漬するこ
とにより、(C)成分をドープすることが可能である。
When undoped polyaniline which has not been subjected to reduction treatment is used as the component (A), a complex is formed by the above-mentioned method and then a protic acid such as perchloric acid, sulfuric acid or paratoluenesulfonic acid is used. It is possible to dope the component (C) by immersing this composite in.

【0020】さらに、本発明に用いる導電性高分子組成
物においては、アルキレンオキシド重合体またはその架
橋体を(B)成分として複合しているために、アルカリ
金属塩またはアルカリ土類金属塩を(C)成分として用
いて(B)成分にドープすることが可能である。これら
の塩類を(B)成分にドープする場合も、(A)成分と
(B)成分の複合体の形成前または形成後のいずれでも
可能である。
Further, in the electroconductive polymer composition used in the present invention, since the alkylene oxide polymer or its crosslinked product is compounded as the component (B), an alkali metal salt or an alkaline earth metal salt ( It is possible to dope the component (B) by using it as the component C). When the component (B) is doped with these salts, either before or after the formation of the complex of the component (A) and the component (B) is possible.

【0021】複合体形成前に、アルキレンオキシド重合
体を(B)成分として(C)成分をドープする場合に
は、アセトン、メタノール、テトラヒドロフラン等の、
(B)成分および(C)成分に対する共通溶媒を用いて
これらを混合した後に溶媒を留去する方法を用いること
ができる。アルキレンオキシド重合体の架橋体を(B)
成分として(C)成分をドープする場合には、上記した
溶媒に(C)成分を溶解し、この溶液に(B)成分を浸
漬することによって可能である。
When the alkylene oxide polymer is used as the component (B) and the component (C) is doped before forming the complex, acetone, methanol, tetrahydrofuran or the like,
A method of using a common solvent for the component (B) and the component (C), mixing them, and then distilling the solvent off can be used. (B) a crosslinked product of an alkylene oxide polymer
When the component (C) is doped as a component, it is possible to dissolve the component (C) in the above-mentioned solvent and immerse the component (B) in this solution.

【0022】また、複合体形成後に(C)成分をドープ
する場合には、複合体を(C)成分の溶液に浸漬するこ
とにより可能である。
When the component (C) is doped after forming the complex, it can be done by immersing the complex in a solution of the component (C).

【0023】(B)成分にドープするアルカリ金属塩ま
たはアルカリ土類金属塩は、特に限定されないが、例え
ば、LiI、LiCl、LiClO、LiSCN、L
iBF、LiAsF、LiCFSO、LiCF
CO、LiHgI、NaI、NaSCN、NaB
r、CaCl、Ca(SCN)、Ca(ClO
等が好ましい。
The alkali metal salt or alkaline earth metal salt with which the component (B) is doped is not particularly limited, but examples thereof include LiI, LiCl, LiClO 4 , LiSCN and L.
iBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF
3 CO 2 , LiHgI 3 , NaI, NaSCN, NaB
r, CaCl 2 , Ca (SCN) 2 , Ca (ClO 4 ).
2 and the like are preferable.

【0024】上記したように、本発明に用いる正極材料
としての導電性高分子組成物の製造方法の自由度は高
い。これらの方法の中でも、還元型ポリアニリンを
(A)成分とし、アルキレンオキシド重合体を(B)成
分とし、これらの(A)成分と(B)成分を共通溶媒に
溶解し、その溶液を適当な基体に塗布するかあるいは基
体を溶液に浸漬した後、加熱乾燥して(A)成分と
(B)成分の複合体膜を形成し、さらにアルカリ金属塩
の溶液にこの複合体膜を浸漬してドープすることにより
得られる導電性高分子組成物が好適な正極材料となる。
また、(A)成分と(B)成分を共通溶媒に溶解した時
点で前記した架橋剤を加えれば、次の乾燥工程でアルキ
レンオキシド重合体が架橋するが、この方法で得られる
導電性高分子組成物も好適な正極材料となる。
As described above, the degree of freedom in the method for producing the conductive polymer composition as the positive electrode material used in the present invention is high. Among these methods, the reduced polyaniline is used as the component (A), the alkylene oxide polymer is used as the component (B), and the components (A) and (B) are dissolved in a common solvent, and the solution is appropriately prepared. After coating the substrate or immersing the substrate in the solution, it is heated and dried to form a composite film of the components (A) and (B), and the composite film is dipped in a solution of an alkali metal salt. The conductive polymer composition obtained by doping becomes a suitable positive electrode material.
Also, if the above-mentioned crosslinking agent is added at the time when the components (A) and (B) are dissolved in a common solvent, the alkylene oxide polymer will be crosslinked in the next drying step. The composition is also a suitable positive electrode material.

