JP3418437B2 - Oligo (β-propiolactone) macromer, electrolyte and battery using the same - Google Patents

Oligo (β-propiolactone) macromer, electrolyte and battery using the same

Info

Publication number
JP3418437B2
JP3418437B2 JP29423093A JP29423093A JP3418437B2 JP 3418437 B2 JP3418437 B2 JP 3418437B2 JP 29423093 A JP29423093 A JP 29423093A JP 29423093 A JP29423093 A JP 29423093A JP 3418437 B2 JP3418437 B2 JP 3418437B2
Authority
JP
Japan
Prior art keywords
electrolyte
propiolactone
macromer
polymer
oligo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29423093A
Other languages
Japanese (ja)
Other versions
JPH07126215A (en
Inventor
淳孝 重原
真司 堀田
偉文 中長
祐二 多田
Original Assignee
大塚化学ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学ホールディングス株式会社 filed Critical 大塚化学ホールディングス株式会社
Priority to JP29423093A priority Critical patent/JP3418437B2/en
Publication of JPH07126215A publication Critical patent/JPH07126215A/en
Application granted granted Critical
Publication of JP3418437B2 publication Critical patent/JP3418437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な重合性ビニル基を
有する高誘電性マクロマ 主成分として調製された
非プロトン系電解質ならびにこれを用いた非プロトン系
電気化学電池に関するものである。
The present invention relates is related aprotic electrochemical cell using aprotic electrolytes and this has been prepared as a main component a high-dielectric-macromers over with novel polymerizable vinyl group.

【0002】[0002]

【従来の技術】従来から一次電池、二次電池、及びエレ
クトロクロミツク表示素子などの電気化学電池の電解質
には、希硫酸、塩化アンモニウム水、KOH水等のプロ
トン系液体、並びにプロピレンカーボネート、ジメトキ
シエタン等の非プロトン系液体が用いられてきた。
2. Description of the Related Art Conventionally, electrolytes for electrochemical batteries such as primary batteries, secondary batteries, and electrochromic display devices have been used as a protic liquid such as dilute sulfuric acid, ammonium chloride water, KOH water, and propylene carbonate and dimethoxy. Aprotic liquids such as ethane have been used.

【0003】しかしながら、液体の電解質は部品外部へ
の液もれ、電極物質の溶出などが発生しやすいため長期
信頼性の問題がある。更に、プロトン系電解質の場合は
単セル電圧が2Vまでで、非プロトン系のように3〜4
Vという高電圧を出せないこと、水素ガス発生の為、密
閉構造にすると内圧上昇で破裂の危険性があること等の
問題がある。
However, since the liquid electrolyte is liable to leak to the outside of the component and the electrode material is likely to be eluted, there is a problem of long-term reliability. Furthermore, in the case of a proton-based electrolyte, the unit cell voltage is up to 2 V, and it is 3 to 4 like a non-proton-based electrolyte.
There are problems such as the inability to output a high voltage of V and the generation of hydrogen gas, which may cause a rupture due to an increase in internal pressure when a closed structure is used.

【0004】それに対して、非プロトン系固体電解質は
上記のような問題がなく、高エネルギー密度の電池を造
ることができることから、装置の構成が簡略化でき、更
には、薄膜化による軽量化、小型化が可能となるなどの
利点を有している。これらの特徴は、エレクトロニクス
の進展に伴つた小型軽量化、形状自由度の拡大、更に信
頼性の高い各種電子部品に対する要求に適合している。
固体電解質材料としては、工藤徹一、笛木和雄著、「固
体アイオニクス」(講談社サイエンテイフイク、1986)
に記載されるような無機物、例えば、安定化ジルコニ
ア、ヨウ化銀、ヨウ化銀ルビジウム、β−アルミナなど
が良く知られている。これらの無機系固体電解質の中に
は、液体の電解質並のイオン伝導度を示すものもある
が、分解電圧が低いという致命的な欠点を持つ上に、任
意の形状に成型、成膜することが困難な場合が多く、材
料としての特性は極めて不十分である。
On the other hand, since the aprotic solid electrolyte does not have the above-mentioned problems and a battery having a high energy density can be manufactured, the structure of the device can be simplified, and further, the weight can be reduced by thinning the film. It has advantages such as miniaturization. These characteristics meet the demands for various electronic parts with smaller size and lighter weight, more flexibility in shape, and higher reliability with the progress of electronics.
As a solid electrolyte material, Tetsuichi Kudo, Kazuo Fueki, "Solid State Ionics" (Kodansha Scientific, 1986)
Inorganic substances such as those described in, for example, stabilized zirconia, silver iodide, silver rubidium iodide, β-alumina and the like are well known. Some of these inorganic solid electrolytes have an ionic conductivity similar to that of liquid electrolytes, but they have the fatal drawback of low decomposition voltage and must be molded and formed into an arbitrary shape. Is often difficult, and the properties as a material are extremely insufficient.

