JPH0567575B2 - - Google Patents
Info
- Publication number
- JPH0567575B2 JPH0567575B2 JP33507088A JP33507088A JPH0567575B2 JP H0567575 B2 JPH0567575 B2 JP H0567575B2 JP 33507088 A JP33507088 A JP 33507088A JP 33507088 A JP33507088 A JP 33507088A JP H0567575 B2 JPH0567575 B2 JP H0567575B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- particle size
- quartz glass
- heated
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 80
- 239000000377 silicon dioxide Substances 0.000 claims description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 16
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 239000005416 organic matter Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 238000010306 acid treatment Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000011164 primary particle Substances 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 238000003980 solgel method Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 7
- 230000003301 hydrolyzing effect Effects 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- -1 alkyl silicate Chemical compound 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 239000003377 acid catalyst Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000006148 magnetic separator Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012643 polycondensation polymerization Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910021493 α-cristobalite Inorganic materials 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Landscapes
- Glass Melting And Manufacturing (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は合成石英ガラスの製造方法、特には高
純度で高温粘性が高いことからシリコン単結晶の
引上げ用るつぼ材などの半導体熱処理用部材とし
て有用とされる合成石英ガラスをゾル−ゲル法で
製造する方法に関するものである。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing synthetic quartz glass, particularly as a member for semiconductor heat treatment such as a crucible material for pulling silicon single crystals due to its high purity and high temperature viscosity. The present invention relates to a method for producing synthetic quartz glass, which is considered to be useful, by a sol-gel method.
[従来の技術]
合成石英ガラスの製造については四塩化けい
素などのけい素化合物を酸水素火炎中で加水分解
してシリカ粒子を作り、これを溶融して石英ガラ
スとする方法、この酸水素火炎をプラズマ炎と
する方法、アルコキシシランをアルコール溶媒
中において酸触媒で加水分解してシリカを作り、
これを焼結して石英ガラスとする、いわゆるゾル
−ゲル法などが知られている。[Prior art] Synthetic quartz glass is produced by hydrolyzing silicon compounds such as silicon tetrachloride in an oxyhydrogen flame to produce silica particles, which are then melted to produce silica glass. A method of converting a flame into a plasma flame, by hydrolyzing alkoxysilane with an acid catalyst in an alcohol solvent to produce silica.
A so-called sol-gel method is known in which this is sintered to form quartz glass.
しかし、この酸水素火炎を用いる方法には石英
ガラス中に1000ppmものOH基が残留するし、高
温粘性も低く、真空中高温では発泡するという問
題点があるし、プラズマ法はコストが高く、量産
化が難しいという不利があり、ゾル−ゲル法には
高粘度品を安価に得ることができるという利点が
あるものの、OH基が残り易く、製造に長時間を
要し、高温粘性の高いものが得られ難いという不
利がある。 However, this method using an oxyhydrogen flame leaves as much as 1000 ppm of OH groups in the quartz glass, has low high-temperature viscosity, and has the problem of foaming at high temperatures in a vacuum.The plasma method is expensive and mass-produced. Although the sol-gel method has the advantage of being able to obtain products with high viscosity at low cost, it tends to leave OH groups, takes a long time to produce, and produces products with high viscosity at high temperatures. The disadvantage is that it is difficult to obtain.
しかし、このゾル−ゲル法では非常にアモルフ
アスに近いガラスが得られるために、光フアイバ
ー、IC用フオトマスク、レンズなどに用いるこ
とが検討されており、これについては例えばアル
キルシリケートを塩基性触媒のもとで加水分解し
てシリカ微粒子を作り、これをアルキルシリケー
トを酸触媒のもとで加水分解して得たゾルと混合
する方法(特開昭62−241837号公報参照)、SiCl4
の酸化により得られたSiO2粒子を用い、n−プ
ロパノールを分散剤としてクロロホルムに分散さ
せ、アンモニア蒸気でゲル化させる方法[G.W.