【0025】本発明の正極材料たる導電性高分子組成物
中の(A)成分の割合は、20〜95重量%、好ましく
は30〜90重量%である。また、(B)成分の割合
は、5〜80重量%、好ましくは10〜70重量%であ
る。(C)成分の、(A)成分と(B)成分の複合体に
対する割合は、0.01〜20重量%が好ましい。
The proportion of the component (A) in the conductive polymer composition as the positive electrode material of the present invention is 20 to 95% by weight, preferably 30 to 90% by weight. The proportion of the component (B) is 5 to 80% by weight, preferably 10 to 70% by weight. The ratio of the component (C) to the composite of the component (A) and the component (B) is preferably 0.01 to 20% by weight.

【0026】本発明の二次電池の陰極材料としては、ポ
リアセチレン、ポリチオフェン、金属リチウム、リチウ
ム−アルミニウム合金等が好適に用いられる。
As the cathode material of the secondary battery of the present invention, polyacetylene, polythiophene, metallic lithium, lithium-aluminum alloy and the like are preferably used.

【0027】電極間に介在させる電解質としては、プロ
ピレンカーボネート、α−ブチルラクトン、エチレンカ
ーボネート、テトラハイドロフラン、エチレンカーボネ
ート、ジメチルスルホキシド、ジオキソラン等の溶媒、
又は液状の低分子量ポリエチレンオキシド、ポリプロピ
レンオキシド若しくはその共重合体等の液状物質に、L
iI、LiCl、LiClO、LiSCN、LiBF
、LiAsF、LiCFSOなどの塩を溶解し
た液体電解質が用いられる。さらに、ポリエチレンオキ
シド、ポリプロピレンオキシド、ポリエチレンスルフィ
ド、ポリ−β−プロピオラクトン、ポリエチレンサクシ
ネート等の高分子物質やそれらの架橋体などに上記の塩
を溶解したイオン伝導性固体高分子電解質が用いられ
る。
As the electrolyte to be interposed between the electrodes, a solvent such as propylene carbonate, α-butyl lactone, ethylene carbonate, tetrahydrofuran, ethylene carbonate, dimethyl sulfoxide, dioxolane, etc.,
Or liquid substances such as liquid low molecular weight polyethylene oxide, polypropylene oxide or copolymers thereof, L
iI, LiCl, LiClO 4 , LiSCN, LiBF
4 , a liquid electrolyte in which a salt such as LiAsF 6 or LiCF 3 SO 3 is dissolved is used. Furthermore, an ion conductive solid polymer electrolyte in which the above salt is dissolved in a polymer substance such as polyethylene oxide, polypropylene oxide, polyethylene sulfide, poly-β-propiolactone, polyethylene succinate, or a cross-linked product thereof is used. ..

【0028】本発明の二次電池は、その正極材料とし
て、ポリアニリンとアルキレンオキシド重合体またはそ
の架橋体とが分子分散してポリマーアロイを形成したも
のに、さらにアルカリ金属塩等がドープされた導電性高
分子組成物を使用している。従って、実質上、正極活物
質と電解質が分子分散された構造となっており、界面抵
抗が少なく、またアニオンの拡散もすみやかに行なわれ
るために、本発明の二次電池においては大容量、高エネ
ルギー密度が達成される。
In the secondary battery of the present invention, as a positive electrode material, polyaniline and an alkylene oxide polymer or a crosslinked product thereof are molecularly dispersed to form a polymer alloy, and a conductive material further doped with an alkali metal salt or the like. The polymer composition is used. Therefore, it has a structure in which the positive electrode active material and the electrolyte are substantially molecularly dispersed, has a low interfacial resistance, and promptly diffuses anions. Therefore, the secondary battery of the present invention has a large capacity and high capacity. Energy density is achieved.

【0029】また、本発明で用いるポリアニリンとアル
キレンオキシド重合体またはその架橋体とからなる複合
体は、それらの溶液から加熱乾燥などで溶媒を除去する
ことによって形成される機械的強度の優れた膜であるた
め、正極の信頼性も高い。
The composite of polyaniline used in the present invention and the alkylene oxide polymer or a crosslinked product thereof is a film having excellent mechanical strength formed by removing the solvent from the solution by heating or drying. Therefore, the reliability of the positive electrode is also high.