【0005】一方、有機高分子は無機物に比べて、軽量
で粘弾性、柔軟性を具備し、成形性及び加工性に優れて
いるという特徴をもつことから、高分子固体電解質とし
て、例えば、緒方直哉編、「導電性高分子」第95〜150
頁(講談社サイエンテイフイク、1990)に記載されるよ
うな、ポリ(エチレンオキシド)、ポリ(プロピレンオ
キシド)等のポリエーテル、ポリ(エチレンサクシネー
ト)、ポリ(β−プロピオラクトン)等のポリエステ
ル、ポリ(エチレンイミン)、ポリ(N−メチルエチレ
ンイミン)等のポリイミンなどのマトリツクスポリマー
が報告されている。更に、これらのマトリツクスポリマ
ーと、リチウム、ナトリウムなどの無機イオン塩との組
み合わせからなる固体電解質組成物、及びそれらの組成
物を用いた、例えば、特開平1−169873号、同2−2950
70号、同3−129603号等に記載されるような電池が報告
されている。しかしながら、これら高分子固体電解質
は、従来から用いられている、例えば、プロピレンカー
ボネートとジメトキシエタンの混合液体を用いた有機系
液体電解質に比べてかなり低いイオン伝導度のものしか
得られていない。
On the other hand, organic polymers are lighter in weight, more viscoelastic and flexible than inorganic substances, and have excellent moldability and processability. Naoya, "Conductive polymer" 95-150
Polyesters such as poly (ethylene oxide) and poly (propylene oxide), polyesters such as poly (ethylene succinate) and poly (β-propiolactone), as described on page (Kodansha Scientific, 1990). Matrix polymers such as polyimines such as poly (ethyleneimine) and poly (N-methylethyleneimine) have been reported. Further, these matrix polymers and solid electrolyte compositions comprising a combination of lithium, an inorganic ion salt such as sodium, and those compositions are used, for example, JP-A Nos. 1-169873 and 2-2950.
Batteries such as those described in No. 70 and No. 3-129603 have been reported. However, these polymer solid electrolytes have only obtained ion conductivity considerably lower than that of conventionally used organic liquid electrolytes using, for example, a mixed liquid of propylene carbonate and dimethoxyethane.

【0006】一方、高イオン伝導度を有する高分子固体
電解質を得る試みとして、側鎖に低分子量のポリ(エチ
レンオキシド)を導入したポリ(ホスフアゼン)を用い
た高分子固体電解質が特開昭61−254626号に、側鎖にア
ミド結合を含む有機基を導入したポリ(ホスフアゼン)
を用いた高分子固体電解質が特開昭63−186766号に、分
枝した低分子量のポリ(アルキレンオキシド)を側鎖に
導入したポリ(ホスフアゼン)を用いた高分子固体電解
質が特開平2−252762号に記載されている。しかしなが
ら、これらの高分子固体電解質は、良好な成膜性を有す
るものの、前述の有機系液体電解質のイオン伝導度に匹
敵するレベルには未だ至つていない。
On the other hand, as an attempt to obtain a polymer solid electrolyte having a high ionic conductivity, a polymer solid electrolyte using poly (phosphazene) having a low molecular weight poly (ethylene oxide) introduced into its side chain is disclosed in Japanese Patent Laid-Open No. 61- Poly (phosphazene) in which an organic group containing an amide bond is introduced into the side chain of 254626
Japanese Patent Laid-Open No. 186766/1988 discloses a solid polymer electrolyte using poly (phosphazene) having a branched low molecular weight poly (alkylene oxide) introduced into its side chain. No. 252762. However, although these polymer solid electrolytes have good film-forming properties, they have not yet reached a level comparable to the ionic conductivity of the above-mentioned organic liquid electrolytes.

【0007】イオン伝導度向上の為の高分子設計の観点
から、改善可能な因子は誘電率εとガラス転移点Tgで
あり、イオン伝導度向上の為にはεを大きくTgを低く
しなければならない。しかしながか、大きなεと低いT
gは相反する関係にあり、これまでは低いTgにのみ着目
してポリマー合成が行われてきた。
From the viewpoint of polymer design for improving ionic conductivity, factors that can be improved are the permittivity ε and the glass transition point Tg, and in order to improve ionic conductivity, ε must be made large and Tg must be made low. I won't. However, large ε and low T
g has a contradictory relationship, and so far, polymer synthesis has been carried out focusing only on low Tg.

【0008】本発明者らは、この議論を発展させ、相反
する特性を両立させるべく鋭意研究の結果、ε増大は解
離促進基の導入で、低Tgは柔軟なセグメントの導入で
改善できることに思い至つた。具体的には、成型性の良
い主鎖にεの大きなオリゴマーを側鎖の形で導入するこ
とにより、εの大きな状態を保持したまま低いTgのポ
リマーを得ることができることを見出した。
The inventors of the present invention have developed this argument and, as a result of earnest research to make conflicting properties compatible with each other, as a result, it is thought that ε increase can be improved by introducing a dissociation promoting group and low Tg can be improved by introducing a flexible segment. It arrived. Specifically, it has been found that by introducing an oligomer having a large ε in the form of a side chain into the main chain having good moldability, a polymer having a low Tg can be obtained while maintaining the state where the ε is large.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は新規
リゴ(β−プロピオラクトン)基を側鎖に有する重
合体を含有する高分子固体電解質を提供することにあ
る。更に本発明の目的は上記高分子固体電解質を用いた
電気化学電池を提供することにある。
The object of the present invention is novel .
Oligo a (beta-propiolactone) group is to provide a polymer solid electrolyte containing a polymer having in the side chain. Another object of the present invention is to provide an electrochemical cell using the above polymer solid electrolyte.

【0010】[0010]

【課題を解決するための手段】本発明は一般式(1)で
示されるオリゴ(β−プロピオラクトン)マクロマ
重合して得られる重合体を含有する高分子固体電解質、
並びにこの高分子固体電解質を用いた電気化学電池に係
る。
Means for Solving the Problems The present invention has the general formula (1) oligo represented by (beta-propiolactone) macromers over the <br/> polymerized to a polymer solid electrolyte containing a polymer obtained,
It also relates to an electrochemical cell using this polymer solid electrolyte.

【0011】[0011]

【化2】 [Chemical 2]

【0012】但し、式中のXはLi、Na、K、メチル
基、エチル基、又はアリル基を示し、nはβ−プロピオ
ラクトン単位の平均の繰り返し数で1≦n≦25の範囲に
ある。又、RはHもしくはメチル基を示す。
However, in the formula, X represents Li, Na, K, a methyl group, an ethyl group, or an allyl group, and n is the average number of repeating β-propiolactone units in the range of 1≤n≤25. is there. R represents H or a methyl group.

