JPH0566971B2 - - Google Patents
Info
- Publication number
- JPH0566971B2 JPH0566971B2 JP12309786A JP12309786A JPH0566971B2 JP H0566971 B2 JPH0566971 B2 JP H0566971B2 JP 12309786 A JP12309786 A JP 12309786A JP 12309786 A JP12309786 A JP 12309786A JP H0566971 B2 JPH0566971 B2 JP H0566971B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- magnet
- output
- electromagnetic flowmeter
- correction signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 12
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 230000004907 flux Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 230000032683 aging Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電磁流量計に関し、特に液体金属の
ような高温の導電性流体流量を測定する流量計に
おいて、磁石の経年変化或いは温度条件の変化に
よる磁束温度の減少を補償するようにした電磁流
量計に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electromagnetic flowmeter, and particularly in a flowmeter that measures the flow rate of a high-temperature conductive fluid such as a liquid metal, the present invention relates to an electromagnetic flowmeter that measures the flow rate of a high-temperature conductive fluid such as a liquid metal. This invention relates to an electromagnetic flowmeter that compensates for a decrease in magnetic flux temperature due to changes.
一般に、導電性流体の流量測定に電磁流量計が
使用されている。第4図はかかる電磁流量計の原
理図で、磁束密度Bの磁界中を導電性流体が磁界
と直角に速度vで運動するとき、導電性流体中に
は、起電力e=v×Bが誘起される。この起電力
eは速度vに比例するので、起電力eを測定する
ことにより導電性流体の流速或いは流量を測定す
ることができる。
Generally, electromagnetic flowmeters are used to measure the flow rate of conductive fluids. Figure 4 is a diagram showing the principle of such an electromagnetic flowmeter. When a conductive fluid moves in a magnetic field with a magnetic flux density B at a speed v perpendicular to the magnetic field, an electromotive force e=v×B is generated in the conductive fluid. induced. Since this electromotive force e is proportional to the velocity v, the flow velocity or flow rate of the conductive fluid can be measured by measuring the electromotive force e.
第5図はこのような電磁流量計の基本構成を示
す図である。図中、41は導電性流体、42は配
管、43は永久磁石、44はヨーク、45,46
は検出電極、47は出力リード線、48は保温材
である。 FIG. 5 is a diagram showing the basic configuration of such an electromagnetic flowmeter. In the figure, 41 is a conductive fluid, 42 is a pipe, 43 is a permanent magnet, 44 is a yoke, 45, 46
4 is a detection electrode, 47 is an output lead wire, and 48 is a heat insulating material.
図において、導電性流体41が流れる配管42
の外側に馬蹄型の永久磁石43を設置し、流体の
流れる方向と直角に磁界を与え、検出電極45,
46で誘起起電力を測定することにより流量測定
を行うことができる。 In the figure, a pipe 42 through which a conductive fluid 41 flows
A horseshoe-shaped permanent magnet 43 is installed on the outside of the detection electrode 45, which applies a magnetic field perpendicular to the direction of fluid flow.
Flow rate measurement can be performed by measuring the induced electromotive force at 46.
ところで、電磁流量計で導電性流体の流量を測
定する場合、流量計の構成材である永久磁石43
が温度係数を持つと共に、導電性流体の近傍に配
置されているため、導電性流体の温度上昇にとも
なつて永久磁石の温度も上昇し、その結果発生磁
束密度が低下して流量計出力は低下し、正確な流
量測定ができなくなつてしまう。特に、導電性流
体が液体金属等の場合のように高温のときは、導
電性流体の温度による磁束密度の変化巾が大き
く、流量計出力感度も大きく変化してしまい、正
確な流量測定が出来なくなつてしまうこととな
る。 By the way, when measuring the flow rate of a conductive fluid with an electromagnetic flowmeter, the permanent magnet 43, which is a component of the flowmeter,
has a temperature coefficient and is placed near the conductive fluid, so as the temperature of the conductive fluid increases, the temperature of the permanent magnet also increases, resulting in a decrease in the generated magnetic flux density and the flowmeter output. As a result, accurate flow measurement becomes impossible. In particular, when the conductive fluid is at a high temperature such as liquid metal, the range of change in magnetic flux density due to the temperature of the conductive fluid is large, and the flowmeter output sensitivity also changes greatly, making accurate flow measurement impossible. It will disappear.