【0030】[0030]

【実施例】以下にポリアニリンの合成例を示す。EXAMPLE An example of synthesizing polyaniline is shown below.

【0031】合成例1(脱ドープポリアニリンの合成) 撹拌機、温度計、冷却管、滴下ロートを装着した1リッ
トル四つ口フラスコにアニリン20g、塩酸18ml、
および水250mlを加えた。これを0℃に冷却した
後、過硫酸アンモニウム49gを水120gに溶解した
液を滴下ロートより4時間かけて滴下した。滴下終了後
さらに1時間撹拌した後、析出した固体を濾別、水洗し
た後、メタノールで濾液が透明になるまで洗浄した。次
いで、この固体を4Nアンモニア水500mlに分散
し、4時間撹拌した。撹拌終了後、固体を濾別し、濾液
が中性になるまで水洗した後、メタノールで濾液が透明
になるまで洗浄した。濾別した固体を真空乾燥して、濃
褐色の脱ドープポリアニリン10.2gを得た。このも
のはN−メチル−2−ピロリドンに可溶であった。
Synthesis Example 1 (synthesis of dedoped polyaniline) 20 g of aniline and 18 ml of hydrochloric acid were placed in a 1 liter four-necked flask equipped with a stirrer, thermometer, cooling tube and dropping funnel.
And 250 ml of water were added. After cooling this to 0 ° C., a solution prepared by dissolving 49 g of ammonium persulfate in 120 g of water was added dropwise from a dropping funnel over 4 hours. After completion of dropping, the mixture was further stirred for 1 hour, the precipitated solid was separated by filtration, washed with water, and then washed with methanol until the filtrate became transparent. Next, this solid was dispersed in 500 ml of 4N aqueous ammonia and stirred for 4 hours. After completion of stirring, the solid was filtered off, washed with water until the filtrate became neutral, and then washed with methanol until the filtrate became transparent. The filtered solid was dried under vacuum to obtain 10.2 g of dark brown dedoped polyaniline. This was soluble in N-methyl-2-pyrrolidone.

【0032】合成例2(還元型ポリアニリンの合成) 合成例1にて得られた脱ドープポリアニリン2gをN−
メチル−2−ピロリドン98gに溶解し、この溶液にフ
ェニルヒドラジン0.8gを加えた。反応終了後、アセ
トンにて再沈殿させ、析出した固体を濾別後、アセトン
で洗浄した後、乾燥して灰色の標題ポリアニリン1.6
gを得た。
Synthesis Example 2 (Synthesis of Reduced Polyaniline) 2 g of the undoped polyaniline obtained in Synthesis Example 1 was N-
It was dissolved in 98 g of methyl-2-pyrrolidone, and 0.8 g of phenylhydrazine was added to this solution. After the reaction was completed, the solid was reprecipitated with acetone, the precipitated solid was separated by filtration, washed with acetone, and then dried to give the gray title polyaniline 1.6.
g was obtained.

【0033】次にアルキレンオキシド重合体の合成例を
示す。
Next, a synthesis example of an alkylene oxide polymer will be shown.

【0034】合成例3(アルキレンオキシド重合体B−2の合成) ジエチレングリコール212gを出発物質とし、触媒に
水酸化カリウム12gを用い、エチレンオキシド1,8
94gおよびプロピレンオキシド1,894gを5リッ
トルオートクレーブ中において120℃で8時間反応さ
せた後、脱塩精製を行ない、数平均分子量4,000
(水酸基価より算出)のエチレンオキシド−プロピレン
オキシドランダム共重合体3,980gを得た。
Synthesis Example 3 (Synthesis of alkylene oxide polymer B-2) Using 212 g of diethylene glycol as a starting material and 12 g of potassium hydroxide as a catalyst, ethylene oxide 1,8
94 g and 1,894 g of propylene oxide were reacted in a 5 liter autoclave at 120 ° C. for 8 hours and then desalted and purified to give a number average molecular weight of 4,000.
3,980 g of an ethylene oxide-propylene oxide random copolymer (calculated from a hydroxyl value) was obtained.

