JPH0567508A - Nonmagnetic substrate for magnetic head - Google Patents

Nonmagnetic substrate for magnetic head

Info

Publication number
JPH0567508A
JPH0567508A JP3311489A JP31148991A JPH0567508A JP H0567508 A JPH0567508 A JP H0567508A JP 3311489 A JP3311489 A JP 3311489A JP 31148991 A JP31148991 A JP 31148991A JP H0567508 A JPH0567508 A JP H0567508A
Authority
JP
Japan
Prior art keywords
nio
substrate
magnetic
coo
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3311489A
Other languages
Japanese (ja)
Inventor
Ryuichi Nagase
隆一 長瀬
Koji Hosaka
広司 保坂
Toubun Nagai
燈文 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to DE69108874T priority Critical patent/DE69108874T2/en
Priority to EP91121177A priority patent/EP0490345B1/en
Priority to US07/805,173 priority patent/US5242865A/en
Publication of JPH0567508A publication Critical patent/JPH0567508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a nonmagnetic substrate for magnetic heads on which a metallic magnetic film is vapor-deposited and which is composed basically of CoO and NiO or NiO containing ZrO2 (0.5-7wt.%) and improved in sinterability. CONSTITUTION:This nonmagnetic substrate for magnetic heads is composed basically of CoO and NiO or NiO containing ZrO2 (0.5-7wt.%) and a sintering assistant, namely, Al2O3 by 0.1-2wt.%. When such composition is used, a sintered body which is compact and has a stable transverse strength and fine and uniform crystal grain size can be obtained. Therefore, the economy of this nonmagnetic substrate can be improved when the substrate is manufactured from such sintered body, because the occurrence of chipping can be reduced and, accordingly, the yield, etc., can be improved at the time of manufacturing the substrate from the sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性膜を蒸着するための
磁気ヘッド用非磁性基板に関するものである。
FIELD OF THE INVENTION The present invention relates to a non-magnetic substrate for a magnetic head for depositing a magnetic film.

【0002】[0002]

【従来の技術】従来、この種の磁気ヘッド用非磁性基用
途には、チタン酸バリウム、チタン酸カルシウム、アル
ミナ等が使用されていた。しかしながら、その熱膨張率
が金属性磁性膜構造体と大きく異なっていたため、蒸着
した磁性膜構造体が基板から剥離しやすく、また熱膨張
率の差により応力が発生しクラックが発生することがあ
った。
2. Description of the Related Art Conventionally, barium titanate, calcium titanate, alumina and the like have been used for non-magnetic base applications for this type of magnetic head. However, since the coefficient of thermal expansion was largely different from that of the metallic magnetic film structure, the vapor-deposited magnetic film structure was easily separated from the substrate, and stress caused by the difference in coefficient of thermal expansion sometimes caused cracks. It was

【0003】さらに、従来の非磁性基板用材料は硬さが
低く、特に磁気記録媒体として高保磁力テープ(いわゆ
るメタルテープ)が使用された場合には、磁性膜構造体
(硬度Hv=600〜800)と硬度及び耐摩耗性が異
なる磁気テープとの摺動及び摩擦により非磁性基板に偏
摩耗等を引き起こし、この結果磁性膜構造体の磁気特性
に変化をきたすという問題があった。特に非磁性基板の
硬度が低い場合には、磁性膜構造体の偏摩耗が著しくな
り、磁気ヘッドの寿命が短くなること、あるいは非磁性
基板の変形や割れ及び剥離を引き起こすといった欠点が
顕著であった。
Further, conventional non-magnetic substrate materials have low hardness, and particularly when a high coercive force tape (so-called metal tape) is used as a magnetic recording medium, a magnetic film structure (hardness Hv = 600 to 800). ) And sliding and friction with a magnetic tape having different hardness and wear resistance cause uneven wear on the non-magnetic substrate, resulting in a change in the magnetic characteristics of the magnetic film structure. In particular, when the hardness of the non-magnetic substrate is low, the uneven wear of the magnetic film structure is remarkable, the life of the magnetic head is shortened, and the defects such as deformation, cracking and peeling of the non-magnetic substrate are remarkable. It was

【0004】本発明者等は上記の欠点を解決すべく酸化
物系セラミックスについて研究を進め、CoO及びNi
OまたはNiOを基本組成とした酸化物が有効であると
して既に、その組成を特開平1−287811号公報、
特開平2−168602号公報、特開平1−21420
6号公報において非磁性基板の組成を開示した。さらに
硬度や密度の向上を図るための添加剤を検討し、Co
O、NiOを基本組成として、MnO,TiO2 ,Al
23 ,CaOのうち1種以上を0.1〜5wt%添加
した組成、及び1〜5wt%のY23 、0.1〜1%
のTiN,0.3〜2wt%のB23 のうち1種以上
を添加した組成、あるいは1〜5wt%のSiO2 を添
加した組成が磁気ヘッド基板として有効でありかつ添加
剤が所期の効果をもつことを確認しこれらを開示した
(特開02-94408、特開平01-159622 、特開平01-214208
)。
The present inventors have advanced research on oxide-based ceramics in order to solve the above-mentioned drawbacks, and have conducted research on CoO and Ni.
Oxide having a basic composition of O or NiO is already effective, and its composition has already been disclosed in Japanese Patent Laid-Open No. 1-287811.
JP-A-2-168602 and JP-A-1-21420
No. 6 discloses the composition of the non-magnetic substrate. In addition, we examined additives to improve hardness and density, and
O, NiO as a basic composition, MnO, TiO 2 , Al
Composition containing 0.1 to 5 wt% of one or more of 2 O 3 and CaO, and 1 to 5 wt% of Y 2 O 3 , 0.1 to 1%
Of TiN and 0.3 to 2 wt% of B 2 O 3 added at least one kind or 1 to 5 wt% of SiO 2 is effective as a magnetic head substrate and the additive is expected. It has been confirmed that the above effects are provided and these have been disclosed (Japanese Patent Application Laid-Open No. 02-94408, Japanese Patent Application Laid-Open No. 01-159622, Japanese Patent Application Laid-Open No. 01-214208).
).

【0005】[0005]

【発明が解決しようとする課題】さらに特開平2−15
4307号公報においては、NiOとCoOあるいはN
iOを基本組成とした場合の組成としては、CoOを2
5〜80モル%、MOを0ー50モル%、XO2 を5〜
20モル%含むことを特徴とする磁気ヘッド用非磁性基
板材料(但し、MはNiまたはMnの少なくとも一種、
XはYi、ZrまたはHfの少なくとも一種)が開示さ
れている。しかしながら、この組成のZrO2 の添加量
は5モル%(8wt%)を越えるので、非磁性材料その
熱膨張率が10.0〜12.5μm/m℃となり、金属
性磁性膜の熱膨張率より非常に小さくなり、熱膨張差に
よるこれらの変形や割れなどの問題が起こるので、これ
以上の熱膨張率を有する磁性膜構造体に対応する材料が
必要となってきた。したがって、本発明の目的は、具体
的には12.5〜15.0μm/m℃の熱膨張率を有
し、ビッカース硬度が高い非磁性基板材料を提供するこ
とである。
[Patent Document 1] Japanese Patent Application Laid-Open No. 2-15
No. 4307 discloses NiO and CoO or N.
When iO is used as the basic composition, CoO is 2
5-80 mol%, MO 0-50 mol%, XO 2 5-
Non-magnetic substrate material for a magnetic head characterized by containing 20 mol% (where M is at least one of Ni and Mn,
As X, at least one of Yi, Zr, and Hf) is disclosed. However, since the amount of ZrO 2 added in this composition exceeds 5 mol% (8 wt%), the coefficient of thermal expansion of the non-magnetic material is 10.0 to 12.5 μm / m ° C., and the coefficient of thermal expansion of the metallic magnetic film. Since it becomes much smaller and problems such as deformation and cracking due to the difference in thermal expansion occur, a material corresponding to the magnetic film structure having a coefficient of thermal expansion higher than that has been required. Therefore, it is an object of the present invention to specifically provide a non-magnetic substrate material having a coefficient of thermal expansion of 12.5 to 15.0 μm / m ° C. and a high Vickers hardness.

【0006】[0006]

【課題を解決するための手段】即ち、本発明は、CoO
及びNiOあるいはNiOを基本組成に対する添加剤の
検討をさらに続けた結果、該基本組成物に対してZrO
2 及びHfO2 の少なくとも一種を0.1〜7wt%添
加することにより所望の特性を満たすことを見い出し
た。また、ZrO2 が非安定化ジルコニア及び部分安定
化ジルコニアのいずれでも所望の特性が満たされるが、
後者により一層優れた特性が満たされることを見い出し
た。
That is, the present invention is based on CoO
As a result of further studying the additive of NiO or NiO or NiO to the basic composition, ZrO was added to the basic composition.
It has been found that the desired characteristics are satisfied by adding 0.1 to 7 wt% of at least one of 2 and HfO 2 . In addition, ZrO 2 satisfies the desired properties with both unstabilized zirconia and partially stabilized zirconia.
It has been found that the latter fulfills even better properties.

【0007】即ち、本発明は、CoO及びNiOあるい
はNiOを基本組成として、該組成物の100wt%に
対してZrO2 及びHfO2 の少なくとも一種を0.1
〜7wt%添加したことを特徴とする磁気ヘッド用非磁
性基板を提供する。また、本発明は、前記ZrO2 が部
分安定化ジルコニアであることを特徴とする磁気ヘッド
用磁性基板を提供する。
That is, in the present invention, the basic composition is CoO and NiO or NiO, and 0.1% of at least one of ZrO 2 and HfO 2 is added to 100 wt% of the composition.
Provided is a non-magnetic substrate for a magnetic head, which is characterized by adding ˜7 wt%. The present invention also provides a magnetic substrate for a magnetic head, wherein the ZrO 2 is partially stabilized zirconia.

【0008】本発明の理解を容易にするため以下本発明
の構成を具体的かつ詳細に説明する。基本組成は、Ni
O単独、あるいはNiOとCoOの複合酸化物を意味
し、複合物の組成は例えば、CoO/NiO(モル比)
=1/99〜80/20で、より好ましくは、CoO/
NiO(モル比)=3/97〜60/40である。上記
組成物を100wt%とし、これに対してZrO2 及び
HfO2 の少なくとも一種を0.1〜7wt%添加す
る。ZrO2 及びHfO2 は粒成長抑制効果のある物質
であり、焼結材の結晶粒の粗大化を防止する。この物質
の0.1wt%以上の添加により粒径を抑制し、硬度が
向上する。しかしながら熱膨張率がNiO及びCoOよ
り低いために、添加量は7wt%以内に抑えるのが望ま
しい。添加量は好ましくは、1wt%〜3wt%未満で
ある。
In order to facilitate understanding of the present invention, the structure of the present invention will be described specifically and in detail below. The basic composition is Ni
O means a single oxide or a composite oxide of NiO and CoO, and the composition of the composite is, for example, CoO / NiO (molar ratio).
= 1/99 to 80/20, and more preferably CoO /
NiO (molar ratio) = 3 / 97-60 / 40. The composition is 100 wt%, and 0.1 to 7 wt% of at least one of ZrO 2 and HfO 2 is added thereto. ZrO 2 and HfO 2 are substances having an effect of suppressing grain growth, and prevent coarsening of crystal grains of the sintered material. Addition of 0.1 wt% or more of this substance suppresses the particle size and improves the hardness. However, since the coefficient of thermal expansion is lower than that of NiO and CoO, it is desirable to control the addition amount within 7 wt%. The addition amount is preferably 1 wt% to less than 3 wt%.

【0009】また、使用するZrO2 については部分安
定化したものが望ましい。これは、ZrO2 の相変態に
起因する物性の変化がその耐摩耗性などに好ましくない
からである。すなわち、ZrO2 は昇温時1170℃付
近で単斜晶から正方晶へマルテンサイト変態を起こし、
また降温時では900〜1000℃で逆の変態を起こ
す。この正方晶から単斜晶への変態の際に体積の大きな
変化を生じ、これが焼結特性に影響を与える。この相変
態を抑えるために加える物質が安定化剤である。部分安
定化したものは安定化したものに比べて安定化剤の量が
少ないため、より好ましい。過剰の安定化剤の添加が基
板特性を悪化する可能性があるからである。安定化剤と
しては、ZrO2 と安定化剤の全体に対して1〜17モ
ル%の酸化イットリウム、酸化カルシウム、酸化マグネ
シウム及び酸化セリウムの少なくとも1種または2種以
上を添加することが好ましい。
The ZrO 2 used is preferably partially stabilized. This is because the change in physical properties due to the phase transformation of ZrO 2 is not preferable for its wear resistance. That is, ZrO 2 undergoes a martensitic transformation from monoclinic to tetragonal at around 1170 ° C. when the temperature rises,
When the temperature is lowered, the reverse transformation occurs at 900 to 1000 ° C. During this transformation from tetragonal to monoclinic, a large change in volume occurs, which affects the sintering characteristics. The substance added to suppress this phase transformation is a stabilizer. The partially stabilized one is more preferable because the amount of the stabilizer is smaller than that of the stabilized one. This is because the addition of an excessive amount of stabilizer may deteriorate the substrate characteristics. As the stabilizer, it is preferable to add 1 to 17 mol% of at least one or more of yttrium oxide, calcium oxide, magnesium oxide, and cerium oxide with respect to the total amount of ZrO 2 and the stabilizer.

【0010】次に、基板の製造方法を説明する。市販の
各酸化物を原料として、所望組成になるよう秤量し、ボ
ールミルにより混合する。混合は例えばエタノール中湿
式ボールミルで10ー30時間行なう。乾燥後、混合粉
をCIP成形し、圧粉成形体を例えばArガス中で中8
50〜1100℃で仮焼し、次いで粗砕機を用いて仮焼
体を粉砕し、100〜200μmの篩で篩分けを行な
う。
Next, a method of manufacturing the substrate will be described. Each commercially available oxide is used as a raw material, weighed to have a desired composition, and mixed by a ball mill. The mixing is carried out, for example, in a wet ball mill in ethanol for 10 to 30 hours. After drying, the mixed powder is subjected to CIP molding, and the green compact is molded in Ar gas, for example
It is calcined at 50 to 1100 ° C., then the calcined body is crushed using a coarse crusher, and sieved with a 100 to 200 μm sieve.

【0011】仮焼粉はさらに例えばエタノール中湿式ボ
ールミルで20〜72時間処理し、1μm以下に微粉砕
する。微粉砕粉を造粒後CIP成形し、例えばO2 雰囲
気中で1230〜1400℃で焼結し、その後HIP成
形を行なう。HIP処理条件は、圧力は80〜120M
Pa、温度は1200〜1350℃、処理時間は1〜2
時間が望ましい。このようにして得られた焼結体は、緻
密で岩塩型構造を有し、テープの摺動による摩擦やエッ
ヂ部の欠けが少なく従来の材料よりも優れている。以
下、本発明の実施例について説明する。
The calcined powder is further treated with a wet ball mill in ethanol for 20 to 72 hours, and finely pulverized to 1 μm or less. The finely pulverized powder is granulated and then subjected to CIP molding, for example, sintered at 1230 to 1400 ° C. in an O 2 atmosphere, and then subjected to HIP molding. The HIP processing condition is that the pressure is 80 to 120M.
Pa, temperature is 1200 to 1350 ° C., treatment time is 1 to 2
Time is desirable. The sintered body obtained in this manner has a dense and rock-salt type structure, is less likely to cause friction due to the sliding of the tape, and is not damaged at the edge portion, and is superior to conventional materials. Examples of the present invention will be described below.

【0012】[0012]

【実施例】【Example】

実施例1 CoO及びNiOを原料としてCoNiO2 組成(Co
O/NiO(モル比)=50/50)となるように配合
量を調整して混合した。得られた混合物をArガス中で
1000℃で仮焼した後、エタノールを使用する湿式ボ
ールミルで22時間粉砕した。この粉砕粉にイットリア
安定化ZrO2 (3モル%イットリア)を表1の割合で
添加し、混合し、CIP成形した後、O2 雰囲気中13
50℃で焼結した。得られた焼結体を1250℃、10
0MPa、1時間の条件でHIP処理を行なった。HI
P処理された焼結体の相対密度は99%を超える値であ
った。焼結体のビッカース硬度(Hv)、熱膨張率
(α:μm/m℃−(100〜400℃の温度範囲で測
定)を表1に示す。表中には、比較例としてチタン酸バ
リウムの特性を併記した。また、ZrO2が8wt%以
上の場合についても併記した。ZrO2 が8wt%以上
では熱膨張率が小さすぎることを確認した。またZrO
2 無添加では硬度(Hv)が650と低く好ましくな
い。またチタン酸バリウムは熱膨張率が小さすぎること
を確認した。
Example 1 Using CoO and NiO as raw materials, a CoNiO 2 composition (Co
The blending amounts were adjusted and mixed so that O / NiO (molar ratio) = 50/50). The obtained mixture was calcined in Ar gas at 1000 ° C., and then pulverized with a wet ball mill using ethanol for 22 hours. Yttria-stabilized ZrO 2 (3 mol% yttria) was added to this pulverized powder in the ratio shown in Table 1, mixed, and CIP-molded, and then in an O 2 atmosphere.
Sintered at 50 ° C. The obtained sintered body was heated at 1250 ° C. for 10
HIP treatment was performed under the conditions of 0 MPa and 1 hour. HI
The relative density of the P-treated sintered body was a value exceeding 99%. The Vickers hardness (Hv) and the coefficient of thermal expansion (α: μm / m ° C .- (measured in a temperature range of 100 to 400 ° C.)) of the sintered body are shown in Table 1. In the table, barium titanate of Comparative Example is used. properties were also shown. Further, it was confirmed that .ZrO 2 to ZrO 2 is also shown together in the case of more than 8 wt%, the thermal expansion ratio is too small for more than 8 wt%. the ZrO
2 Without addition, the hardness (Hv) is as low as 650, which is not preferable. It was also confirmed that barium titanate has a too small coefficient of thermal expansion.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例2 CoO及びNiOを原料としてCoO/NiO(モル
比)=35/65組成となるように調整し、この組成
(100wt%)にイットリア安定化ZrO2(3モル
%イットリア)を2wt%添加し、混合した。混合は、
エタノールを使用した湿式ボールミルで20時間行なっ
た。この混合粉をArガス中で1000℃で仮焼した
後、エタノールを使用した湿式ボールミルで40時間粉
砕した。この粉砕粉をCIP成形後酸素雰囲気中135
0℃で焼結した。これを1250℃、100MPa、1
時間の条件でHIP処理を行なった。HIP処理された
焼結体の相対密度は99%を超える値であった。
Example 2 CoO and NiO were used as raw materials and adjusted so that CoO / NiO (molar ratio) = 35/65 composition, and yttria-stabilized ZrO 2 (3 mol% yttria) was added to this composition (100 wt%). 2 wt% was added and mixed. Mixing
It was carried out for 20 hours with a wet ball mill using ethanol. The mixed powder was calcined in Ar gas at 1000 ° C. and then pulverized with a wet ball mill using ethanol for 40 hours. After crushing the crushed powder into CIP, 135 in an oxygen atmosphere
Sintered at 0 ° C. This is 1250 ℃, 100MPa, 1
HIP processing was performed under the conditions of time. The relative density of the HIP-treated sintered body was a value exceeding 99%.

【0014】比較例として、実施例と同じ基本組成(1
00wt%)にイットリア安定化ZrO2 を加えず、代
わりにアルミナ2wt%、イットリア2wt%をそれぞ
れ添加し、実施例と同じ条件で焼結し、HIP処理をし
た焼結体を作製した。焼結体の相対密度は、何れも99
%を超える値であった。これらの焼結体の熱膨張率を測
定したところ、アルミナ、イットリア、イットリア安定
化ジルコニア添加したそれぞれ組成について13.8、
14.2、14.4(μm/m℃)の値を得た。
As a comparative example, the same basic composition (1
Yttria-stabilized ZrO 2 was not added to (00 wt%), but alumina 2 wt% and yttria 2 wt% were added instead, and sintering was performed under the same conditions as in the example to produce a HIP-treated sintered body. The relative density of the sintered body is 99
It was a value exceeding%. The coefficient of thermal expansion of these sintered bodies was measured. As a result, 13.8 was obtained for each composition containing alumina, yttria, and yttria-stabilized zirconia.
Values of 14.2 and 14.4 (μm / m ° C.) were obtained.

【0015】次にこれらの焼結体を磁性膜構造体を取り
つけない状態でヘッド形状に加工し、業務用VTRデッ
キを市販のVTRテープ用に改造した試験VTRデッキ
に取りつけ、23℃に空調した室内でVTRテープの長
時間再生をする方法で、実機による摩耗試験を行なっ
た。試験時間300時間後の摩耗量を測定したところ、
イットリア添加、アルミナ添加、イットリア安定化ジル
コニア添加の順で耐摩耗性が優れていることが確認され
た。さらに1000時間ではジルコニア添加材料は、ア
ルミナ添加材料の1/2の摩耗量であった。即ち、イッ
トリア添加、アルミナ添加に比べ、イットリア安定化ジ
ルコニア添加の材料は耐摩耗性に優れ、しかも熱膨張率
も高いことが確認された。
Next, these sintered bodies were processed into a head shape without mounting the magnetic film structure, and the commercial VTR deck was mounted on a test VTR deck modified for a commercially available VTR tape and air-conditioned at 23 ° C. A wear test with an actual machine was performed by a method of reproducing the VTR tape for a long time indoors. When the amount of wear after the test time of 300 hours was measured,
It was confirmed that the wear resistance was excellent in the order of yttria addition, alumina addition, and yttria-stabilized zirconia addition. Further, after 1000 hours, the amount of wear of the zirconia-added material was half that of the alumina-added material. That is, it was confirmed that the material to which yttria-stabilized zirconia was added was superior in wear resistance and the coefficient of thermal expansion was also higher than those to which yttria and alumina were added.

【0016】実施例3 CoO及びNiOを原料としてCoO/NiO(モル
比)=35/65組成となるように調整し、この組成
(100wt%)に安定化を施していないZrO2を2
wt%添加し、混合した。1000℃で仮焼後、エタノ
ール使用の湿式ボールミルで40時間粉砕した。この粉
砕粉をCIP成形後酸素中1350℃で焼結した。これ
を1250℃、100MPa、1時間の条件でHIP処
理を行なった。焼結体の相対密度は98%であり、イッ
トリア安定化ZrO2 を用いた実施例2より低い値であ
った。また、HIP処理を経た焼結体の硬度、粒径の平
均値はそれぞれ、Hv660、6.5μmであり、とも
にイットリア安定化ZrO2 を用いた実施例2(Hv7
00,5.7μm)より悪い値であり、イットリア安定
化ZrO2 を使用した方が好ましい値であることが確認
された。
Example 3 CoO and NiO were used as raw materials and adjusted so as to have a composition of CoO / NiO (molar ratio) = 35/65, and this composition (100 wt%) contained 2 parts of unstabilized ZrO 2 .
wt% was added and mixed. After calcination at 1000 ° C., it was crushed for 40 hours by a wet ball mill using ethanol. The crushed powder was CIP molded and then sintered in oxygen at 1350 ° C. This was subjected to HIP treatment under the conditions of 1250 ° C., 100 MPa, and 1 hour. The relative density of the sintered body was 98%, which was lower than that of Example 2 using yttria-stabilized ZrO 2 . The hardness and the average particle size of the HIP-treated sintered body were Hv660 and 6.5 μm, respectively, and Example 2 (Hv7) using Yttria-stabilized ZrO 2 was used.
00, 5.7 μm), and it was confirmed that the use of yttria-stabilized ZrO 2 was a preferable value.

【0017】[0017]

【発明の効果】以上説明したように、本組成の非磁性基
板は熱膨張率及び硬度とも磁性膜構造体とほぼ同等の特
性を得ることができる。このため本発明の非磁性基板を
磁気ヘッドを使用することにより磁性膜構造体の剥離や
クラックの発生を著しく防止できる。さらに硬度を高め
ることにより磁気ヘッドの短寿命化や非磁性基板の変
形、割れ等を抑えることができ、ヘッドの耐摩耗性、耐
久性に特にすぐれている利点がある。
As described above, the non-magnetic substrate having the composition of the present invention can obtain substantially the same thermal expansion coefficient and hardness as the magnetic film structure. Therefore, by using the non-magnetic substrate of the present invention with a magnetic head, peeling or cracking of the magnetic film structure can be significantly prevented. Further, by increasing the hardness, it is possible to shorten the life of the magnetic head and suppress the deformation and cracking of the non-magnetic substrate, and there is an advantage that the wear resistance and durability of the head are particularly excellent.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CoO及びNiOあるいはNiOを基本
組成として、該組成物の100wt%に対してZrO2
及びHfO2 の少なくとも一種を0.1〜7wt%添加
したことを特徴とする磁気ヘッド用非磁性基板。
1. A basic composition of CoO and NiO or NiO is used, and ZrO 2 is added to 100 wt% of the composition.
And at least one of HfO 2 in an amount of 0.1 to 7 wt% is added to the non-magnetic substrate for a magnetic head.
【請求項2】請求項1記載の磁気ヘッド用非磁性基板に
おいて、前記ZrO2 が部分安定化ジルコニアであるこ
とを特徴とする磁気ヘッド用磁性基板。
2. The non-magnetic substrate for a magnetic head according to claim 1, wherein the ZrO 2 is partially stabilized zirconia.
JP3311489A 1990-12-12 1991-10-31 Nonmagnetic substrate for magnetic head Pending JPH0567508A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69108874T DE69108874T2 (en) 1990-12-12 1991-12-10 Non-magnetic substrate of a magnetic head, magnetic head and substrate manufacturing processes.
EP91121177A EP0490345B1 (en) 1990-12-12 1991-12-10 Non-magnetic substrate of magnetic head, Magnetic head and method for producing substrate
US07/805,173 US5242865A (en) 1990-12-12 1991-12-11 Non-magnetic substrate of magnetic head

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP40987490 1990-12-12
JP5026191 1991-02-25
JP3-50261 1991-04-30
JP3-124614 1991-04-30
JP2-409874 1991-04-30
JP12461491 1991-04-30

Publications (1)

Publication Number Publication Date
JPH0567508A true JPH0567508A (en) 1993-03-19

Family

ID=27293901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3311489A Pending JPH0567508A (en) 1990-12-12 1991-10-31 Nonmagnetic substrate for magnetic head

Country Status (1)

Country Link
JP (1) JPH0567508A (en)

Similar Documents

Publication Publication Date Title
JPH062615B2 (en) Magnetic head slider material
JPH0567508A (en) Nonmagnetic substrate for magnetic head
JP2708160B2 (en) Ferrite manufacturing method
EP0490345B1 (en) Non-magnetic substrate of magnetic head, Magnetic head and method for producing substrate
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
KR970006797B1 (en) Non-magnetic ceramic substrate material for magnetic head
JP2949297B2 (en) Porcelain composition for magnetic head
JPH1079308A (en) Hematite material for magnetic head and manufacture thereof
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
KR0143068B1 (en) A method of oxide magnetized material
JPH04269809A (en) Nonmagnetic substrate for magnetic head
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JPH05283230A (en) Nonmagnetic board for magnetic head
JPH04251416A (en) Nonmagnetic substrate for magnetic head
JPH0776125B2 (en) Non-magnetic porcelain material for magnetic head and manufacturing method thereof
JPH07141612A (en) Nonmagnetic substrate for magnetic head
JPH0717765A (en) Production of cao-tio2 series ceramic
JPH04269810A (en) Nonmagnetic substrate for magnetic head
JPH05129118A (en) Non-magnetic substrate for magnetic head
JPH04269811A (en) Nonmagnetic substrate for magnet head
JPH0642407B2 (en) Non-magnetic substrate for magnetic head
JPH09255422A (en) Slider material for magnetic head
JPS59213670A (en) Ceramic composition for magnetic head
JPH04279012A (en) Nonmagnetic substrate for magnetic head
JPH062616B2 (en) Ceramic material for magnetic head slider