また、磁石の経年変化によつても磁束密度が減
少し、出力低下を生じる。 Furthermore, the magnetic flux density decreases due to aging of the magnet, resulting in a decrease in output.
そこで、磁石の経年変化或いは温度条件変化に
よる発生磁束密度の減少の影響が出力に現れない
ようにするために、例えば、ホール素子を磁石に
取付けて磁束密度を検出し、検出出力を基準値と
比較し、基準値からのずれに応じて磁石の励磁コ
イルを励磁することにより、発生磁束密度を常時
一定にするように制御するものや、磁極間エアギ
ヤツプ長を可変に構成し、磁石の磁気強度を測定
して磁気強度が一定になるように磁極間エアギヤ
ツプ長を変えるようにするもの等が提案されてい
る。 Therefore, in order to prevent the output from being affected by the decrease in the generated magnetic flux density due to aging of the magnet or changes in temperature conditions, for example, a Hall element is attached to the magnet to detect the magnetic flux density, and the detected output is used as the reference value. Some control the generated magnetic flux density to be constant at all times by energizing the excitation coil of the magnet according to the deviation from the reference value, while others control the magnetic flux density by making the air gap length between the magnetic poles variable and adjusting the magnetic strength of the magnet. A method has been proposed in which the length of the air gap between the magnetic poles is changed so that the magnetic strength is constant.
しかしながら、例えばホール素子を磁石に取付
けて磁束密度を検出し、磁束密度が一定になるよ
うに磁石の励磁を制御するものでは、ホール素子
が高温状態や放射線雰囲気中では使用不可能であ
ると共に、耐久性に問題があり、さらに励磁回路
やコイル電源の設備が必要となつて装置が大型に
なつてしまう欠点がある。また磁極間エアギヤツ
プ長を可変に構成し、磁石の磁気強度を測定して
磁気強度が一定になるように磁極間エアギヤツプ
長を変えるようにするものでは、装置が大型化す
ると共に、ギヤツプ長を変えたときに、磁束分布
が変化してしまつたり、また温度変化に対する応
答性の点でも問題があつた。
However, in the case where, for example, a Hall element is attached to a magnet to detect the magnetic flux density and the excitation of the magnet is controlled so that the magnetic flux density is constant, the Hall element cannot be used in high temperature conditions or in a radiation atmosphere. There are problems with durability, and there is also the disadvantage that equipment for an excitation circuit and coil power source is required, making the device large. In addition, if the length of the air gap between the magnetic poles is made variable and the magnetic strength of the magnet is measured and the length of the air gap between the magnetic poles is changed to keep the magnetic strength constant, the device becomes larger and the length of the air gap between the magnetic poles is changed. When the temperature changes, the magnetic flux distribution changes, and there are also problems with responsiveness to temperature changes.
また、従来の電磁流量計は、装置が大型化する
ので重量が非常に大きく、プラント設計上及び施
工上面倒であると共に、流量計自体高価であつ
た。 In addition, conventional electromagnetic flowmeters are large in size and therefore very heavy, which is troublesome in terms of plant design and construction, and the flowmeter itself is expensive.
本発明は上記問題点を解決するためのもので、
磁石の経年変化や温度条件変化により生ずる電磁
流量計出力低下をなくすと共に、小型化、軽量化
が可能であり、プラント設計及び施工が容易な電
磁流量計を提供することを目的とする。 The present invention is intended to solve the above problems,
The purpose of the present invention is to provide an electromagnetic flowmeter that eliminates the decrease in electromagnetic flowmeter output caused by aging of magnets or changes in temperature conditions, can be made smaller and lighter, and is easy to design and install in a plant.