【0035】合成例4(アルキレンオキシド重合体B−4の合成) グリセリン184gを出発物質とし、触媒に水酸化カリ
ウム12.0gを用い、エチレンオキシド3,816g
を5リットルオートクレーブ中において130℃で4時
間反応させた後、脱塩精製を行ない、数平均分子量2,
000(水酸基価より算出)のエチレンオキシド単独重
合体3,940gを得た。
Synthesis Example 4 (Synthesis of alkylene oxide polymer B-4) Using 184 g of glycerin as a starting material, 12.0 g of potassium hydroxide as a catalyst, and 3,816 g of ethylene oxide.
Was reacted in a 5 liter autoclave at 130 ° C. for 4 hours and then desalted and purified to give a number average molecular weight of 2.
3,000 (calculated from the hydroxyl value) of ethylene oxide homopolymer (3,940 g) was obtained.

【0036】合成例5(アルキレンオキシド重合体B−6の合成) グリセリン92gを出発物質とし、触媒に水酸化カリウ
ム10gを用い、エチレンオキシド2,454gおよび
プロピレンオキシド2,454gを10リットルオート
クレーブ中において120℃で8時間反応させた後、脱
塩精製を行ない、数平均分子量5,000(水酸基価よ
り算出)のエチレンオキシド−プロピレンオキシドラン
ダム共重合体4,990gを得た。
Synthesis Example 5 (Synthesis of alkylene oxide polymer B-6) Using 92 g of glycerin as a starting material and 10 g of potassium hydroxide as a catalyst, 2,454 g of ethylene oxide and 2,454 g of propylene oxide were added to 120 g in a 10-liter autoclave. After reacting at 8 ° C. for 8 hours, desalting and purification were carried out to obtain 4,990 g of an ethylene oxide-propylene oxide random copolymer having a number average molecular weight of 5,000 (calculated from a hydroxyl value).

【0037】合成例6(アルキレンオキシド重合体B−7の合成) グリセリン92gを出発物質とし、触媒に水酸化カリウ
ム21gを用い、エチレンオキシド1,382gおよび
プロピレンオキシド5,526gを10リットルオート
クレーブ中において120℃で8時間反応させた後、脱
塩精製を行ない、数平均分子量7,000(水酸基価よ
り算出)のエチレンオキシド−プロピレンオキシドラン
ダム共重合体6,990gを得た。
Synthesis Example 6 (Synthesis of Alkylene Oxide Polymer B-7) Using 92 g of glycerin as a starting material and 21 g of potassium hydroxide as a catalyst, 1,382 g of ethylene oxide and 5,526 g of propylene oxide were added to 120 g in a 10-liter autoclave. After reacting at 8 ° C for 8 hours, desalting and purification were carried out to obtain 6,990 g of an ethylene oxide-propylene oxide random copolymer having a number average molecular weight of 7,000 (calculated from a hydroxyl value).

【0038】表1に、本発明で用いることのできるアル
キレンオキシド重合体の例を示す。
Table 1 shows examples of alkylene oxide polymers which can be used in the present invention.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例1 合成例2で得た還元型ポリアニリン0.5gと合成例4
で得たアルキレンオキシド重合体(B−4)0.5gと
をN−メチル−2−ピロリドン9.5gに溶解し、均一
溶液とした。この溶液をステンレススチール織布(直径
1cm)に塗布した後、150℃で30分間乾燥した。
乾燥後、LiBFのメタノール溶液(2モル/リット
ル)に20時間浸漬した後、80℃、10−2Torr
で10時間乾燥して正極材料とした。
Example 1 0.5 g of reduced polyaniline obtained in Synthesis Example 2 and Synthesis Example 4
0.5 g of the alkylene oxide polymer (B-4) obtained in the above was dissolved in 9.5 g of N-methyl-2-pyrrolidone to obtain a uniform solution. This solution was applied to a stainless steel woven fabric (1 cm in diameter) and then dried at 150 ° C. for 30 minutes.
After drying, it was immersed in a methanol solution of LiBF 4 (2 mol / liter) for 20 hours, and then at 80 ° C. for 10 −2 Torr.
And dried for 10 hours to obtain a positive electrode material.

【0041】この正極材料を用い、ポリプロピレン多孔
質膜をセパレータとし、負極にLi箔を用い、電解質と
してLiBFのプロピレンカーボネート溶液(3モル
/リットル)を用いて図1に示す試験セルを作成し、5
mA/cmの定電流で充放電を行なって電池特性を測
定した。
Using this positive electrode material, a polypropylene porous membrane as a separator, Li foil as the negative electrode, and a propylene carbonate solution of LiBF 4 (3 mol / liter) as the electrolyte, the test cell shown in FIG. 1 was prepared. 5,
Battery characteristics were measured by charging / discharging at a constant current of mA / cm 2 .