Scheere&J.C.Luong、J.Non−Cryst.Solids、63
(1984)163−172参照]などがある。また、ゾル
−ゲル法によるルツボ、冶具などの耐熱部材への
検討も行なわれており、これについてはNaなど
のアルカリ成分の存在下での酸触媒による加水分
解で得たシリカをα−クリストバライトに転移さ
せたのち溶解する方法(特開昭63−166730号公報
参照)や本発明者らが先に出願したメチルシリケ
ートをメタノール溶媒中でアンモニア触媒で加水
分解して得た単分散および多分散のシリカを焼結
して得る方法などがある。 However, since this sol-gel method yields a glass that is very close to amorphous, it is being considered for use in optical fibers, IC photomasks, lenses, etc. A method in which fine silica particles are produced by hydrolysis with and mixed with a sol obtained by hydrolyzing an alkyl silicate under an acid catalyst (see Japanese Patent Application Laid-Open No. 62-241837), SiCl 4
A method in which SiO 2 particles obtained by oxidation of
Scheere & J.C.Luong, J.Non−Cryst.Solids, 63
(1984) 163-172]. In addition, the sol-gel method is being considered for heat-resistant parts such as crucibles and jigs, and for this purpose, silica obtained by hydrolysis using an acid catalyst in the presence of an alkaline component such as Na is converted into α-cristobalite. The method of transferring and then dissolving (see JP-A-63-166730) and the method of monodisperse and polydisperse obtained by hydrolyzing methyl silicate with an ammonia catalyst in a methanol solvent, which the present inventors previously applied There are methods to obtain it by sintering silica.
[解決すべき課題]
しかし、このゾル−ゲル法のようにシリカ粒子
を単分散および多分散として得る方法には生産性
がわるく、溶媒の除去に多くのエネルギー消費が
必要とされるという不利があり、前記した塩基性
触媒のもとでの加水分解物と酸性触媒のもとでの
加水分解物を混合する方法では天然石英のような
高温粘性の高いものを得ることができず、したが
つてこの石英ガラスは半導体熱処理用部材として
使用できないという不利があり、Naの存在下で
α−クリストバライトとする方法は粘度の高い石
英ガラスを得ることができるけれども、これには
アルカリ成分の除去が困難であることから、これ
も半導体熱処理用部材として使用できないという
不利がある。[Problems to be solved] However, methods for obtaining monodisperse and polydisperse silica particles, such as this sol-gel method, have the disadvantages of poor productivity and the need for a large amount of energy consumption to remove the solvent. However, with the method of mixing the hydrolyzate under a basic catalyst and the hydrolyzate under an acidic catalyst, it was not possible to obtain a product with high high temperature viscosity such as natural quartz. However, quartz glass has the disadvantage that it cannot be used as a semiconductor heat treatment member, and although the method of converting α-cristobalite in the presence of Na can yield quartz glass with high viscosity, it is difficult to remove alkaline components. Therefore, this also has the disadvantage that it cannot be used as a member for semiconductor heat treatment.
[課題を解決するための手段]
本発明はこのような不利を解決したゾル−ゲル
法による合成石英ガラスの製造方法に関するもの
であり、これはメチルシリケートをアンモニアの
存在下でメタノールのようなアルコール溶媒を用
いずに加水分解し、重合させて粒度が100〜500n
mのシリカ一次粒子を粒度が10〜100μmのシリ
カ凝集体とし、固液分離によつて溶媒を分離した
のち、加熱して未反応の有機物を酸化除去し、つ
いでこのシリカ粉を真空中で1500℃以上に加熱し
て焼結させ、粉砕、酸処理、乾燥を行なつたの
ち、1700℃以上の温度で溶融成形することを特徴
とするものである。[Means for Solving the Problems] The present invention relates to a method for producing synthetic quartz glass by a sol-gel method that overcomes these disadvantages. Hydrolyzed and polymerized without using a solvent to achieve a particle size of 100-500n
m primary silica particles are made into silica aggregates with a particle size of 10 to 100 μm, and after separating the solvent by solid-liquid separation, heating is performed to oxidize and remove unreacted organic matter, and then this silica powder is heated in a vacuum for 1500 μm. It is characterized by being sintered by heating to a temperature of 1700°C or higher, followed by pulverization, acid treatment, drying, and then melt-forming at a temperature of 1700°C or higher.