そのために本発明の電磁流量計は、導電性流体
が流れる配管の管軸に垂直に磁界を印加する磁石
と、導電性流体中に誘起された誘起電圧を検出す
る検出電極と、磁石の温度変化に応じた出力補正
信号を発生する補正信号発生手段と、検出電極か
らの検出出力が入力されると共に、補正信号発生
手段からの出力補正信号が可変ゲイン増幅器を介
して入力される演算手段とを備えたことを特徴と
する。
To this end, the electromagnetic flowmeter of the present invention includes a magnet that applies a magnetic field perpendicular to the axis of the pipe in which the conductive fluid flows, a detection electrode that detects the induced voltage induced in the conductive fluid, and a temperature change in the magnet. a correction signal generation means for generating an output correction signal according to the output correction signal; and an arithmetic means for receiving the detection output from the detection electrode and inputting the output correction signal from the correction signal generation means via a variable gain amplifier. It is characterized by having
本発明の電磁流量計は、導電性流体が流れる配
管の管軸に磁界を印加する磁石の温度に応じて温
度補正信号を発生させ、これを可変ゲイン増幅器
に加えることにより得られた出力補正信号で、検
出された流量信号を補正することにより、磁石の
経年変化或いは温度条件変化に対して安定した出
力が得られる。
The electromagnetic flowmeter of the present invention generates a temperature correction signal according to the temperature of a magnet that applies a magnetic field to the axis of a pipe in which a conductive fluid flows, and adds this to a variable gain amplifier to generate an output correction signal. By correcting the detected flow rate signal, a stable output can be obtained despite changes in the magnet over time or changes in temperature conditions.
以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.
第1図は本発明による電磁流量計の基本的な回
路構成を示す図である。図中、10は流量信号
源、11は増幅器、12は補正信号発生手段、1
3は直結回路、14は可変ゲイン増幅器、15は
演算回路、16は出力端子である。 FIG. 1 is a diagram showing the basic circuit configuration of an electromagnetic flowmeter according to the present invention. In the figure, 10 is a flow rate signal source, 11 is an amplifier, 12 is a correction signal generating means, 1
3 is a direct connection circuit, 14 is a variable gain amplifier, 15 is an arithmetic circuit, and 16 is an output terminal.
図において、流量信号源10からの出力は、増
幅器11で増幅され、2系統の回路に分かれる。
一方は直結回路13を介して、他方は補正信号発
生手段12、可変ゲイン増幅器14を介して演算
回路15に入力される。この演算回路15におい
て、流量信号は磁石の温度変化或いは経年変化の
影響が補正され、出力端子16からは補正された
流量出力信号が得られる。 In the figure, the output from a flow rate signal source 10 is amplified by an amplifier 11 and divided into two circuits.
One is inputted to the arithmetic circuit 15 via the direct connection circuit 13, and the other via the correction signal generating means 12 and the variable gain amplifier 14. In this arithmetic circuit 15, the flow rate signal is corrected for the effects of temperature changes or aging of the magnet, and a corrected flow rate output signal is obtained from the output terminal 16.
第2図は本発明による電磁流量計の一実施例を
示す図である。図中、20はステンレス配管、2
1は液体ナトリウム、22は磁石、23はポール
ピース、24は磁力線、25は検出電極、26は
出力リード線、27は保温材、28は増幅器、2
9は補正回路、30は直結回路、31は基準抵
抗、32は測温抵抗体、33は可変ゲイン増幅
器、34は演算回路、35は出力端子である。 FIG. 2 is a diagram showing an embodiment of an electromagnetic flowmeter according to the present invention. In the figure, 20 is stainless steel piping, 2
1 is liquid sodium, 22 is a magnet, 23 is a pole piece, 24 is a line of magnetic force, 25 is a detection electrode, 26 is an output lead wire, 27 is a heat insulating material, 28 is an amplifier, 2
9 is a correction circuit, 30 is a direct connection circuit, 31 is a reference resistor, 32 is a temperature measuring resistor, 33 is a variable gain amplifier, 34 is an arithmetic circuit, and 35 is an output terminal.
図において、ステンレス配管20内は、導電性
流体である液体ナトリウム21が流れ、ステンレ
ス配管20の外側には永久磁石22とポールピー
ス23が円筒状になるように組込まれる。永久磁
石22による磁界は、磁力線24で示すようにポ
ールピースのN極からS極に向かい、液体ナトリ
ウムの流れる方向と直交する。さらに磁界に対し
て直角方向に検出電極25が取付けられ、これに
出力リード線26が接続されている。また永久磁
石22は保温材27で覆われた構造となつてい
る。 In the figure, liquid sodium 21, which is a conductive fluid, flows inside a stainless steel pipe 20, and a permanent magnet 22 and a pole piece 23 are installed outside the stainless steel pipe 20 in a cylindrical shape. The magnetic field generated by the permanent magnet 22 is directed from the north pole to the south pole of the pole piece, as shown by lines of magnetic force 24, and is perpendicular to the direction in which the liquid sodium flows. Furthermore, a detection electrode 25 is attached in a direction perpendicular to the magnetic field, and an output lead wire 26 is connected to this. Further, the permanent magnet 22 is covered with a heat insulating material 27.
次に作用を説明すると、検出電極25で検出さ
れた流量に対応した信号は出力リード線26を通
して取り出され、増幅器28で増幅され、増幅器
出力は2回路として出力される。一方は補正回路
29、他方は単なる増幅だけの回路30である。
補正回路29は、常温部に基準抵抗31を有し、
高温部、即ち液体ナトリウム温度によつて変化す
る永久磁石22の表面に、その温度によつて抵抗
値が変化する測温抵抗体32を取付け、その両端
部から得られる出力補正信号が、可変ゲイン増幅
器33を介して演算回路34に入力される。そこ
で、測温抵抗体32の抵抗値をR1、基準抵抗3
1に抵抗値をR2、増幅器出力をVとすると、測
温抵抗体32の両端の電圧v1、即ち補正出力は、
v1=R1/R1+R2V≒R1/R2(R2≫R1)
となる。そこでR1、Vの温度係数を各々α、β、
温度をTとすると、それぞれの一次近似は、
R1=R10+αT
V=V0−βT
と表わせられる。したがつて、
v1=1/R2(R10+αT)(V0−βT)
≒1/R2{R10V0+(αV0−βR10)T}
ただし2次の項は省略している。したがつて演
算回路34で、例えば両入力の和をとると、
v1+V=(1+R10/R2)V0
+{(αV0−βR10)/R2−β}T
したがつて、
αV0=(R2+R10)β
となるように温度係数α抵抗値R10、R2を選ぶこ
とにより、第3図に示すように温度依存性をなく
すことができる。 Next, the operation will be described. A signal corresponding to the flow rate detected by the detection electrode 25 is taken out through the output lead wire 26 and amplified by the amplifier 28, and the amplifier output is outputted as two circuits. One is a correction circuit 29, and the other is a simple amplification circuit 30.
The correction circuit 29 has a reference resistor 31 in the room temperature section,
A temperature measuring resistor 32 whose resistance value changes depending on the temperature is attached to the surface of the permanent magnet 22 which changes depending on the temperature of the high temperature part, that is, the liquid sodium, and the output correction signal obtained from both ends of the temperature sensing resistor 32 is a variable gain The signal is input to the arithmetic circuit 34 via the amplifier 33. Therefore, the resistance value of the resistance temperature detector 32 is R 1 , and the reference resistance 3 is
1, the resistance value is R 2 and the amplifier output is V, the voltage v 1 across the resistance temperature detector 32, that is, the correction output is v 1 = R 1 /R 1 +R 2 V≒R 1 /R 2 ( R 2 ≫ R 1 ). Therefore, the temperature coefficients of R 1 and V are α, β, and
When temperature is T, each linear approximation can be expressed as R 1 =R 10 +αT V=V 0 -βT. Therefore, v 1 = 1/R 2 (R 10 + αT) (V 0 − βT) ≒ 1/R 2 {R 10 V 0 + (αV 0 − βR 10 )T} However, the quadratic term is omitted. ing. Therefore, when the calculation circuit 34 calculates the sum of both inputs, for example, v 1 +V=(1+R 10 /R 2 )V 0 +{(αV 0 −βR 10 )/R 2 −β}T Therefore, By selecting the temperature coefficient α resistance values R 10 and R 2 so that αV 0 =(R 2 +R 10 )β, temperature dependence can be eliminated as shown in FIG. 3.
なお上記実施例では、温度補正信号発生手段と
して測温抵抗体を用いたが、熱電対等を用いて、
温度に比例した電気信号を発生させ、この信号を
用いて温度補償するようにしてもよい。 In the above embodiment, a resistance temperature detector is used as a temperature correction signal generating means, but a thermocouple or the like may be used.
An electrical signal proportional to temperature may be generated and this signal may be used for temperature compensation.
また増幅器33のゲインを調整することにより
経年変化を補償することができる。 Furthermore, by adjusting the gain of the amplifier 33, aging can be compensated for.
本発明の流量計を用いた場合、従来の流量計と
比較して、磁石を導電性流体の温度に関係なく設
計することができ、その場合励磁回路やコイル電
源の設備が不要であると共に、電極間エアギヤツ
プ長を可変に構成する必要もないので流量計を小
型にすることができ、重量を軽量となり、プラン
ト配管に直接取り付けてもプラント配管設計上非
常に有利となる。 When using the flowmeter of the present invention, compared to conventional flowmeters, the magnet can be designed regardless of the temperature of the conductive fluid, and in this case, there is no need for an excitation circuit or coil power supply, and Since there is no need to make the inter-electrode air gap length variable, the flowmeter can be made smaller and lighter in weight, and even if it is directly attached to plant piping, it is very advantageous in terms of plant piping design.
以上のように本発明によれば、次のような効果
が得られる。
As described above, according to the present invention, the following effects can be obtained.
導電性流体の温度変化や、磁石の経年変化の
影響を受けない流量計出力が得られる。 Flowmeter output can be obtained that is not affected by temperature changes in the conductive fluid or aging of the magnet.
従来の流量計と比較して小型化、軽量化が可
能となる。 Compared to conventional flowmeters, it can be made smaller and lighter.
流量計をプラントに取り付ける場合、設計が
非常に有利となる。 When installing a flow meter in a plant, the design is very advantageous.
第1図は本発明による電磁流量計の基本的な回
路構成を示す図、第2図は本発明による電磁流量
計の一実施例を示す図、第3図は本発明と従来の
電磁流量計の温度特性を示す図、第4図は電磁流
量計の原理を示す図、第5図は従来の電磁流量計
の基本構成を示す図である。
10……流量信号源、11……増幅器、12…
…補正信号発生手段、13……直結回路、14…
…可変ゲイン増幅器、15……演算回路、16…
…出力端子、20……ステンレス配管、21……
液体ナトリウム、22……磁石、23……ポール
ピース、24……磁力線、25……検出電極、2
6……出力リード線、27……保温材、28……
増幅器、29……補正回路、30……直結回路、
31……基準抵抗、32……測温抵抗体、33…
…可変ゲイン増幅器、34……演算回路、35…
…出力端子。
Fig. 1 is a diagram showing the basic circuit configuration of an electromagnetic flowmeter according to the present invention, Fig. 2 is a diagram showing an embodiment of an electromagnetic flowmeter according to the present invention, and Fig. 3 is a diagram showing an electromagnetic flowmeter according to the present invention and a conventional electromagnetic flowmeter. FIG. 4 is a diagram showing the principle of an electromagnetic flowmeter, and FIG. 5 is a diagram showing the basic configuration of a conventional electromagnetic flowmeter. 10...Flow rate signal source, 11...Amplifier, 12...
...Correction signal generating means, 13...Direct connection circuit, 14...
...Variable gain amplifier, 15... Arithmetic circuit, 16...
...Output terminal, 20...Stainless steel piping, 21...
Liquid sodium, 22...Magnet, 23...Pole piece, 24...Magnetic field lines, 25...Detection electrode, 2
6...Output lead wire, 27...Heat insulation material, 28...
Amplifier, 29...correction circuit, 30...direct connection circuit,
31...Reference resistance, 32...Resistance temperature sensor, 33...
...Variable gain amplifier, 34... Arithmetic circuit, 35...
...Output terminal.
Claims (1)
を印加する磁石と、導電性流体中に誘起された有
起電圧を検出する検出電極と、磁石の温度変化に
応じた出力補正信号を発生する補正信号発生手段
と、検出電極からの検出出力が入力されると共
に、補正信号発生手段からの出力補正信号が可変
ゲイン増幅器を介して入力される演算手段とを備
えた電磁流量計。 2 前記補正信号発生手段は、測温抵抗体である
ことを特徴とする特許請求の範囲第1項記載の電
磁流量計。 3 前記補正信号発生手段は、熱電対であること
を特徴とする特許請求の範囲第1項記載の電磁流
量計。[Claims] 1. A magnet that applies a magnetic field perpendicular to the axis of a pipe in which a conductive fluid flows, a detection electrode that detects an electromotive voltage induced in the conductive fluid, and a magnet that responds to temperature changes in the magnet. and a calculation means to which the detection output from the detection electrode is input and the output correction signal from the correction signal generation means is input via a variable gain amplifier. Electromagnetic flowmeter. 2. The electromagnetic flowmeter according to claim 1, wherein the correction signal generating means is a temperature measuring resistor. 3. The electromagnetic flowmeter according to claim 1, wherein the correction signal generating means is a thermocouple.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12309786A JPS62278410A (en) | 1986-05-28 | 1986-05-28 | Electromagnetic flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12309786A JPS62278410A (en) | 1986-05-28 | 1986-05-28 | Electromagnetic flowmeter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62278410A JPS62278410A (en) | 1987-12-03 |
JPH0566971B2 true JPH0566971B2 (en) | 1993-09-22 |
Family
ID=14852127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12309786A Granted JPS62278410A (en) | 1986-05-28 | 1986-05-28 | Electromagnetic flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62278410A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0827202B2 (en) * | 1987-03-23 | 1996-03-21 | 日本鋼管工事株式会社 | Method of judging inflow situation of drainage channel |
-
1986
- 1986-05-28 JP JP12309786A patent/JPS62278410A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62278410A (en) | 1987-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100216646B1 (en) | Electronic flow meter | |
US6023969A (en) | Flow modulated mass flow sensor | |
EP2427737B1 (en) | Magnetic flowmeter for measuring flow and corresponding method | |
US4093917A (en) | Velocity measurement system | |
WO2005033716A1 (en) | System and method for current sensing using anti-differential, error correcting current sensing | |
WO1996018086A9 (en) | Magnetic flowmeter | |
AU4509596A (en) | Magnetic flowmeter | |
CN111426357A (en) | Magnetic flowmeter assembly with zero flow measurement capability | |
JPH03235067A (en) | Electromagnetic type conductivity meter and method for measuring conductivity | |
CN103140742B (en) | Electromagnetic flowmeter | |
JPH07198433A (en) | Area type flowmeter | |
JP3120059B2 (en) | Float type flow meter | |
US3191436A (en) | Electromagnetic flowmeter | |
CN114787587A (en) | Method for operating a magneto-inductive flow meter and magneto-inductive flow meter | |
JPH0566971B2 (en) | ||
US3433066A (en) | Magnetic flowmeter apparatus | |
US3566687A (en) | Electromagnetic flowmeter for metallic fluids | |
KR102616224B1 (en) | Flowmeter resistant to environmental changes and flow measurement method | |
Smits et al. | A note on hot-wire anemometer measurements of turbulence in the presence of temperature fluctuations | |
JP3337118B2 (en) | Electromagnetic flow meter | |
JP2788329B2 (en) | Method and apparatus for measuring flow velocity and flow direction of fluid | |
JPH04318424A (en) | Electromagnetic flowmeter | |
JPH02103418A (en) | Insertion type electromagnetic flowmeter | |
JPS6398519A (en) | Liquid metal flow rate measuring device of high speed breeder reactor | |
JP2564510Y2 (en) | Magnetic bearing device |