【0042】図1において、11及び15は集電体を、
12は正極を、13はセパレータ及び電解質を、14は
負極を、16は正極リード線を、17は負極リード線
を、それぞれ示す。
In FIG. 1, 11 and 15 are current collectors.
Reference numeral 12 is a positive electrode, 13 is a separator and an electrolyte, 14 is a negative electrode, 16 is a positive electrode lead wire, and 17 is a negative electrode lead wire.

【0043】実施例2 正極材料の調製時に、N−メチル−2−ピロリドン溶液
にトリレンジイソシアネートをアルキレンオキシド重合
体のOHに対しNCOが1となる(NCO/OH当量比
1.0)ように添加した以外は実施例1と全く同様にし
て、電池特性を評価した。
Example 2 To prepare a positive electrode material, N-methyl-2-pyrrolidone solution was mixed with tolylene diisocyanate so that NCO was 1 with respect to OH of the alkylene oxide polymer (NCO / OH equivalent ratio 1.0). The battery characteristics were evaluated in the same manner as in Example 1 except that the addition was made.

【0044】実施例3 正極材料の調製時に、アルキレンオキシド重合体を合成
例5で得たB−6に変えて、その添加量を0.2gとし
た以外は実施例1と全く同様にして、電池特性を評価し
た。
Example 3 In the same manner as in Example 1 except that the alkylene oxide polymer was changed to B-6 obtained in Synthesis Example 5 and the addition amount was changed to 0.2 g when the positive electrode material was prepared, The battery characteristics were evaluated.

【0045】実施例4 正極材料の調製時に、合成例1で得た脱ドープ型ポリア
ニリン0.5gと、予めLiClOを0.05gドー
プしたアルキレンオキシド重合体B−7の0.6gを用
いた以外は実施例1と全く同様にして、電池特性を評価
した。
Example 4 When preparing the positive electrode material, 0.5 g of the undoped polyaniline obtained in Synthesis Example 1 and 0.6 g of the alkylene oxide polymer B-7 previously doped with 0.05 g of LiClO 4 were used. The battery characteristics were evaluated in the same manner as in Example 1 except for the above.

【0046】比較例1 ステンレススチール織布を電極とし、1モル/リットル
のアニリン及び2モル/リットルのHBFを含む水溶
液中において2mA/cmの定電流で電解重合を行な
ってポリアニリン電極としたものを、正極材料として用
いる以外は実施例1と全く同様にして、電池特性を測定
した。
Comparative Example 1 Using a stainless steel woven cloth as an electrode, electrolytic polymerization was carried out in an aqueous solution containing 1 mol / l of aniline and 2 mol / l of HBF 4 at a constant current of 2 mA / cm 2 to obtain a polyaniline electrode. The battery characteristics were measured in exactly the same manner as in Example 1 except that this was used as the positive electrode material.

【0047】比較例2 合成例2で得た還元型ポリアニリン粉末15mgを10
0kg/cmで加圧成形して薄膜を作成し、これを正
極材料とした以外は実施例1と同様にして、電池特性を
評価した。
Comparative Example 2 10 mg of 15 mg of the reduced polyaniline powder obtained in Synthesis Example 2 was used.
The battery characteristics were evaluated in the same manner as in Example 1 except that a thin film was formed by pressure molding at 0 kg / cm 2 and this was used as the positive electrode material.

【0048】実施例1〜4及び比較例1〜2における電
池特性の評価結果を表2に示す。
Table 2 shows the evaluation results of the battery characteristics in Examples 1 to 4 and Comparative Examples 1 and 2.

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】本発明の二次電池は、大容量でエネルギ
ー密度が高い。また、本発明の二次電池の正極材料は、
塗布などの簡単な方法で製造できるため、加圧成形など
を要する他の正極材料に比べて製造が容易である。
The secondary battery of the present invention has a large capacity and a high energy density. Further, the positive electrode material of the secondary battery of the present invention,
Since it can be manufactured by a simple method such as coating, it is easier to manufacture than other positive electrode materials that require pressure molding or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二次電池の特性を評価するための試験
セルの概略図である。
FIG. 1 is a schematic diagram of a test cell for evaluating the characteristics of the secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

11 集電体 12 正極 13 セパレータ及び電解質 14 負極 15 集電体 16 正極リード線 17 負極リード線 11 Current collector 12 Positive electrode 13 Separator and electrolyte 14 Negative electrode 15 Current collector 16 Positive electrode lead wire 17 Negative electrode lead wire

Claims (1)

【特許請求の範囲】 【請求項1】(A)ポリアニリン、(B)アルキレンオ
キシド単量体の単独重合体、ブロック共重合体、ランダ
ム共重合体およびそれらを架橋させて得られる架橋体か
らなる群より選択された少なくとも1種、ならびに
(C)プロトン酸のアニオン、アルカリ金属塩およびア
ルカリ土類金属塩からなる群より選択された少なくとも
1種からなる導電性高分子組成物を正極活物質に用いた
二次電池。
Claims: 1. A polyaniline (A), a homopolymer of (B) an alkylene oxide monomer, a block copolymer, a random copolymer, and a crosslinked product obtained by crosslinking them. At least one selected from the group, and (C) a conductive polymer composition comprising at least one selected from the group consisting of anions of protonic acids, alkali metal salts and alkaline earth metal salts as a positive electrode active material The secondary battery used.
JP3156884A 1991-06-27 1991-06-27 Secondary battery Pending JPH056764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3156884A JPH056764A (en) 1991-06-27 1991-06-27 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3156884A JPH056764A (en) 1991-06-27 1991-06-27 Secondary battery

Publications (1)

Publication Number Publication Date
JPH056764A true JPH056764A (en) 1993-01-14

Family

ID=15637501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3156884A Pending JPH056764A (en) 1991-06-27 1991-06-27 Secondary battery

Country Status (1)

Country Link
JP (1) JPH056764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653854B1 (en) * 2005-12-29 2006-12-05 주식회사 효성 Composition of new polyurethane based polymer electrolyte with high ionic conductivity for lithium batteries
JP2020528203A (en) * 2017-09-12 2020-09-17 エルジー・ケム・リミテッド Polymer electrolyte for secondary batteries and lithium secondary batteries containing them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653854B1 (en) * 2005-12-29 2006-12-05 주식회사 효성 Composition of new polyurethane based polymer electrolyte with high ionic conductivity for lithium batteries
JP2020528203A (en) * 2017-09-12 2020-09-17 エルジー・ケム・リミテッド Polymer electrolyte for secondary batteries and lithium secondary batteries containing them
US11539073B2 (en) 2017-09-12 2022-12-27 Lg Energy Solution, Ltd. Polymer electrolyte for secondary battery comprising lithium salt and polymer and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
US5917693A (en) Electrically conductive polymer composition
CA1314930C (en) Solid electrolyte devices
US6838211B2 (en) Pregel compositions for polymer gel electrolytes, method of dehydrating pregel compositions, secondary cell, and electrical double-layer capacitor
US6190804B1 (en) Solid battery
US7517615B2 (en) Gel electrolyte, process for producing the same, and use thereof
WO1993014529A1 (en) Cell
EP3664210B1 (en) Secondary battery solid electrolyte composition and solid electrolyte prepared therefrom
US6677084B1 (en) Solid crosslinked-polymer electrolyte and use thereof
US5863454A (en) Electroconductive polymer composites for use in secondary batteries as positive electrode active materials
JPH08311138A (en) Macromolecular solid electrolyte, its material and use
JPH08153514A (en) Film-shaped negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same
JP3265431B2 (en) Solid electrolytic capacitors
JPH056764A (en) Secondary battery
JPH076787A (en) Battery
JP2934450B2 (en) Polymer solid electrolyte and secondary battery using the same
JP3557477B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, method for producing them, and polymer solid electrolyte material
EP0596148B1 (en) Electrically conductive polymer composition
JP3258366B2 (en) Electric double layer capacitor
JP3062563B2 (en) Conductive polymer composition
CA2081629C (en) Electrically conductive polymer composition
JPH0581920A (en) Electric conductive high polymer composition
JP4560721B2 (en) Electrolyte composition and battery
JP2003045490A (en) Polymer electrolyte base material, polymer electrolyte, and polymer electrolyte sheet for non-aqueous secondary battery
JP3418437B2 (en) Oligo (β-propiolactone) macromer, electrolyte and battery using the same
JPH05205779A (en) Battery