【0013】本発明のオリゴ(β−プロピオラクトン)
マクロマーは例えばアクリル酸のMichaelis付加反応に
より遮光状態で合成することができる。合成は、例えば
トリフエニルホスフイン又はアクリル酸のアルカリ金属
塩を開始剤とし、ラジカル重合禁止剤を添加して、80〜
120℃で5〜200時間反応させることにより行うことがで
きる。末端のエステル化は、例えば対応する硫酸エステ
ルで常法により、アルカリ金属塩へはアルコラートにて
変換することができる。得られたオリゴ(β−プロピオ
ラクトン)マクロマーは、付加反応の繰り返し数並びに
末端Xの違いにより、白色固体から液状の物まで様々で
あつた。
Oligo (β-propiolactone) of the present invention
The macromer can be synthesized, for example, by the Michaelae addition reaction of acrylic acid in the light-shielded state. For the synthesis, for example, triphenylphosphine or an alkali metal salt of acrylic acid is used as an initiator, a radical polymerization inhibitor is added, and
It can be carried out by reacting at 120 ° C. for 5 to 200 hours. For the esterification of the terminal, for example, the corresponding sulfate can be converted into an alkali metal salt by an alcoholate by a conventional method. The obtained oligo (β-propiolactone) macromers varied from a white solid to a liquid depending on the number of repetitions of the addition reaction and the difference in the terminal X.

【0014】固体電解質の調製は、例えば所定量のマク
ロマーにイオン解離性支持塩と約0.5〜2mol%のベンゾ
インを添加し、脱水蒸留したジメチルホルムアミド(D
MF)に溶解後テフロン皿上に流延し、DMFを減圧除
去後、100Wの高圧水銀灯を約30cmの距離から30分間照
射して重合する方法で行うことができる。重合体は無色
透明の強靭な膜であり、溶剤抽出による有機可溶部分が
無いことから、すべてのマクロマーが重合に関与したも
のと思われる。
The solid electrolyte is prepared, for example, by adding ionic dissociative supporting salt and about 0.5 to 2 mol% of benzoin to a predetermined amount of macromer and dehydrating and distilling dimethylformamide (D).
After being dissolved in MF), the mixture is cast on a Teflon dish, the DMF is removed under reduced pressure, and a 100 W high-pressure mercury lamp is irradiated from a distance of about 30 cm for 30 minutes for polymerization. Since the polymer is a colorless and transparent tough film and has no organic soluble portion due to solvent extraction, it is considered that all macromers participated in the polymerization.

【0015】この固体電解質膜をステンレス電極に挟み
込み、所定温度にて複素インピーダンス法による交流伝
導度の測定を行つた。尚、固体電解質の調製からは、乾
燥不活性雰囲気下で全ての操作を行つた。伝導度は25℃
で10-4S/cmを越えており、良好なものであつた。
This solid electrolyte membrane was sandwiched between stainless steel electrodes, and AC conductivity was measured by a complex impedance method at a predetermined temperature. In addition, from the preparation of the solid electrolyte, all the operations were performed in a dry inert atmosphere. Conductivity is 25 ℃
It exceeded 10 -4 S / cm and was good.

【0016】本発明の特徴はイオン親和性とεの高いオ
リゴ(β−プロピオラクトン)側鎖を配置することによ
り、電解質塩の解離を促進し、移動イオンの数を増やす
ことにより、イオン伝導性に優れた高分子固体電解質を
得たことにある。
A feature of the present invention is that by arranging an oligo (β-propiolactone) side chain having a high ionic affinity and ε, the dissociation of the electrolyte salt is promoted and the number of mobile ions is increased. The purpose is to obtain a polymer solid electrolyte having excellent properties.

【0017】本発明の有機固体電解質のなかで、特にア
リル基を有するオリゴ(β−プロピオラクトン)マクロ
マー、あるいはこれらの混合物と、電解質塩からなる固
体電解質は架橋によつて電解質膜の機械的強度を増加す
ることが可能である。架橋は通常の方法、即ち、加熱に
よる方法、紫外線照射による方法等を使用することがで
きる。更に、溶媒を添加して固体電解質膜を作製するこ
とも可能である。溶媒としては例えば、ジメトキシエタ
ン、エトシキメトキシエタン、ジエトキシエタン、ジメ
トキシプロパン、アルコキシポリアルキレンエーテル、
ジオキサン、1,3−ジオキソラン、テトラヒドロフラ
ン、メチルテトラヒドロフラン、メトキシテトラヒドロ
フラン等の線状又は環状のエーテル類、エチルアセテー
ト、γ−ブチロラクトン、γ−バレロラクトン、δ−バ
レロラクトン、炭酸ジエチル、エチレンカーボネート、
プロピレンカーボネート、ブチレンカーボネート等の線
状又は環状のエステル類、アセトニトリル、メトキシプ
ロピオニトリル等のニトリル類、メチルピロリドン、シ
クロヘキシルピロリドン等の環状アミド類、スルホラン
類、又はリン酸エステル類、又はこれらの混合物を使用
することができる。
Among the organic solid electrolytes of the present invention, a solid electrolyte composed of an oligo (β-propiolactone) macromer having an allyl group, or a mixture thereof, and an electrolyte salt is used to form a mechanical electrolyte membrane by cross-linking. It is possible to increase the strength. The cross-linking can be carried out by a usual method, that is, a method by heating, a method by irradiating with ultraviolet rays or the like. Furthermore, it is also possible to add a solvent and produce a solid electrolyte membrane. Examples of the solvent include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, dimethoxypropane, alkoxy polyalkylene ether,
Dioxane, 1,3-dioxolane, tetrahydrofuran, methyltetrahydrofuran, linear or cyclic ethers such as methoxytetrahydrofuran, ethyl acetate, γ-butyrolactone, γ-valerolactone, δ-valerolactone, diethyl carbonate, ethylene carbonate,
Linear or cyclic esters such as propylene carbonate and butylene carbonate, nitriles such as acetonitrile and methoxypropionitrile, cyclic amides such as methylpyrrolidone and cyclohexylpyrrolidone, sulfolanes, or phosphoric acid esters, or a mixture thereof. Can be used.

【0018】本発明のオリゴ(β−プロピオラクトン)
マクロマーから調製される電解質に用いられるイオン解
離性支持塩は特に制限はないが、カチオンが少なくとも
Li+,Na+,K+,Cs+,Ag+の1種を含み、且つ、ア
ニオンが、BF4 -,AlCl4 -,PF6 -,AsF6 -,ClO
4 -,CF3SO3 -,Cl-,Br-,I-,SCN-の群から
選択される1種以上の電解質塩、例えばLiBF4,Li
AlCl4,LiPF6,LiAsF6,LiClO4,CF3SO
3Li,LiF,LiCl,LiBr,LiI,LiSCN,Na
Br,NaI,NaSCN,KI,KSCN,AgNO3
どを好適に使用することができる。中でもLiClO4
CF3SO3Li,LiBF4などが特に好ましい。
Oligo (β-propiolactone) of the present invention
The ionic dissociative supporting salt used in the electrolyte prepared from the macromer is not particularly limited, but the cation contains at least one of Li + , Na + , K + , Cs + , and Ag + , and the anion is BF. 4 -, AlCl 4 -, PF 6 -, AsF 6 -, ClO
One or more electrolyte salts selected from the group of 4 , CF 3 SO 3 , Cl , Br , I , SCN , for example LiBF 4 , Li.
AlCl 4 , LiPF 6 , LiAsF 6 , LiClO 4 , CF 3 SO
3 Li, LiF, LiCl, LiBr, LiI, LiSCN, Na
Br, NaI, NaSCN, KI, KSCN, AgNO 3 and the like can be preferably used. Above all, LiClO 4 ,
CF 3 SO 3 Li, LiBF 4 and the like are particularly preferable.

【0019】本電解質を用いた電気化学電池には非水系
の一次電池、二次電池及びエレクトロクロミツク表示素
子などを例示できる。この中でLi二次電池を例にとる
と、正極活物質としては、アルカリ金属とイオン化ポテ
ンシヤルが大幅に異なる遷移金属、カルコゲン類、金属
酸化物及びそれに少量のアルカリ金属イオンがドープさ
れた物などが好適である。遷移金属としては、Ni,S
n,Co,Feなどが挙げられるがSnが最も好ましい。カ
ルコゲン類としては、CuS,FeS2,FeSe2,Ti
2,TiSe2,VS2,VSe2,MoS2,MoSe2などが
好適である。また、金属酸化物としては、MnO2,Co
2,V25,MoO3,WO3などが好適である。一方、
負極活物質としては、リチウム、ナトリウム、カリウム
等のアルカリ金属の他、それらのAl,Pb,Sn合金や
グラフアイト、ポリアセチレン等へのアルカリ金属ドー
ピング物が挙げられる。これらの素材の正極及び負極
を、例えば薄板状に成形し、両者を既述の高分子固体電
解質で貼り合わせることにより、本発明の固体電解質電
池を構成することができる。
Examples of electrochemical cells using the present electrolyte include non-aqueous primary cells, secondary cells, and electrochromic display elements. Taking the Li secondary battery as an example, the positive electrode active material includes transition metals, chalcogens, metal oxides and a small amount of alkali metal ions doped with alkali metals and ionization potentials which are significantly different from each other. Is preferred. Transition metals include Ni and S
n, Co, Fe and the like can be mentioned, but Sn is most preferable. The chalcogens include CuS, FeS 2 , FeSe 2 , Ti.
Such as S 2, TiSe 2, VS 2 , VSe 2, MoS 2, MoSe 2 is preferred. Further, as the metal oxide, MnO 2 , Co
O 2 , V 2 O 5 , MoO 3 , WO 3 and the like are suitable. on the other hand,
Examples of the negative electrode active material include alkali metals such as lithium, sodium, and potassium, as well as Al, Pb, Sn alloys, graphite, and polyacetylene-containing alkali metal doping materials. The solid electrolyte battery of the present invention can be constructed by forming the positive electrode and the negative electrode of these materials into, for example, a thin plate shape, and bonding the both with the above-described polymer solid electrolyte.

【0020】[0020]

【実施例】以下、実施例にて本発明を詳述するが、実施
例に限定されるものではない。
The present invention will be described in detail below with reference to examples, but the invention is not limited to the examples.

【0021】実施例1 〔オリゴ(β−プロピオラクトン)マクロマーナトリウ
ム塩の合成〕アクリル酸 40ミリモルに2ミリモルのp
−ヒドロキノンと1ミリモルのトリフエニルホスフイン
を添加し、遮光下に100℃で150時間反応を行つた後、ク
ロロホルムで希釈し、大量のエーテルに投じて再沈精製
を行い、白色の固形物を得た。このポリマーをエーテル
に溶解し、ドライアイス冷却下にナトリウムメトキシド
のメタノール溶液を添加し、生成した沈殿を分取するこ
とにより、対応するナトリウム塩をほぼ定量的に得た。
Example 1 [Synthesis of oligo (β-propiolactone) macromer sodium salt] 2 mmol of p was added to 40 mmol of acrylic acid.
-Hydroquinone and 1 mmol triphenylphosphine were added, and after reacting at 100 ° C for 150 hours in the dark, diluted with chloroform, poured into a large amount of ether for reprecipitation purification, and a white solid substance was obtained. Obtained. This polymer was dissolved in ether, a methanol solution of sodium methoxide was added under cooling with dry ice, and the formed precipitate was collected to obtain the corresponding sodium salt almost quantitatively.