すなわち、本発明者らはゾル−ゲル法を用いて
高純度で、高温粘性が高い合成石英ガラスを安価
に製造する方法について種々検討した結果、メチ
ルシリケートの加水分解をメタノールなどのアル
コール溶媒を用いずにアンモニアの存在下で行な
わせ重合すると、粒度が100〜500nmの一次粒子
として得られたシリカが凝集塊となつて粒度が10
〜100μmのシリカ粒子となるので、このものは
遠心分離などの簡便な固液分離法で溶液から分離
できるし、これから未反応の有機物を酸化除去し
たのち1500℃以上で加熱焼結させ、粉砕、酸処
理、乾燥し、ついで1700℃以上の温度で溶融成形
すれば、高温粘性の高い合成石英ガラスを容易に
かつ安価に得ることができることを見出して本発
明を完成させた。 That is, the present inventors conducted various studies on a method for inexpensively producing synthetic quartz glass with high purity and high temperature viscosity using the sol-gel method. When polymerization is carried out in the presence of ammonia, the silica obtained as primary particles with a particle size of 100 to 500 nm becomes agglomerated, and the particle size becomes 10 nm.
Since it becomes ~100 μm silica particles, it can be separated from the solution by simple solid-liquid separation methods such as centrifugation, and after removing unreacted organic matter by oxidation, it is heated and sintered at 1500°C or higher, crushed, The present invention was completed by discovering that synthetic quartz glass with high high temperature viscosity can be obtained easily and inexpensively by acid treatment, drying, and then melt-forming at a temperature of 1700° C. or higher.
以下、これをさらに詳述する。 This will be explained in more detail below.
[作用]
本発明による合成石英ガラスの組成物はゾル−
ゲル法で行なわれるので、この始発材はアルキル
シリケートとしてのメチルシリケートとされる
が、この加水分解はアンモニアの存在下で行なわ
せる必要がある。これはメチルシリケートをアン
モニアの存在下で加水分解すると、この加水分解
で生成させる粒度が100〜500nmであるシリカ一
次粒子が生成する。この反応は、メタノールを含
まないこの系においては見掛けの粒度が10〜
100μmシリカ凝集体となる。この一次粒子は球
状で内部には殆んどOH基が含まれず、OH基は
表面のみに存在するようになるし、この粒子は充
填すると粒子と粒子との隙間が大きく、温度をか
けても閉孔化せず、表面のOH基は容易に除去で
き、粘性を低下させるOH基がなくなり、さらに
は上記の三次元縮重合が規則正しく行なわれて構
造が密なものとなるので、これから得られる合成
石英ガラスは高温粘性の高いものになるという有
利性が与えられる。なお、このシリカの三次元縮
重合はアンモニアがある一定以上の濃度のもとで
確実に進行し、その粒子は1400℃程度の温度まで
はそのままの形状、構造を保ち得ることが見出さ
れているので、このアンモニアの濃度はメチルシ
リケートに対し0.8倍モル以上とすることがよい
が、この加水分解はこのアンモニアの存在下に3
倍モル以上の水を加え、50℃以下の温度で行なわ
せればよい。[Function] The synthetic quartz glass composition according to the present invention
Since this is carried out by a gel method, the starting material is methyl silicate as an alkyl silicate, but this hydrolysis must be carried out in the presence of ammonia. When methyl silicate is hydrolyzed in the presence of ammonia, primary silica particles having a particle size of 100 to 500 nm are produced by this hydrolysis. This reaction has an apparent particle size of 10 to 10% in this methanol-free system.
It becomes a 100μm silica aggregate. These primary particles are spherical and contain almost no OH groups inside, and OH groups exist only on the surface.When these particles are filled, there are large gaps between them, and even when heated The pores do not become closed, the OH groups on the surface can be easily removed, there are no OH groups that reduce viscosity, and the above three-dimensional condensation polymerization occurs regularly, resulting in a dense structure. Synthetic quartz glass has the advantage of being highly viscous at high temperatures. It has been discovered that this three-dimensional condensation polymerization of silica progresses reliably at ammonia concentrations above a certain level, and that the particles can maintain their shape and structure up to temperatures of about 1400°C. Therefore, the concentration of ammonia should be at least 0.8 times the molar amount of methyl silicate, but this hydrolysis will occur in the presence of ammonia.
It is sufficient to add more than double the molar amount of water and conduct the reaction at a temperature of 50°C or less.
このようにして得られたシリカ凝集体はついで
溶液と分離する必要があるが、この分離はシリカ
凝集体が見掛け粒度の大きいものであるので、簡
単な固液分離法で分離することができ、これは例
えば800メツシユ程度の濾布を用いて遠心脱水器
で脱水するか、減圧濾過やデカンテーシヨンで分
離すればよく、したがつてこれによれば従来法に
おいて必要とされた溶媒の加熱除去など多大のエ
ネルギー消費という不利が解決される。 The silica aggregates obtained in this way must then be separated from the solution, but since the silica aggregates have a large apparent particle size, they can be separated by a simple solid-liquid separation method. For example, this can be done by dehydration using a centrifugal dehydrator using a filter cloth of about 800 mesh, or separation by vacuum filtration or decantation. This solves the disadvantage of large energy consumption.
また、このようにして取得されたシリカ凝集体
は乾燥後、加熱焼結し、粉砕したのち溶融成形し
て合成石英ガラスとするのであるが、この乾燥は
100〜200℃で5〜10時間とすればよく、ここに残
留している有機物を除去するためにはこれを空気
中または酸素ガス中で300〜1200℃に加熱してこ
の有機物を酸化除去すればよい。このように処理
されたシリカ凝集体はついで例えばカーボン製ル
ツボ中に入れ、1500℃以上に加熱して焼結させた
のち粉砕し、HCl、HFなどで酸処理をしてから、
1700℃以上の温度に加熱して溶融し、成形すれば
よく、このようにして得られた合成石英ガラスは
これに含有されるAl、Fe、Na、K、Caなどの金
属不純物含有量が0.2ppm以下である高純度のも
ので、その高温粘性も例えば1400℃で1010ポイズ
以上のものとなるので、半導体熱処理用部材とし
て有用とされるという有利性をもつものになる。 In addition, the silica aggregates obtained in this way are dried, heated, sintered, crushed, and then melted and formed into synthetic silica glass.
It may be heated at 100 to 200°C for 5 to 10 hours, and in order to remove the remaining organic matter, heat it to 300 to 1200°C in air or oxygen gas to oxidize and remove this organic matter. Bye. The silica aggregates treated in this way are then placed in, for example, a carbon crucible, heated to 1500°C or higher to sinter, pulverized, and acid-treated with HCl, HF, etc.
The synthetic quartz glass obtained in this way has a content of metal impurities such as Al, Fe, Na, K, and Ca of 0.2. It has a high purity of less than ppm, and its high-temperature viscosity is, for example, 10 10 poise or more at 1400°C, making it advantageous as it is useful as a member for semiconductor heat treatment.
[実施例]
つぎに本発明の実施例および比較例をあげる
が、例中におけるシリカ一次粒子径は電子顕微鏡
観察により、また凝集体径は沈降法より求めたも
の、得られた合成石英ガラス中の金属不純物含有
量はゼーマン原子吸光法による測定値を、また高
温粘性はフアイバーエロンゲーシヨン法による測
定値を示したものである。[Example] Next, examples of the present invention and comparative examples are given. The metal impurity content is the value measured by Zeeman atomic absorption spectrometry, and the high temperature viscosity is the value measured by fiber elongation method.
実施例 1
500のグラスライニング反応器に半導体グレ
ードの29%のアンモニア水130と超純水30を
入れて0℃に冷却し、テフロンコート撹拌棒で撹
拌しながら、ここにメチレシリケート(蒸留品)
を265Kg適下し、適下終了後に遠心脱水器で脱水
したところ、一次粒子径が100〜500nmの多分散
粒で粒子径が10〜100μmであるシリカ凝集体105
Kgが得られた。Example 1 Put 130% of semiconductor grade 29% ammonia water and 30% of ultrapure water into a 500mm glass-lined reactor, cool it to 0°C, and add methylene silicate (distilled product) to it while stirring with a Teflon-coated stirring rod.
When 265 kg of silica was added and dehydrated using a centrifugal dehydrator after the application was completed, silica aggregates 105 were polydispersed particles with a primary particle size of 100 to 500 nm and a particle size of 10 to 100 μm.
Kg was obtained.
ついで、これを窒素空気中において150℃で乾
燥したのち、この乾燥品を石英炉芯管に詰め、酸
素ガス中で室温から1200℃まで10時間で昇温し、
その後高純度の黒鉛ケースに25Kg詰め、真空中で
室温から1500℃まで2時間、1500℃から1700℃ま
で10時間かけて昇温してこれを焼結させた。 Next, this was dried at 150°C in nitrogen air, and the dried product was packed into a quartz furnace tube and heated in oxygen gas from room temperature to 1200°C in 10 hours.
Thereafter, 25 kg of the material was packed in a high-purity graphite case, and the temperature was raised from room temperature to 1500°C over 2 hours and from 1500°C to 1700°C over 10 hours in a vacuum to sinter it.
次にこの焼結品を粉砕して50〜80メツシユに揃
え、HCl、HFで洗浄し、乾燥後磁選機にかけた
のち、回転するルツボ状金型に詰め、アークで
2400〜2600℃に加熱して溶融したところ、得られ
たルツボは比較的透明であり、このもはAl、Fe、
Na、K、Caなどの金属不純物含有量が0.1ppm以
下であり、1400℃における粘性は3.8×1010ポイ
ズであつた。 Next, this sintered product is crushed into 50 to 80 meshes, washed with HCl and HF, dried and passed through a magnetic separator, then packed into a rotating crucible-shaped mold and heated with an arc
When melted by heating to 2400-2600℃, the resulting crucible was relatively transparent and contained Al, Fe,
The content of metal impurities such as Na, K, and Ca was 0.1 ppm or less, and the viscosity at 1400°C was 3.8×10 10 poise.
実施例 2
実施例1における1200℃で仮焼したシリカ粉末
を、石英ルツボに詰め、真空中において1500℃ま
で3時間で昇温したものを粉砕、篩別したとこ
ろ、平均粒径が50μmの粉体が得られたので、
HCl、HFで酸処理後、高純度黒鉛ケースに詰め
直し、10-3トールの真空中で室温から1800℃まで
20時間かけて昇温して、300mmφ×600mmLの合成
石英インゴツトを作つた。Example 2 The silica powder calcined at 1200°C in Example 1 was packed into a quartz crucible, heated to 1500°C in a vacuum for 3 hours, crushed and sieved, and a powder with an average particle size of 50 μm was obtained. Now that I have a body,
After acid treatment with HCl and HF, it is repacked into a high-purity graphite case and heated from room temperature to 1800℃ in a vacuum of 10 -3 Torr.
By raising the temperature over 20 hours, a synthetic quartz ingot with a diameter of 300 mm and a length of 600 mm was produced.
このものは透明でAl、Fe、Na、K、Caなどの
金属不純物含有量がそれぞれ0.2ppm以下の高純
度のものであり、この1400℃における粘性は7.5
×1010ポイズであつた。 This material is transparent and has high purity with metal impurity content such as Al, Fe, Na, K, and Ca of 0.2 ppm or less, and its viscosity at 1400°C is 7.5.
×10 It was 10 poise.
比較例
500のグラスライニング反応器に半導体グレ
ードの29重量%のアンモニア水50と超純水50
およびメタノール120を入れ、ドライアイス−
メタノールによつて0℃に保持し、ここにメチル
シリケート76とメタノール100の混合物を滴
下し、滴下終了後、生成したシリカ粒子を、サン
プリングし、電子顕微鏡で観察したところ、この
ものは径が700nmの球状粒子の単分散体であつ
た。Comparative Example: Semiconductor grade 29% by weight ammonia water 50% and ultrapure water 50% in a glass-lined reactor
Add 120% methanol and dry ice.
The temperature was maintained at 0°C with methanol, and a mixture of 76 methyl silicate and 100 methanol was dropped therein. After the dropwise addition, the produced silica particles were sampled and observed with an electron microscope, and the diameter was 700 nm. It was a monodisperse of spherical particles.
ついでこのものは固液分離したが、これは濾過
が不可能であるために100トール、100℃で20時間
加熱して水、メタノール、アンモニアを除去した
ところ、29Kgのシリカが得られたので、これを石
英炉芯管に詰めて酸素ガス中で室温から1200℃ま
で10時間で昇温させ、その後高純度黒鉛ケースに
詰め直し、真空中で1500℃まで3時間昇温して焼
結させた。 This material was then subjected to solid-liquid separation, but since filtration was impossible, it was heated at 100 Torr and 100°C for 20 hours to remove water, methanol, and ammonia, and 29 kg of silica was obtained. This was packed into a quartz furnace core tube and heated in oxygen gas from room temperature to 1200°C over 10 hours, then packed back into a high-purity graphite case and heated to 1500°C in vacuum for 3 hours to sinter. .
つぎにこの焼結品を粉砕し、50〜80メツシユに
篩別し、HCl、HFで洗浄し、乾燥後、磁選機に
かけたのち、回転するルツボ形の金型に詰め、ア
ーク溶融したところ、得られたルツボのAl、Fe、
Na、K、Caなどの金属不純物含有量は0.20〜
0.1ppmで溶媒中の不純物の濃縮および乾燥中の
汚染が認められ、このものの高温粘性は1400℃で
3.8×1010ポイズであつた。 Next, this sintered product was crushed, sieved into 50 to 80 meshes, washed with HCl and HF, dried, passed through a magnetic separator, packed into a rotating crucible-shaped mold, and arc-fused. Al, Fe, and
Metal impurity content such as Na, K, Ca etc. is 0.20 ~
Concentration of impurities in the solvent and contamination during drying were observed at 0.1 ppm, and the high temperature viscosity of this material was 1400℃.
It was 3.8×10 10 poise.
[発明の効果]
本発明による合成石英ガラスの製造は上記した
ようにメチルシリケートをアンモニアの存在下で
加水分解、重合して粒度が10〜100μmのシリカ
凝集体を作り、これを固液分離したのち、焼結、
粉砕、溶融して合成石英ガラスを得るというもの
であるが、これによればメチルシリケートの加水
分解によつて得られるシリカが凝集体として得ら
れ、この固液分離が濾過、遠心脱水器などの簡単
で安価の方法で行なうことができ、なおかつ工程
が短いため汚染が極少となるし、ここに得られた
シリカ凝集体を焼結、粉砕、溶融して得た合成石
英ガラスは高純度であり、高温粘性が高いので、
これによれば半導体熱処理用部品として有用とさ
れる合成石英ガラスをゾル−ゲル法で、工業的に
安価にかつ大量に生産できるという有利性が与え
られる。[Effects of the Invention] As described above, synthetic quartz glass according to the present invention is produced by hydrolyzing and polymerizing methyl silicate in the presence of ammonia to produce silica aggregates with a particle size of 10 to 100 μm, which are separated into solid and liquid. Later, sintering,
Synthetic quartz glass is obtained by crushing and melting, but according to this method, silica obtained by hydrolyzing methyl silicate is obtained as aggregates, and this solid-liquid separation is performed using filtration, centrifugal dehydrators, etc. It can be carried out using a simple and inexpensive method, and since the process is short, contamination is minimized, and the synthetic silica glass obtained by sintering, crushing, and melting the silica aggregates obtained here is of high purity. , since the high temperature viscosity is high,
This provides the advantage that synthetic quartz glass, which is useful as semiconductor heat treatment parts, can be produced industrially in large quantities at low cost by the sol-gel method.
Claims (1)
水分解し、重合させて粒度が100〜500nmの1次
粒子としてのシリカを粒度を10〜100μmのシリ
カ凝集体とし、固液分離によつて溶媒を除去した
のち、加熱して未反応の有機物を酸化除去し、つ
いでこのシリカ粉を真空中で1500℃以上に加熱し
て焼結させ、粉砕、酸処理、乾燥を行なつたの
ち、1700℃以上の温度で溶融成形することを特徴
とする合成石英ガラスの製造方法。1 Methyl silicate was hydrolyzed in the presence of ammonia and polymerized to form silica as primary particles with a particle size of 100 to 500 nm into silica aggregates with a particle size of 10 to 100 μm, and the solvent was removed by solid-liquid separation. After that, the silica powder is heated to oxidize and remove unreacted organic matter, and then the silica powder is sintered by heating to 1500℃ or higher in vacuum, followed by pulverization, acid treatment, drying, and then sintering at a temperature of 1700℃ or higher. A method for producing synthetic quartz glass, characterized by melting and forming it.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33507088A JPH02180723A (en) | 1988-12-28 | 1988-12-28 | Production of synthetic quarts glass |
US07/404,585 US4979973A (en) | 1988-09-13 | 1989-09-08 | Preparation of fused silica glass by hydrolysis of methyl silicate |
EP89402471A EP0360659B1 (en) | 1988-09-13 | 1989-09-11 | Synthetic fused silica glass and method for the preparation thereof |
DE8989402471T DE68905735T2 (en) | 1988-09-13 | 1989-09-11 | SYNTHETIC MOLTEN QUARTZ GLASS AND METHOD FOR THE PRODUCTION THEREOF. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33507088A JPH02180723A (en) | 1988-12-28 | 1988-12-28 | Production of synthetic quarts glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02180723A JPH02180723A (en) | 1990-07-13 |
JPH0567575B2 true JPH0567575B2 (en) | 1993-09-27 |
Family
ID=18284427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33507088A Granted JPH02180723A (en) | 1988-09-13 | 1988-12-28 | Production of synthetic quarts glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02180723A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH072513A (en) * | 1993-06-15 | 1995-01-06 | Kimmon Mfg Co Ltd | Production of synthetic quartz glass powder |
JP2019182694A (en) * | 2018-04-05 | 2019-10-24 | 三菱ケミカル株式会社 | Synthetic silica glass powder |
-
1988
- 1988-12-28 JP JP33507088A patent/JPH02180723A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH02180723A (en) | 1990-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4979973A (en) | Preparation of fused silica glass by hydrolysis of methyl silicate | |
JP3751326B2 (en) | Manufacturing method of high purity transparent quartz glass | |
JPH072513A (en) | Production of synthetic quartz glass powder | |
JP3128451B2 (en) | Manufacturing method of synthetic quartz glass | |
JPH0826742A (en) | Synthetic quartz glass powder | |
JPH01317155A (en) | Production of ceramic compact | |
JPH0280329A (en) | Production of synthetic quartz glass | |
JPH0567575B2 (en) | ||
JPH03275527A (en) | Porous silica glass powder | |
JPH02307830A (en) | Production of quartz glass powder | |
JP3318946B2 (en) | Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article | |
KR20110052564A (en) | Silicon-based green bodies | |
JPH0563416B2 (en) | ||
JPH035329A (en) | Production of synthetic quartz glass | |
JP2675819B2 (en) | Manufacturing method of quartz glass | |
JPH04154613A (en) | Synthetic silica powder having high purity | |
JPH0264027A (en) | Production of silica glass | |
JP3071363B2 (en) | Manufacturing method of synthetic quartz glass | |
JP3859303B2 (en) | Method for producing synthetic quartz glass powder and quartz glass molded body | |
JPH03228839A (en) | Production of synthetic quartz powder | |
JP3689926B2 (en) | High-purity synthetic quartz glass powder, method for producing the same, and high-purity synthetic quartz glass molded body using the same | |
JPH0745326B2 (en) | Method for producing synthetic quartz glass ingot and synthetic quartz crucible | |
JPH05201718A (en) | Production of silica glass powder and silica glass molten molding | |
JPH04338122A (en) | Production of anhydrous synthetic quartz glass | |
JPH0524970A (en) | Production of synthetic quartz glass crucible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |