JPH0567030U - Tunable solid-state laser - Google Patents

Tunable solid-state laser

Info

Publication number
JPH0567030U
JPH0567030U JP468892U JP468892U JPH0567030U JP H0567030 U JPH0567030 U JP H0567030U JP 468892 U JP468892 U JP 468892U JP 468892 U JP468892 U JP 468892U JP H0567030 U JPH0567030 U JP H0567030U
Authority
JP
Japan
Prior art keywords
resonator
laser
wavelength
temperature
laser crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP468892U
Other languages
Japanese (ja)
Inventor
尚樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP468892U priority Critical patent/JPH0567030U/en
Publication of JPH0567030U publication Critical patent/JPH0567030U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 機械的な可動部の要らない構成とし、小型
化、低価格化、高信頼性化を向上させることができる波
長可変固体レーザを実現する。 【構成】 非常に薄い波長可変レーザ結晶の両面に高効
率の反射膜を施して形成した共振器、または非常に薄い
波長可変レーザ結晶と非常に薄く温度による光路長変化
の大きい透明な物質を重ね合わせて両面に高効率の反射
膜を施して形成した共振器と、前記共振器の温度を制御
して波長選択を可能とするための恒温槽と、前記共振器
を通ったレーザ光をシード光とするレーザ増幅器として
の波長可変レーザ結晶とを備えた構成としたことを特徴
とするものである。
(57) [Summary] (Modified) [Purpose] To realize a wavelength tunable solid-state laser that has a structure that does not require a mechanically movable part and that can improve miniaturization, cost reduction, and high reliability. [Structure] A cavity formed by applying highly efficient reflective films on both sides of an extremely thin wavelength tunable laser crystal, or an extremely thin wavelength tunable laser crystal and an extremely thin transparent material with a large optical path length change due to temperature In addition, a resonator formed by applying a high-efficiency reflective film on both sides, a thermostat for controlling the temperature of the resonator to enable wavelength selection, and a laser beam that has passed through the resonator are used as seed light. And a variable wavelength laser crystal as a laser amplifier.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、Ti:Al23(チタン:サファイヤ)やアレキサンドライトなど を用いた波長可変固体レーザに関するものである。The present invention relates to a tunable solid-state laser using Ti: Al 2 O 3 (titanium: sapphire), alexandrite, or the like.

【0002】[0002]

【従来の技術】[Prior Art]

波長可変レーザは将来の分光分析の要とも言えるデバイスであり、その中でも 、レーザ媒質にTi:Al23やアレキサンドライトなどを用いた波長可変固体 レーザは、信頼性が高く、取扱易いという利点を有している。ここで、図3は、 レーザ媒質にTi:Al23を用いた波長可変固体レーザの一般的な構成例を示 す図である。図3において、波長の選択は、(イ)図では、プリズムの角度を変 化させることにより、波長の選択を行い、また、(ロ)図では、回折格子に対向 した平面鏡の角度を変化させることにより、波長の選択を行うようにしていた。A tunable laser is a device that can be said to be the key to future spectroscopic analysis. Among them, a tunable solid-state laser using Ti: Al 2 O 3 or alexandrite as a laser medium has the advantages of high reliability and easy handling. Have Here, FIG. 3 is a diagram showing a general configuration example of a wavelength tunable solid-state laser using Ti: Al 2 O 3 as a laser medium. In FIG. 3, the wavelength is selected by changing the angle of the prism in (a), and the angle of the plane mirror facing the diffraction grating is changed in (b). Therefore, the wavelength is selected.

【0003】 しかしながら、このような構成の場合、共振器の調整が大変であり、また、波 長選択のためのプリズムや平面鏡を可動させるための機械的な可動部が必要であ るため、装置が大型で、波長選択速度が遅く、機械的な波長とびがあるなどの問 題点があった。However, in the case of such a configuration, it is difficult to adjust the resonator, and a mechanical movable portion for moving the prism or the plane mirror for selecting the wavelength is required, so that the device Is large, the wavelength selection speed is slow, and there are mechanical wavelength jumps.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

本考案は上記従来技術の課題を踏まえて成されたものであり、機械的な可動部 の要らない構成とし、小型化、低価格化、高信頼性化を向上させた波長可変固体 レーザを提供することを目的としたものである。 The present invention has been made in view of the above-mentioned problems of the prior art, and provides a wavelength tunable solid-state laser that has a configuration that does not require a mechanical moving part, and that has improved miniaturization, cost reduction, and high reliability. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

上記課題を解決するための本考案の構成は、 非常に薄い波長可変レーザ結晶の両面に高効率の反射膜を施して形成した共振 器、または非常に薄い波長可変レーザ結晶と非常に薄く温度による光路長変化の 大きい透明な物質を重ね合わせて両面に高効率の反射膜を施して形成した共振器 と、 前記共振器の温度を制御して波長選択を可能とするための恒温槽と、 前記共振器を通ったレーザ光をシード光とするレーザ増幅器としての波長可変 レーザ結晶と を備えた構成としたことを特徴とするものである。 The configuration of the present invention for solving the above-mentioned problems is based on a resonator formed by applying highly efficient reflection films on both sides of a very thin wavelength tunable laser crystal, or an extremely thin wavelength tunable laser crystal and an extremely thin temperature. A resonator formed by superimposing a transparent material having a large change in optical path length on both surfaces and applying a highly efficient reflection film, a thermostatic chamber for controlling the temperature of the resonator to enable wavelength selection, and The laser light passing through the resonator is used as a seed light, and the wavelength tunable laser crystal is used as a laser amplifier.

【0006】[0006]

【作用】[Action]

本考案によれば、温度変化により屈折率を変化させて、波長を可変させる構成 としており、機械的な可動部がなくとも、高効率で波長を可変できる。 According to the present invention, the wavelength is tunable by changing the refractive index due to the temperature change, and the wavelength can be tuned with high efficiency even without a mechanically movable part.

【0007】[0007]

【実施例】【Example】

以下、本考案を図面に基づいて説明する。 図1は本考案の波長可変固体レ−ザの一実施例を示す構成図である。図1にお いて、1は10〜数100μm程度に非常に薄い波長可変レーザ結晶の両面に高 効率の反射膜を施して形成した共振器、2は共振器1の温度を制御する恒温槽、 3は励起レーザ光を共振器1へ集光して、励起効率を上げるためのレンズ、4は レーザ増幅器として用いる波長可変レーザ結晶、5は共振器1を通ってきた励起 光を再び集光し、波長可変レーザ結晶4の励起効率を上げるためのレンズであり 、励起レーザ光は、レンズ3により恒温槽2内に保持された共振器1に集光され 、共振器1を通った励起光は、レンズ5に集光されて、レーザ増幅器4に入射さ れ、増幅されて出力される。この場合の波長の選択は、恒温槽2内に保持された 共振器1の光路長を温度により変化させることにより行う。 Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a variable wavelength solid-state laser of the present invention. In FIG. 1, reference numeral 1 is a resonator formed by applying highly efficient reflection films on both surfaces of a wavelength tunable laser crystal having a very thin thickness of about 10 to several 100 μm, and 2 is a thermostatic chamber for controlling the temperature of the resonator 1. Reference numeral 3 is a lens for focusing the pumping laser light on the resonator 1 to improve the pumping efficiency, 4 is a wavelength tunable laser crystal used as a laser amplifier, 5 is again focusing the pumping light that has passed through the resonator 1. Is a lens for increasing the excitation efficiency of the wavelength tunable laser crystal 4. The excitation laser light is focused by the lens 3 on the resonator 1 held in the constant temperature bath 2, and the excitation light passing through the resonator 1 is The light is focused on the lens 5, is incident on the laser amplifier 4, is amplified, and is output. In this case, the wavelength is selected by changing the optical path length of the resonator 1 held in the constant temperature bath 2 depending on the temperature.

【0008】 このような構成において、例えば、図1では波長可変レーザ結晶としてTi: Al23結晶を用いたとして説明する。仮に、発振波長λ=800nm、共振器 長L=20μmとすると、 Δλ/λ=λ/2L より、縦モード間隔Δλ=16nmとなる。したがって、共振器1の波長可変レ ーザ結晶の両面に施すコーティングを800±10nm程度で高効率の反射率を 持つようにすれば、このレーザはシングルモードで発振する。この発振波長は、 恒温槽2により温度制御して、共振器1の光路長を変化させることで可能である 。しかし、Ti:Al23結晶だけでは、この変化は小さいため、図2に示すよ うに、共振器1として、波長可変レーザ結晶と温度による光路長変化の大きい透 明な物質を重ね合わせて両面に高効率の反射膜を施した構成としても良い。この 場合、dn/dT=10-4/℃、およびdL/dT=10-4/℃の物質を用いて 、温度を100℃程度変化させれば、Δλ/λ=ΔL/Lより、Δλ=16nm 程度の可変幅が得られるが、このように薄いレーザ結晶は、一般にスレーショー ルドが高く、発振しずらいが、薄いため、ポンプ光を一般の1/10程度に絞れ ること、また、波長可変幅を数十nmに限れば、ミラーの反射率をかなり上げら れることの2点を考慮すれば発振可能である。しかし、出射パワーは低いため、 実使用上、共振器1を通ったレーザ光をシード光とするレーザ増幅器として、図 1に示す波長可変レーザ結晶4を用いて、レーザ増幅している。In such a configuration, for example, in FIG. 1, description will be made assuming that a Ti: Al 2 O 3 crystal is used as the wavelength tunable laser crystal. If the oscillation wavelength λ = 800 nm and the resonator length L = 20 μm, then the longitudinal mode interval Δλ = 16 nm from Δλ / λ = λ / 2L. Therefore, if the coating on both sides of the wavelength tunable laser crystal of the resonator 1 is made to have a highly efficient reflectance at about 800 ± 10 nm, this laser oscillates in a single mode. The oscillation wavelength can be controlled by controlling the temperature in the constant temperature bath 2 and changing the optical path length of the resonator 1. However, since this change is small only with the Ti: Al 2 O 3 crystal, as shown in FIG. 2, as the resonator 1, a tunable laser crystal and a transparent substance having a large optical path length change with temperature are superposed. A structure in which highly efficient reflective films are applied to both surfaces may be used. In this case, using a substance of dn / dT = 10 −4 / ° C. and dL / dT = 10 −4 / ° C., if the temperature is changed by about 100 ° C., Δλ / λ = ΔL / L yields Δλ = Although a variable width of about 16 nm can be obtained, such a thin laser crystal generally has a high threshold and is difficult to oscillate, but since it is thin, the pump light can be narrowed down to about 1/10 of the general wavelength and Oscillation is possible if the variable width is limited to several tens of nm, considering that the reflectivity of the mirror can be considerably increased. However, since the emission power is low, in actual use, the wavelength tunable laser crystal 4 shown in FIG. 1 is used for laser amplification as a laser amplifier that uses the laser light that has passed through the resonator 1 as seed light.

【0009】 このように、本考案では、温度変化により屈折率を変化させて、波長を可変さ せる構成としており、機械的な可動部がなくとも、高効率で波長を可変できる。As described above, in the present invention, the wavelength can be tuned by changing the refractive index according to the temperature change, and the wavelength can be tuned with high efficiency even without a mechanically movable part.

【0010】 なお、上記実施例では、温度で屈折率を変化させたが、磁場や電場によっても 変化させることができる。この場合、温度で変化させる場合に比べて、広い波長 可変幅は得られないが、非常に高速での変化が可能であるため、FM変調が可能 となる。Although the refractive index is changed with temperature in the above embodiment, it can be changed with a magnetic field or an electric field. In this case, a wider wavelength tunable range cannot be obtained as compared with the case where the temperature is changed, but since the change can be performed at a very high speed, FM modulation can be performed.

【0011】[0011]

【考案の効果】[Effect of the device]

以上、実施例と共に具体的に説明したように、本考案によれば、波長選択のた めに、プリズムや回折格子に対向した平面鏡の角度を変化させるための可動部が 必要なく、共振器も単純であるため、 ・小型で安価 ・共振器の調整が必要ない ・信頼性が高く、機械的なガタによる波長とびがない また、従来は、分解能の高い高価なグレーティングかエタロンが必要であった が、共振器の縦モードを用いているために、縦シングルモードが得られるなどの 効果を有する波長可変固体レーザを実現できる。 As described above in detail with reference to the embodiments, according to the present invention, for wavelength selection, there is no need for a movable part for changing the angle of a plane mirror facing a prism or a diffraction grating, and a resonator is also used. Because it is simple, it is small and inexpensive. No adjustment of the resonator is required. It is highly reliable and there is no wavelength skip due to mechanical rattling. In the past, expensive gratings or etalons with high resolution were required. However, since the longitudinal mode of the resonator is used, it is possible to realize a tunable solid-state laser having effects such as obtaining a longitudinal single mode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の波長可変固体レ−ザの一実施例を示す
構成図である。
FIG. 1 is a block diagram showing an embodiment of a wavelength tunable solid-state laser of the present invention.

【図2】本考案の波長可変固体レーザに用いる共振器の
他の実施例を示す構成図である
FIG. 2 is a configuration diagram showing another embodiment of a resonator used in the wavelength tunable solid-state laser of the present invention.

【図3】波長可変固体レーザの従来例を示す構成図であ
る。
FIG. 3 is a configuration diagram showing a conventional example of a tunable solid-state laser.

【符号の説明】[Explanation of symbols]

1 共振器 2 恒温槽 3、5 レンズ 4 増幅器 1 Resonator 2 Constant temperature bath 3, 5 Lens 4 Amplifier

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 非常に薄い波長可変レーザ結晶の両面に
高効率の反射膜を施して形成した共振器、または非常に
薄い波長可変レーザ結晶と非常に薄く温度による光路長
変化の大きい透明な物質を重ね合わせて両面に高効率の
反射膜を施して形成した共振器と、 前記共振器の温度を制御して波長選択を可能とするため
の恒温槽と、 前記共振器を通ったレーザ光をシード光とするレーザ増
幅器としての波長可変レーザ結晶とを備えた構成とした
ことを特徴とする波長可変固体レーザ。
1. A resonator formed by applying a highly efficient reflection film on both sides of a very thin wavelength tunable laser crystal, or a very thin wavelength tunable laser crystal and a very thin transparent material which has a large optical path length change with temperature. A resonator formed by superimposing a high-efficiency reflective film on both sides, a thermostatic chamber for controlling the temperature of the resonator to enable wavelength selection, and a laser beam passing through the resonator. A tunable solid-state laser having a structure including a tunable laser crystal as a laser amplifier using seed light.
JP468892U 1992-02-07 1992-02-07 Tunable solid-state laser Withdrawn JPH0567030U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP468892U JPH0567030U (en) 1992-02-07 1992-02-07 Tunable solid-state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP468892U JPH0567030U (en) 1992-02-07 1992-02-07 Tunable solid-state laser

Publications (1)

Publication Number Publication Date
JPH0567030U true JPH0567030U (en) 1993-09-03

Family

ID=11590837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP468892U Withdrawn JPH0567030U (en) 1992-02-07 1992-02-07 Tunable solid-state laser

Country Status (1)

Country Link
JP (1) JPH0567030U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199288A (en) * 2009-02-25 2010-09-09 Hamamatsu Photonics Kk Pulse laser apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199288A (en) * 2009-02-25 2010-09-09 Hamamatsu Photonics Kk Pulse laser apparatus

Similar Documents

Publication Publication Date Title
US5365539A (en) Microchip laser
US5402437A (en) Microchip laser
JPH025490A (en) Solid state microlaser
JPH09260753A (en) External resonator-type variable wavelength light source
US4911512A (en) Waveguide type optical head
JPH1093182A (en) Frequency conversion solid-state laser, frequency-doubling solid-state laser device, and frequency conversion coupling resonance cavity
US5497387A (en) Solid-state laser using wedge-shaped optical member, and method for manufacturing the same
JPH0567030U (en) Tunable solid-state laser
JPH05121803A (en) Semiconductor excitation solid-state laser
JP3366160B2 (en) Harmonic output stabilization method and short wavelength laser light source using the same
JP3176682B2 (en) Tunable laser device
JP2001284719A (en) External resonance type semiconductor laser
JP3390493B2 (en) Stabilized harmonic generator
JPH01312529A (en) Nonlinear optical element
JP3031740B2 (en) Harmonic generator
JP3526282B2 (en) Harmonic output stabilization method and short wavelength laser light source using the same
JPH05211363A (en) Laser oscillation device
JPH04157778A (en) Laser diode pumping solid state laser
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
JPH05167146A (en) Solid-state laser equipment
JP2734557B2 (en) Laser Resonator and Laser Resonant Optical Pickup of Semiconductor Laser Pumped Solid State Laser
JP2900576B2 (en) Harmonic generator
JP2931116B2 (en) Tunable laser device
JP2674288B2 (en) Solid-state laser device
JP2840871B2 (en) Method and apparatus for generating visible coherent light

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19960606