【0022】各種分析結果は以下の通りであり、IRス
ペクトルでは2960cm-1にメチレンのC−H伸縮が、1730
cm-1にオリゴエステルのカルボニル基の吸収が認めら
れ、1H−NMRでは2.7ppmにα−メチレンのトリプレ
ツトが、4.4ppmにβ−メチレンのトリプレツトが、又、
5.8〜6.5ppmにマルチプレツトで3個のアクリルプロト
ンの吸収が認められた。更に図1の13C−NMRスペク
トルの帰属より、一般式(1)のX=Na、R=Hの構
造を有する物質であることが確認された。又、本化合物
の重合度nは、GPCによるポリスチレン換算で約20で
あり、分子量分散Mw/Mnは1.08であつた。同様にし
て、アクリル酸とトリフエニルホスフインの比率を変え
てマクロマーの合成を行い、生成物の重合度測定を行つ
た結果を表1に示す。
The results of various analyzes are as follows. In the IR spectrum, the CH expansion and contraction of methylene at 2960 cm -1 is 1730.
The absorption of the carbonyl group of the oligoester was observed at cm −1 , and in 1 H-NMR, α-methylene triplet was detected at 2.7 ppm, β-methylene triplet was detected at 4.4 ppm, and
Absorption of 3 acrylic protons was observed in the multiplet at 5.8 to 6.5 ppm. Further, from the attribution of 13 C-NMR spectrum in FIG. 1, it was confirmed that the substance was a substance having a structure of X = Na and R = H in the general formula (1). The polymerization degree n of this compound was about 20 in terms of polystyrene by GPC, and the molecular weight dispersion Mw / Mn was 1.08. Similarly, the macromer was synthesized by changing the ratio of acrylic acid and triphenylphosphine, and the polymerization degree of the product was measured. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例2 〔オリゴ(β−プロピオラクトン)マクロマーメチルエ
ステルの合成〕アクリル酸ナトリウムを開始剤として、
実施例1と同様に合成した反応混合物をN−メチルピロ
リドンに溶解し、氷冷下に等モルのジメチル硫酸と1.
5倍モルの炭酸カリウムを添加し、室温で72時間撹拌反
応を行つた。反応後、氷水に投入し、エーテル抽出して
マクロマーのエステル化物を得た。この結果を表2に示
す。
Example 2 [Synthesis of oligo (β-propiolactone) macromer methyl ester] Using sodium acrylate as an initiator
The reaction mixture synthesized in the same manner as in Example 1 was dissolved in N-methylpyrrolidone, and equimolar dimethyl sulfate and 1.
A 5-fold molar amount of potassium carbonate was added, and the reaction was stirred at room temperature for 72 hours. After the reaction, the mixture was poured into ice water and extracted with ether to obtain a macromer ester. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】実施例3 実施例1のNo.8で得たマクロマーに2モル%のベンゾ
イン及び5wt%のLiClO4を添加し、THF/CHCl
3の等量混合物に均一に溶解した物をテフロン皿上に流
延し、60℃で2日間減圧乾燥の後、100Wの高圧水銀灯
を30cmの距離から10分間照射して重合させた。この電解
質膜をステンレス製電極に挟み込み、所定温度にて複素
インピーダンス法による交流電導度の測定を行つた。減
圧乾燥以後の試料調製等は乾燥不活性ガス中で行つた。
複素インピーダンス法による交流電導度の値は1×10-5
S/cm(30℃)を示した。
Example 3 To the macromer obtained in Example 1 No. 8 was added 2 mol% benzoin and 5 wt% LiClO 4 , and THF / CHCl was added.
A material uniformly dissolved in an equal amount mixture of 3 was cast on a Teflon dish, dried under reduced pressure at 60 ° C. for 2 days, and then irradiated with a 100 W high pressure mercury lamp from a distance of 30 cm for 10 minutes to polymerize the mixture. The electrolyte membrane was sandwiched between stainless electrodes, and the AC conductivity was measured by the complex impedance method at a predetermined temperature. The sample preparation etc. after the drying under reduced pressure were performed in a dry inert gas.
AC conductivity value by complex impedance method is 1 × 10 -5
It showed S / cm (30 ° C).

【0027】実施例4 実施例2のNo.8で得たマクロマーに2モル%のベンゾ
イン及び5wt%のLiClO4を添加し、THF/CHCl
3の等量混合物に均一に溶解した物をテフロン皿上に流
延し、60℃で2日間減圧乾燥の後、100Wの高圧水銀灯
を30cmの距離から10分間照射して重合させた。この電解
質膜をステンレス製電極に挟み込み、所定温度にて複素
インピーダンス法による交流電導度の測定を行つた。減
圧乾燥以後の試料調製等は乾燥不活性ガス中で行つた。
複素インピーダンス法による交流電導度の値は3×10-4
S/cm(30℃)を示した。
Example 4 To the macromer obtained in Example 2 No. 8 was added 2 mol% benzoin and 5 wt% LiClO 4 , and THF / CHCl was added.
A material uniformly dissolved in an equal amount mixture of 3 was cast on a Teflon dish, dried under reduced pressure at 60 ° C. for 2 days, and then irradiated with a 100 W high pressure mercury lamp from a distance of 30 cm for 10 minutes to polymerize the mixture. The electrolyte membrane was sandwiched between stainless electrodes, and the AC conductivity was measured by the complex impedance method at a predetermined temperature. The sample preparation etc. after the drying under reduced pressure were performed in a dry inert gas.
AC conductivity value by complex impedance method is 3 × 10 -4
It showed S / cm (30 ° C).

【0028】実施例5 実施例1のNo.8で得たマクロマーをアセトンに溶解
し、氷冷下に0.8モルのジメチル硫酸と0.2モルのジアリ
ル硫酸と1.5倍モルの炭酸カリウムを添加し、室温で72
時間撹拌反応を行つた。反応後、氷水に投入し、エーテ
ル抽出してマクロマーのエステル化物を得た。このマク
ロマーエステル 40部にプロピレンカーボネート 60部、
イルガノツクス 184(1部)及び、過塩素酸リチウム 1
0部を添加し、40℃以下で超音波処理を行い電解質を得
た。この電解質を透明であるITO電極に挟み込み、40
0Wの高圧水銀灯の光を照射し、重合基の架橋反応を行
い、架橋構造を有する電解質膜の形成を行つた。複素イ
ンピーダンス法による交流電導度の値は3.0×10-3S/c
m(30℃)を示し、プロピレンカーボネートを含まない
電解質に比べて1桁高いイオン伝導度を示した。
Example 5 The macromer obtained in No. 8 of Example 1 was dissolved in acetone, 0.8 mol of dimethylsulfate, 0.2 mol of diallyl sulfate and 1.5 times mol of potassium carbonate were added under ice-cooling, and the mixture was cooled to room temperature. At 72
The reaction was stirred for an hour. After the reaction, the mixture was poured into ice water and extracted with ether to obtain a macromer ester. 40 parts of this macromer ester to 60 parts of propylene carbonate,
Irganox 184 (1 part) and lithium perchlorate 1
0 part was added and ultrasonic treatment was performed at 40 ° C. or lower to obtain an electrolyte. Insert this electrolyte between transparent ITO electrodes and
By irradiating light of a high-pressure mercury lamp of 0 W, the cross-linking reaction of the polymerized groups was performed to form an electrolyte membrane having a cross-linked structure. AC conductivity value by complex impedance method is 3.0 × 10 -3 S / c
It showed m (30 ° C.) and had an ionic conductivity an order of magnitude higher than that of an electrolyte containing no propylene carbonate.

【0029】実施例6 実施例4で得た電解質の酸化電位の上限を知るため、白
金電極を用いて酸化側のサイクリツクボルタメトリーを
行つたところ、飽和甘汞電極に対し1.9Vの所に酸化電
流のピークを認めた。平均分子量約700のポリエチレン
グリコールに10wt%のLiClO4を添加した電解質を用
いて同様な試験を行つたところ、飽和甘汞電極に対し0.
7Vの所に酸化電流のピークを認めた。このことから、
本電解質はポリエーテル系電解質に較べて耐酸化性に優
れていることが判る。この為、高電圧を発生する金属酸
化物の正極活物質に対しても電解質の酸化される心配が
なく、4V級のリチウム二次電池にも好適に使用でき
る。
Example 6 In order to know the upper limit of the oxidation potential of the electrolyte obtained in Example 4, cyclic voltammetry on the oxidation side was carried out using a platinum electrode, and it was found to be 1.9 V with respect to the saturated sweet potato electrode. A peak of oxidation current was observed. A similar test was conducted using an electrolyte prepared by adding 10 wt% of LiClO 4 to polyethylene glycol having an average molecular weight of about 700.
A peak of oxidation current was observed at 7V. From this,
It can be seen that this electrolyte is superior in oxidation resistance to the polyether-based electrolyte. For this reason, there is no concern that the electrolyte will be oxidized even with respect to the metal oxide positive electrode active material that generates a high voltage, and it can be suitably used for a 4V class lithium secondary battery.

【0030】実施例7 本発明による電池の一具体例として図2に示すようなシ
ート型薄膜電池を作製した。外形寸法は5.5cm×9cmの
名刺サイズに合わせたものであり、厚さは約0.1mmのも
のである。まず、超急冷法にて得た非晶質V25を2%
水溶液とし、5.5cm×9cm、厚さ20μmのステンレス板の
中央部分 36cm2に6.66gを均一に塗布する。このものを8
0〜100℃で約1時間乾燥して膜形成を行つた後、200℃
で2時間熱処理したものを正極部材とする。この部材上
に、実施例4と同様にオリゴ(β−プロピオラクトン)
マクロマーメチルエステルをベースとする高分子固体電
解質の被膜形成を行う。
Example 7 As a specific example of the battery according to the present invention, a sheet type thin film battery as shown in FIG. 2 was produced. The external dimensions are adapted to a business card size of 5.5 cm x 9 cm, and the thickness is about 0.1 mm. First, 2% of amorphous V 2 O 5 obtained by the ultra-quenching method was used.
As an aqueous solution, 6.66 g is evenly applied to 36 cm 2 of the central portion of a stainless steel plate having a size of 5.5 cm × 9 cm and a thickness of 20 μm. This one 8
After drying at 0-100 ℃ for about 1 hour to form a film, 200 ℃
The positive electrode member is heat-treated for 2 hours. On this member, oligo (β-propiolactone) was prepared in the same manner as in Example 4.
A polymer solid electrolyte film based on macromer methyl ester is formed.

【0031】一方、アルゴン雰囲気中で、周辺部にポリ
オレフイン系シール材を貼付した5.5cm×9cm、厚さ20
μmのステンレス板の中央部分 36cm2に厚さ30μmのリチ
ウム箔を圧着し、負極部材を別途作製する。この両極部
材を真空下に熱圧着しシート電池を作製した。この電池
の開回路起電圧は、4.10Vを示し、30℃における1.0mA
での定電流放電の結果は図3に示したようになり、電圧
が2Vに低下するまでの放電容量密度は正極活物質に対
して、170Ah/kgであつた。更に本電池の充放電繰り返
し試験を行つた際の2サイクル目の状況を図4に示し
た。曲線部分のa,a'は充電後の休止期間、bは放電
状態、cは放電後の休止期間、dは充電状態である。本
電池の充放電効率は99%以上であり、電解質を含めた本
電池系は良好な充放電特性を有する二次電池であること
が確認された。
On the other hand, in an argon atmosphere, 5.5 cm × 9 cm, thickness 20 with a polyolefin sealing material attached on the periphery.
A 30 μm-thick lithium foil is pressure-bonded to the central portion 36 cm 2 of a μm-thick stainless steel plate to separately prepare a negative electrode member. The bipolar member was thermocompression bonded under vacuum to produce a sheet battery. The open circuit electromotive voltage of this battery is 4.10V, 1.0mA at 30 ℃.
The result of the constant current discharge was as shown in FIG. 3, and the discharge capacity density until the voltage dropped to 2 V was 170 Ah / kg with respect to the positive electrode active material. Further, FIG. 4 shows the situation of the second cycle when the charging / discharging repeated test of this battery was performed. Curve portions a and a'represent a rest period after charging, b a discharging state, c a rest period after discharging, and d a charging state. The charge / discharge efficiency of the battery was 99% or more, and it was confirmed that the battery system including the electrolyte was a secondary battery having good charge / discharge characteristics.

【0032】比較例1 〔直鎖状ポリ(β−プロピオラクトン)電解質〕渡辺等
の方法〔マクロモレキユールス 17巻 2908〜2912(19
84)〕に従いジエチル亜鉛/水系触媒を用いて、20gの
β−プロピオラクトンを−25℃で72時間、開環重合さ
せ、クロロホルム/エタノールで再沈精製を行い、平均
分子量約2万の直鎖状のポリ(β−プロピオラクトン)
を得た。このポリマーに10wt%のLiClO4を添加し、1
00℃で均一に溶解させて電解質を調製し、ステンレス電
極に挟んで、実施例4と同様に30℃で複素インピーダン
ス法による交流電導度の測定を行つた。その値は3.0×1
0-6S/cmであり、実施例4の1/100であつた。
Comparative Example 1 [Linear poly (β-propiolactone) electrolyte] Method of Watanabe et al. [Macromolecules, Vol. 17, 2908-2912 (19)
84)], using a diethylzinc / water-based catalyst, 20 g of β-propiolactone was subjected to ring-opening polymerization at -25 ° C for 72 hours, followed by reprecipitation purification with chloroform / ethanol to give a direct molecular weight average molecular weight of about 20,000. Chain poly (β-propiolactone)
Got To this polymer was added 10 wt% LiClO 4 ,
The electrolyte was prepared by uniformly dissolving it at 00 ° C, sandwiched between stainless electrodes, and the AC conductivity was measured by the complex impedance method at 30 ° C as in Example 4. Its value is 3.0 x 1
It was 0 −6 S / cm, which was 1/100 of that of Example 4.

【0033】[0033]

【発明の効果】本発明の新規なオリゴ(β−プロピオラ
クトン)基を有するアクリルポリマーは塩を溶解するこ
とによつて従来に比べて飛躍的にイオン伝導度が向上
し、実用に供し得る電流を流すことができる耐酸化性を
備えた高分子固体電解質である。従つて、本発明のオリ
ゴ(β−プロピオラクトン)基を有するアクリルポリマ
ー及びその混合物は高分子固体電解質として、全固体一
次及び二次電池、固体表示素子、センサー及びキヤパシ
ターなどの電気化学デバイスの電解質等として、電気、
電子工業、化学工業、医療用等の広い分野に応用するこ
とができる。
INDUSTRIAL APPLICABILITY The acrylic polymer having a novel oligo (β-propiolactone) group of the present invention has a dramatically improved ionic conductivity as compared with the conventional one by dissolving a salt, and can be put to practical use. It is a polymer solid electrolyte having oxidation resistance capable of passing an electric current. Therefore, the acrylic polymer having an oligo (β-propiolactone) group and a mixture thereof according to the present invention can be used as a solid polymer electrolyte for all solid-state primary and secondary batteries, solid-state display devices, sensors and electrochemical devices such as capacitors. Electricity, etc.
It can be applied to a wide range of fields such as electronic industry, chemical industry and medical field.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のNo.1で得られたオリゴ(β−プ
ロピオラクトン)マクロマーナトリウム塩の13C−NM
Rスペクトルである。
FIG. 1 13 C-NM of oligo (β-propiolactone) macromer sodium salt obtained in No. 1 of Example 1.
It is an R spectrum.

【図2】本発明の電池の一具体例であるシート型薄膜電
池の断面概略図である。
FIG. 2 is a schematic cross-sectional view of a sheet type thin film battery which is a specific example of the battery of the present invention.

【図3】本発明の実施例7で得られたシート電池の30℃
における1mAでの定電流放電の結果を示す図である。
FIG. 3 is the sheet battery obtained in Example 7 of the present invention at 30 ° C.
It is a figure which shows the result of the constant current discharge in 1 mA in FIG.

【図4】本発明の実施例7で得られたシート電池の30℃
における1mAでの定電流充放電試験を行つた結果を示
す図である。
FIG. 4 is the sheet battery obtained in Example 7 of the present invention at 30 ° C.
It is a figure which shows the result of having performed the constant current charge / discharge test in 1 mA in FIG.

【符号の説明】[Explanation of symbols]

1 V25膜 2 金属リチウム 3 有機高分子固体電解質膜 4 ステンレス箔 5 シール材1 V 2 O 5 membrane 2 metallic lithium 3 organic polymer solid electrolyte membrane 4 stainless steel foil 5 sealant

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多田 祐二 徳島県徳島市川内町加賀須野463 大塚 化学株式会社徳島研究所内 (56)参考文献 特開 平3−178949(JP,A) 特開 平2−232287(JP,A) 特開 平6−56933(JP,A) 特開 昭61−112161(JP,A) 特開 昭58−47066(JP,A) 特開 平2−295070(JP,A) 特開 平6−329589(JP,A) 特開 昭63−91659(JP,A) 特公 昭47−47010(JP,B1) Bulletin of the C hemical Society of Japan,1972年,Vol.45,N o.12,3604−7 (58)調査した分野(Int.Cl.7,DB名) H01M 6/00 C07C 69/00 H01M 10/00 CA(STN) REGISTRY(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Tada 463 Kagasuno, Kawauchi Town, Tokushima City, Tokushima Prefecture, Tokushima Laboratory, Otsuka Chemical Co., Ltd. (56) Reference JP-A-3-178949 (JP, A) JP-A-2 -232287 (JP, A) JP-A-6-56933 (JP, A) JP-A-61-112161 (JP, A) JP-A-58-47066 (JP, A) JP-A-2-295070 (JP, A) ) JP-A-6-329589 (JP, A) JP-A-63-91659 (JP, A) JP-B-47-47010 (JP, B1) Bulletin of the Chemical Society of Japan, 1972, Vol. 45, No. 12,3604-7 (58) Fields investigated (Int.Cl. 7 , DB name) H01M 6/00 C07C 69/00 H01M 10/00 CA (STN) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式〔化1〕で示されるオリゴ(β−
プロピオラクトン)マクロマーの重合体の1種もしくは
2種以上の混合物、あるいはの物質の1種もしくは2
種以上の混合物の重合体を主成分とし、これにイオン解
離性支持塩を共存させた非プロトン系電解質。【化1】 但し、式中のXはLi、Na、K、メチル基、エチル基、
又はアリル基を示し、nはβ−プロピオラクトン単位の
平均の繰り返し数で1≦n≦25の範囲にある。又、Rは
Hもしくはメチル基を示す。
1. An oligo (β-
Propiolactone) one or a mixture of two or more of the macromer of the polymer, or one of this substance or 2
An aprotic electrolyte containing a polymer of a mixture of at least one species as a main component and an ion-dissociative supporting salt coexisting therein. [Chemical 1] However, X in the formula is Li, Na, K, a methyl group, an ethyl group,
Or an allyl group, n is a β-propiolactone unit
The average number of repetitions is in the range of 1 ≦ n ≦ 25. Also, R is
H or a methyl group is shown.
【請求項2】 請求項の電解質を用いた非プロトン系
電気化学電池。
2. An aprotic electrochemical cell using the electrolyte of claim 1 .
JP29423093A 1993-10-29 1993-10-29 Oligo (β-propiolactone) macromer, electrolyte and battery using the same Expired - Fee Related JP3418437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29423093A JP3418437B2 (en) 1993-10-29 1993-10-29 Oligo (β-propiolactone) macromer, electrolyte and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29423093A JP3418437B2 (en) 1993-10-29 1993-10-29 Oligo (β-propiolactone) macromer, electrolyte and battery using the same

Publications (2)

Publication Number Publication Date
JPH07126215A JPH07126215A (en) 1995-05-16
JP3418437B2 true JP3418437B2 (en) 2003-06-23

Family

ID=17805030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29423093A Expired - Fee Related JP3418437B2 (en) 1993-10-29 1993-10-29 Oligo (β-propiolactone) macromer, electrolyte and battery using the same

Country Status (1)

Country Link
JP (1) JP3418437B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5052769B2 (en) * 2005-07-15 2012-10-17 株式会社日立製作所 Ion conductive side chain polymer electrolyte, precursor thereof, and lithium secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847066A (en) * 1981-09-16 1983-03-18 Nippon Oil & Fats Co Ltd Antifouling paint
JPS61112161A (en) * 1984-07-03 1986-05-30 Ricoh Co Ltd Liquid developer for electrostatic photography
JPS6391659A (en) * 1986-10-06 1988-04-22 Konica Corp Silver halide color photosensitive material containing polymer coupler
DE3901690C1 (en) * 1989-01-21 1990-03-29 Lohmann Gmbh & Co Kg, 5450 Neuwied, De
JP2934450B2 (en) * 1989-05-09 1999-08-16 株式会社リコー Polymer solid electrolyte and secondary battery using the same
JP2939890B2 (en) * 1989-09-19 1999-08-25 出光石油化学株式会社 Production of acrylic acids
JP3251647B2 (en) * 1992-08-05 2002-01-28 株式会社日本触媒 Water-absorbing resin and method for producing the same
JPH06329589A (en) * 1993-05-21 1994-11-29 Nippon Shokubai Co Ltd Production of beta-hydroxypropionic acid ester

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bulletin of the Chemical Society of Japan,1972年,Vol.45,No.12,3604−7

Also Published As

Publication number Publication date
JPH07126215A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
US6190805B1 (en) Polymerizable compound, solid polymer electrolyte using the same and use thereof
US5665490A (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
US5597661A (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
US8357470B2 (en) Organic solid electrolyte and secondary battery
JPH05198303A (en) Battery
US6677084B1 (en) Solid crosslinked-polymer electrolyte and use thereof
JP3575108B2 (en) Polymer solid electrolyte, its material and use
JP3129961B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
JPH10294015A (en) Polymeric solid electrolyte and usage thereof
KR20030077453A (en) Gel electrolyte, process for producing the same, and use thereof
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
JP3418437B2 (en) Oligo (β-propiolactone) macromer, electrolyte and battery using the same
JP2000021406A (en) Electrode binding agent and its use
JP3557477B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, method for producing them, and polymer solid electrolyte material
JP3546085B2 (en) Wet solar cell and method of manufacturing the same
JPH107759A (en) Monomer compound for solid polyelectrolyte, solid polyelectrolyte, and their use
JPH1036657A (en) Polymerizable monomer, solid polyelectrolyte comprising the same, and its use
CN110289446B (en) Polymer electrolyte for lithium ion battery and polymer battery
JP3161881B2 (en) Oligoethyleneoxy polyphosphazenes having cyclic carbonate groups and their production and use
JP3591152B2 (en) Electrolytic solution, polymer gel electrolyte using the same, and use thereof
JP3614658B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JP3161906B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
JPH10204109A (en) Actinic-radiation-polymerizable composition and its use
JPH1017763A (en) Solid polymer electrolyte and its use
CA2141449C (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees