JPH0566962B2 - - Google Patents

Info

Publication number
JPH0566962B2
JPH0566962B2 JP14510485A JP14510485A JPH0566962B2 JP H0566962 B2 JPH0566962 B2 JP H0566962B2 JP 14510485 A JP14510485 A JP 14510485A JP 14510485 A JP14510485 A JP 14510485A JP H0566962 B2 JPH0566962 B2 JP H0566962B2
Authority
JP
Japan
Prior art keywords
light
photoelectric conversion
receiving surface
interval
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14510485A
Other languages
Japanese (ja)
Other versions
JPS625109A (en
Inventor
Tooru Iwane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP14510485A priority Critical patent/JPS625109A/en
Publication of JPS625109A publication Critical patent/JPS625109A/en
Publication of JPH0566962B2 publication Critical patent/JPH0566962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、複数の光像の所定方向における間隔
を求める光像間隔の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an optical image interval measuring device for determining the interval between a plurality of optical images in a predetermined direction.

(発明の背景) 従来のこの種の装置としては、例えば特開昭57
−197405号公報に示されている如き曲率半径の自
動測定装置がある。この装置は、4つの光像の所
定方向(直交する2方向)における間隔を求める
ために、ビームスプリツタによつて光束を2分割
し、一方の分割光束に対し他方の分割光束を90度
回転し、その後、各々の光束をドラム形のチヨツ
パに通し、各々の分割光束に対応させて配設した
受光器からの信号を演算装置に入力していた。
(Background of the invention) As a conventional device of this type, for example,
There is an automatic measuring device for the radius of curvature as shown in Japanese Patent No. 197405. This device uses a beam splitter to split the light beam into two in order to find the interval between the four light images in a predetermined direction (two orthogonal directions), and rotates one split light beam by 90 degrees. Thereafter, each beam of light was passed through a drum-shaped chopper, and signals from light receivers arranged in correspondence with each divided beam of light were input to an arithmetic unit.

しかしながらこのものでは、ビームスプリツタ
等の光束部材と光速の回転部材とを必要とするば
かりでなく、各分割光束に対応させた受光器を設
ける必要があり、高価かつ構造の複雑なものとな
つていた。
However, this method not only requires a beam splitter or other light beam member and a rotating member at the speed of light, but also requires the provision of a receiver corresponding to each split beam, resulting in an expensive and complex structure. was.

(発明の目的) 本発明の目的は、安価かつ構造の簡単な光像間
隔の測定装置を得ることにある。
(Object of the Invention) An object of the present invention is to obtain an optical image interval measuring device that is inexpensive and has a simple structure.

(発明の概要) 本発明は、受光器の受光面上に生じた少くとも
2つの光像のX方向とY方向における間隔を前記
受光器から出力される光電変換信号によつて求め
る光像間隔の測定装置において、前記受光面上を
X方向へ走査する第1のスリツト群及び前記受光
面上をY方向へ走査する第2のスリツト群を画分
割して形成されると共に、前記受光面に隣接して
配設されるチヨツパ部材と、前記チヨツパ部材を
等速回転せしめる回転駆動装置と、前記チヨツパ
部材が前記受光面上をX方向とY方向のいずれの
方向へ走査しているかの識別信号を出力する識別
信号出力装置と、前記識別信号と前記受光器から
の光電変換信号とを入力し、前記受光面上がX方
向へ走査されているときに前記光電変換信号から
前記光像のX方向での間隔を求めると共に、前記
受光面上がY方向へ走査されているときに前記光
電変換信号から前記光像のY方向での間隔を求め
る演算装置と、を設けたことを特徴とする光像間
隔の測定装置である。
(Summary of the Invention) The present invention provides an optical image interval in which an interval in the X direction and a Y direction between at least two optical images generated on the light receiving surface of a light receiver is determined by a photoelectric conversion signal output from the light receiver. In the measuring device, the slits are formed by dividing a first slit group that scans the light receiving surface in the X direction and a second slit group that scans the light receiving surface in the Y direction; A tipper member disposed adjacent to each other, a rotational drive device for rotating the tipper member at a constant speed, and an identification signal indicating in which direction, the X direction or the Y direction, the tipper member is scanning on the light receiving surface. an identification signal output device that outputs the identification signal and a photoelectric conversion signal from the light receiver; and an arithmetic device for calculating the distance in the Y direction of the optical image from the photoelectric conversion signal when the light receiving surface is scanned in the Y direction. This is a device for measuring the distance between optical images.

(実施例) 以下図面に示した実施例に基づいて本発明を説
明する。
(Example) The present invention will be described below based on the example shown in the drawings.

第1図は本発明の第1実施例を曲率半径の自動
測定装置に応用した光学系を示す図、である。
FIG. 1 is a diagram showing an optical system in which a first embodiment of the present invention is applied to an automatic radius of curvature measuring device.

第1図において測定光学系の対物レンズ4の光
軸Oに対称な方向から一対の光点を被検眼E1
投影するために、対物レンズの光軸Oを含む面内
(第1図紙面内)には一対の投影光学系の光軸
O1,O2が形成されている。対物レンズの光軸O
に対し投影光軸O1,O2の成す角度は共にθであ
る。光軸O1,O2上の照明光源1a,1bを射出
した光束はピンホール板2a,2bを透過後該ピ
ンホール板2a,2b上を焦点面とすコリメータ
レンズ3a,3bにより平行光束にされた後、被
検眼E1へ投影される。
In FIG. 1, in order to project a pair of light spots onto the eye E 1 from a direction symmetrical to the optical axis O of the objective lens 4 of the measurement optical system, a plane including the optical axis O of the objective lens ( Inside) is the optical axis of a pair of projection optical systems.
O 1 and O 2 are formed. Optical axis of objective lens O
On the other hand, the angles formed by the projection optical axes O 1 and O 2 are both θ. The light beams emitted from the illumination light sources 1a and 1b on the optical axes O 1 and O 2 pass through pinhole plates 2a and 2b, and then are converted into parallel light beams by collimator lenses 3a and 3b with focal planes on the pinhole plates 2a and 2b. After that, it is projected onto the eye E1 .

一方、第1図の光学系を被検眼E1の方向から
見た第2図からもわかるように、対物レンズの光
軸Oを含む第1図の紙面と直交する面内にも対物
レンズの光軸Oに対称な方向から一対の光点を被
検眼E1へ投影するために一対の投影光学系の光
軸O3,O4が形成されている。投影光軸O3,O4
対物レンズの光軸Oと成す角度は共にθである。
投影光軸O1,O2,O3,O4は、対物レンズの光軸
Oの一点で交差する如く配置されている。第1図
の紙面に垂直な平面内にあるこの投影光学系も第
1図に図示の投影光学系と同様それぞれの光軸
O3,O4上に照明光源1c,1d、ピンホール板
2c,2d、コリメートレンズ3c,3dを夫々
有する。
On the other hand, as can be seen from FIG. 2, which shows the optical system in FIG. 1 viewed from the direction of the subject's eye E1, the objective lens is A pair of optical axes O 3 and O 4 of a pair of projection optical systems are formed to project a pair of light spots onto the eye E 1 from a direction symmetrical to the optical axis O. The angles that the projection optical axes O 3 and O 4 make with the optical axis O of the objective lens are both θ.
The projection optical axes O 1 , O 2 , O 3 , and O 4 are arranged so as to intersect at one point of the optical axis O of the objective lens. This projection optical system, which is located in a plane perpendicular to the plane of the paper in Figure 1, also has its own optical axis, similar to the projection optical system shown in Figure 1.
On O 3 and O 4 are provided illumination light sources 1c and 1d, pinhole plates 2c and 2d, and collimating lenses 3c and 3d, respectively.

測定光学系は対物レンズ4の背後に配設した不
図示のビームスプリツタによつて自動測定光路と
検者の観察光路とに分離されるのであるが、説明
を簡略化するために第1図では観察光路を省略す
る。
The measurement optical system is separated into an automatic measurement optical path and an observation optical path for the examiner by a beam splitter (not shown) placed behind the objective lens 4, but for the sake of simplicity, FIG. Here, the observation optical path is omitted.

自動測定光路中には対物レンズ4と共にテレセ
ントリツク系を構成する後置対物レンズ6が設け
られており、対物レンズ4の後側焦点面と後置レ
ンズ6の前側焦点面との一致する面内には絞り5
が設けられている。対物レンズ4,6の光路はモ
ータ10に結合したチヨツパ円板7を通つてその
背後に隣接して置かれた4分割の受光器8に達す
る。4分割の受光器8は第1図のA−A′矢視図
である第3図に示したように光電変換素子8a〜
8dを有し、光電変換素子8aは光源1aによる
光点(ピンホール像)を受光し、光電変換素子8
bは光源1bによる光点を受光し、光電変換素子
8cは光源1cによる光点を受光し、光電変換素
子8dは光源1dによる光点を受光するように配
設されている。
A rear objective lens 6 that forms a telecentric system together with the objective lens 4 is provided in the automatic measurement optical path. Aperture 5
is provided. The optical path of the objective lenses 4, 6 passes through a chopper disk 7 connected to a motor 10 and reaches a four-part receiver 8 placed adjacently behind it. As shown in FIG. 3, which is a view taken along arrow A-A' in FIG.
8d, the photoelectric conversion element 8a receives a light spot (pinhole image) from the light source 1a, and the photoelectric conversion element 8a receives a light spot (pinhole image) from the light source 1a.
b is arranged to receive a light spot from the light source 1b, a photoelectric conversion element 8c receives a light spot from the light source 1c, and a photoelectric conversion element 8d is arranged to receive a light spot from the light source 1d.

チヨツパ円板7は第4図で示した如き平面形状
をしている。すなわち、チヨツパ円板7は半径方
向に3重構造をなしており、外側部には円周方向
に第1領域と第2領域とを分離するためのマーク
が形成されている。すなわち、半周は遮光部(第
1領域)40にて形成され、残りの半周は透光部
(第2領域)41にて形成されている。中間部4
2には円周方向へ等角度間隔で遮光部と透光部が
蒸着等にて形成されている。そして、内側部43
には、チヨツパ円板7の第1領域において、γ=
ae(+/n)で示される関数曲線で規定されるチヨツ
パ用スリツトが蒸着等によつて形成されており、
また第2領域においてγ=ae-(+/n)で示される関
数曲線で規定されるチヨツパ用スリツトが蒸着等
によつて形成されている。このチヨツパ用スリツ
トについて詳述すれば以下の如くである。
The chopper disk 7 has a planar shape as shown in FIG. That is, the chopper disk 7 has a triple structure in the radial direction, and marks are formed on the outer side to separate the first region and the second region in the circumferential direction. That is, half the circumference is formed by the light shielding part (first region) 40, and the remaining half circumference is formed by the light transmitting part (second region) 41. middle part 4
2, light shielding portions and light transmitting portions are formed by vapor deposition or the like at equal angular intervals in the circumferential direction. And the inner part 43
In the first region of Chiyotsupa disk 7, γ=
A chopper slit defined by a function curve expressed as ae (+/n) is formed by vapor deposition, etc.
Further, in the second region, a chopper slit defined by a function curve represented by γ=ae -(+/n) is formed by vapor deposition or the like. The details of this chopper slit are as follows.

チヨツパ円板7の法線のうち、基準方向(例え
ば水平方向)となす角度が45度の法線lを含む面
が通るように、受光器8の受光面を自動測定光路
を形成する光学系の光軸に垂直に配設したとき、
チヨツパのためのスリツトを決定する関数曲線が
上記法線と交差する角度をとすると、各関数曲
線は、半円をn等分するとして tan{(90−)・(θ+K/nπ)} γ=a1e として表わされる。ただし、γは極座標における
半径、θは極座標における角度、kは整数0、
1、2、……であり、aは内周部の内径に相当す
る。
An optical system that automatically forms a measuring optical path on the light receiving surface of the light receiver 8 so that a plane including a normal l having an angle of 45 degrees with a reference direction (for example, the horizontal direction) among the normals of the chip disk 7 passes through it. When placed perpendicular to the optical axis of
Letting the angle at which the function curve that determines the slit for the chopper intersects the above normal line be, each function curve divides the semicircle into n equal parts, tan {(90−)・(θ+K/nπ)} γ= Expressed as a 1 e. However, γ is the radius in polar coordinates, θ is the angle in polar coordinates, k is an integer 0,
1, 2, . . . , and a corresponds to the inner diameter of the inner peripheral portion.

ここで、角度を45度及び135度とすれば、 γ1=a1e(+K/n) ……式(1) γ2=a1e-(+K/n) ……式(2) となる。そして、式(1)を第1領域、式(2)を第2領
域各々のスリツトを形成するために用いる。すな
わち、各領域の明と暗の境界を上記式(1)、式(2)で
規定して、蒸着等により透明ガラス板上にスリツ
トを形成する。但し、a1<γ1<a2、a1<γ2<a2
(a2は内周部の外径に相当する)であり、また、
第1領域と第2領域の境界を極座標における角度
位置の基準にしてスリツトの各曲線が規定され
る。
Here, if the angles are 45 degrees and 135 degrees, γ 1 =a 1 e (+K/n) ...Equation (1) γ 2 =a 1 e -(+K/n) ... ...Equation (2) is obtained. Equation (1) is used to form the slits in the first region, and equation (2) is used to form the slits in the second region. That is, the bright and dark boundaries of each region are defined by the above equations (1) and (2), and slits are formed on the transparent glass plate by vapor deposition or the like. However, a 11 <a 2 , a 12 <a 2
(a 2 corresponds to the outer diameter of the inner circumference), and
Each curve of the slit is defined using the boundary between the first region and the second region as a reference for the angular position in polar coordinates.

そうすると、チヨツパ円板7の表方向(第3図
とは逆方向)から見た第5図a,bで示したよう
に、チヨツパ円板7の右回転によつて、第1領域
が受光器8上を横切るときは受光面上は下から上
へ、すなわちY方向へ走査され(第5図a)、第
2領域が受光器8上を横切るときは受光面上は左
から右へ、すなわち上記Y方向に直交するX方向
へ走査されることになる(第5図b)。
Then, as shown in FIGS. 5a and 5b when viewed from the front direction (opposite direction from FIG. 3) of the chipotspa disk 7, the first region becomes the light receiver due to clockwise rotation of the chipotspa disk 7. When the second area crosses over the light receiver 8, the light receiving surface is scanned from bottom to top, that is, in the Y direction (Fig. 5a), and when the second area crosses over the light receiver 8, the light receiving surface is scanned from left to right, that is, in the Y direction. It will be scanned in the X direction perpendicular to the Y direction (FIG. 5b).

チヨツパ円板7の外側部は光源と光電変換素子
とによつて挟持されて領域識別装置を構成し、従
つて光電変換素子の光電変換信号から第1領域と
第2領域の識別が行なわれ、また中間部42は別
の専用光源と専用光電変換素子とによつて挟持さ
れ、いわゆるロータリーエンコーダを形成し、こ
の専用光電変換素子の光電変換信号からチヨツパ
円板7の周波数情報を得ている。これらの光源と
光電変換素子とは第1図、第2図ではまとめて受
光器8と同一法線l上にフオトインタラプタ装置
9として示してある。
The outer part of the tipper disk 7 is sandwiched between a light source and a photoelectric conversion element to constitute an area identification device, and therefore, the first area and the second area are identified from the photoelectric conversion signal of the photoelectric conversion element. Further, the intermediate portion 42 is sandwiched between another dedicated light source and a dedicated photoelectric conversion element to form a so-called rotary encoder, and frequency information of the chopper disk 7 is obtained from the photoelectric conversion signal of this dedicated photoelectric conversion element. These light sources and photoelectric conversion elements are collectively shown as a photointerrupter device 9 in FIGS. 1 and 2 on the same normal line l as the light receiver 8.

受光器8は4つの独立した光電変換素子8a,
8b,8c,8dから構成され、各光電変換素子
8a乃至8dはピンホール板2a乃至2dに対応
している。本実施例のチヨツパ円板7の第2領域
は、受光器8の受光面上において第1図の紙面に
垂直な方向、すなわち被検眼E1が球面である時
にはピンホール板2c,2dの像2c′,2d′を結
ぶ方向(X方向)にスリツトを走査する。被検眼
E1がトーリツク面である時には、ピンホール板
の像2a′乃至2d′は被検眼E1によるねじれの影響
を受け、例えば像2a′,2d′の方向はスリツトの
走査方向(矢印×)とはねじれに応じた角度αず
れることになる(第6図参照)。光電変換素子8
dは、チヨツパ円板7のスリツトが丁度ピンホー
ル板2dの像2d′上にある時にのみ高レベルの信
号を出力するから、光電変換素子8dの出力信号
はチヨツパ円板7の回転により、第7図aの如き
一定間隔(スリツトのピツチとチヨツパの回転速
度とで定まる)毎に生ずるパルス信号となる。同
様に光電変換素子8c出力信号は第7図bの如き
信号となる。ピンホール板の像2c′,2d′の方向
がねじれの影響にて所定の角度ずれても、スリツ
トの走査方向は変化しないから、光電変換素子8
cのパルス(第7図a)が生じた後、光電変換素
子8dのパルス(第7図b)が生じるまでの時間
t1(第7図参照)は、ピンホール板の像2c′,2
d′の間隔を受光器8の受光面上におけるスリツト
の走査方向Xへ射影した間隔h1(第6図参照)に
なる。また、光電変換素子8bのパルスが生じた
後、光電変換素子8aのパルスが生じるまでの時
間はピンホール板2a,2bの像2a′,2b′間隔
を受光器8上におけるスリツトの走査方向Xへ射
影した間隔△1に対応する。同様に、チヨツパ円
板7の第1領域において受光器8の受光面を走査
しているとき、光電変換素子8dのパルスが生じ
た後、光電変換素子8cのパルスが生じるまでの
時間(不図示)は、ピンホール板2c,2dの像
2c′,2d′間隔を受光器8の受光面上におけるス
リツトの走査方向Yへ射影した間隔h2に対応する
ことになる。また同様に、光電変換素子8c,8
dからピンホール板2c,2dの像間隔を受光器
8の受光面上におけるスリツトの走査方向Yへ射
影した間隔△2(不図示)に対応した時間を求める
ことができる。
The light receiver 8 includes four independent photoelectric conversion elements 8a,
8b, 8c, and 8d, and each photoelectric conversion element 8a to 8d corresponds to a pinhole plate 2a to 2d. In this embodiment, the second region of the tipper disc 7 is located on the light-receiving surface of the light receiver 8 in a direction perpendicular to the paper surface of FIG. The slit is scanned in the direction connecting 2c' and 2d' (X direction). Eye to be examined
When E 1 is a toric surface, the images 2a' to 2d' of the pinhole plate are affected by twisting by the eye E 1 , and for example, the directions of the images 2a' and 2d' are the same as the scanning direction of the slit (arrow x). will be shifted by an angle α corresponding to the twist (see Figure 6). Photoelectric conversion element 8
d outputs a high-level signal only when the slit of the chopper disk 7 is exactly on the image 2d' of the pinhole plate 2d, so the output signal of the photoelectric conversion element 8d is The pulse signal is generated at regular intervals (determined by the pitch of the slit and the rotational speed of the chopper) as shown in FIG. 7a. Similarly, the output signal of the photoelectric conversion element 8c becomes a signal as shown in FIG. 7b. Even if the directions of the images 2c' and 2d' of the pinhole plate shift by a predetermined angle due to twisting, the scanning direction of the slit does not change, so the photoelectric conversion element 8
Time from generation of pulse c (Figure 7a) until generation of pulse of photoelectric conversion element 8d (Figure 7b)
t 1 (see Figure 7) is the image 2c', 2 of the pinhole plate.
The distance h 1 (see FIG. 6) is obtained by projecting the distance d' in the scanning direction X of the slit on the light receiving surface of the light receiver 8. Furthermore, the time from the generation of a pulse of the photoelectric conversion element 8b until the generation of a pulse of the photoelectric conversion element 8a is such that the interval between images 2a' and 2b' of the pinhole plates 2a and 2b is Corresponds to the interval △ 1 projected onto . Similarly, when scanning the light-receiving surface of the light receiver 8 in the first region of the chopper disk 7, the time from the generation of a pulse of the photoelectric conversion element 8d until the generation of a pulse of the photoelectric conversion element 8c (not shown) ) corresponds to the distance h2 obtained by projecting the distance between the images 2c' and 2d' of the pinhole plates 2c and 2d onto the light receiving surface of the light receiver 8 in the scanning direction Y of the slit. Similarly, photoelectric conversion elements 8c, 8
From d, the time corresponding to the interval Δ 2 (not shown) obtained by projecting the image interval between the pinhole plates 2c and 2d onto the light receiving surface of the light receiver 8 in the scanning direction Y of the slit can be determined.

第8図に示したように各光電変換素子8a乃至
8dの出力信号は各々に対応する増幅回路71乃
至74にて増幅される。増幅回路71,71の出
力信号は第1時間差測定回路75へ、増幅回路7
3,74の出力信号は第2時間差測定回路76へ
各々入力される。時間差測定回路75,76は2
つの入力信号(パルス)の時間差に応じた信号を
出力する。
As shown in FIG. 8, the output signals of the photoelectric conversion elements 8a to 8d are amplified by the corresponding amplifier circuits 71 to 74, respectively. The output signals of the amplifier circuits 71, 71 are sent to the first time difference measuring circuit 75,
The output signals No. 3 and 74 are input to the second time difference measuring circuit 76, respectively. The time difference measurement circuits 75 and 76 are 2
Outputs a signal according to the time difference between two input signals (pulses).

時間差測定回路75,76の出力信号はコンピ
ユータ77に入力される。コンピユータ77は、
領域識別装置78からの識別信号及びロータリー
エンコーダ79からの周波数信号をも入力してお
り、時間差設定回路75,76の出力信号との間
で演算を行ない、一方の主径線の方向での曲率半
径γ1、他方の主径線の方向での曲率半径γ2、ねじ
の角度(これは主径線の方向を定める角度)αを
求め、表示装置80に表示せしめる。
The output signals of the time difference measuring circuits 75 and 76 are input to a computer 77. The computer 77 is
The identification signal from the area identification device 78 and the frequency signal from the rotary encoder 79 are also input, and calculations are performed between them and the output signals of the time difference setting circuits 75 and 76 to determine the curvature in the direction of one main meridian. The radius γ 1 , the radius of curvature γ 2 in the direction of the other main radius, and the angle α of the thread (this is the angle that determines the direction of the main radius) are determined and displayed on the display device 80 .

すなわち、コンピユータ77は第9図のフロー
チヤートに示したように、まずロータリーエンコ
ーダ79からチヨツパ円板7の回転周波数に応じ
た信号を入力し、(ステツプ81)、基準の周波数に
対する大小によつて補正値を求め、時間差測定回
路75,76に入力する(ステツプ82)。時間差
測定回路75,76が、例えばパルス間隔をクロ
ツクパルスの数によつて計数するように構成され
ていれば、上記補正値は周波数可変のクロツクパ
ルス発生器(時間差測定回路75,76が内蔵し
ている)に入力され、回転周波数にかかわらず、
常にピンホール像の間隔と1対1に対応した数の
クロツクパルスが計数されるように、クロツクパ
ルスの周波数変化させる。次にコンピユータ77
は、領域識別装置78からの識別信号(例えば第
1領域では遮光部にて光電変換素子は遮光され低
レベルの信号が、第2領域では透光部41によつ
て遮光が解除されるので高レベルの信号が得られ
る)を読み込み(ステツプ83)、第2領域であれ
ば(ステツプ84)、ステツプ85において、第1時
間差測定回路75の出力信号から間隔h2を、第2
時間差測定回路76の出力信号から間隔△1を求
め、またステツプ84において第1領域と判断すれ
ば、第1時間差測定回路75の出力信号から間隔
h2を求める(ステツプ86)。そして、ステツプ85、
86で得られた間隔h1、h2、△から一方の主径線の
方向での曲率半径γ1、他方の主径線の方向での曲
率半径γ2、ねじれの角度αを求め(ステツプ87)、
表示装置80に表示せしめる(ステツプ88)。
That is, as shown in the flowchart of FIG. 9, the computer 77 first inputs a signal corresponding to the rotational frequency of the chopper disk 7 from the rotary encoder 79 (step 81), and then inputs a signal corresponding to the rotational frequency of the chopper disk 7 (step 81). A correction value is determined and input to the time difference measuring circuits 75 and 76 (step 82). If the time difference measuring circuits 75, 76 are configured to count the pulse interval by the number of clock pulses, for example, the above-mentioned correction value can be calculated using a variable frequency clock pulse generator (which the time difference measuring circuits 75, 76 have built-in). ), regardless of the rotational frequency.
The frequency of the clock pulse is varied so that a number of clock pulses corresponding one-to-one to the interval between pinhole images are always counted. Next, computer 77
is the identification signal from the area identification device 78 (for example, in the first area, the photoelectric conversion element is shielded from light by the light-shielding part, resulting in a low-level signal; in the second area, the light-shielding is released by the light-transmitting part 41, so the signal is high-level). If it is in the second region (step 84), then in step 85, the interval h2 is calculated from the output signal of the first time difference measuring circuit 75.
The interval △ 1 is calculated from the output signal of the time difference measuring circuit 76, and if it is determined in step 84 that it is the first region, the interval Δ1 is determined from the output signal of the first time difference measuring circuit 75.
Find h 2 (step 86). And step 85,
From the intervals h 1 , h 2 , and △ obtained in step 86, calculate the radius of curvature γ 1 in the direction of one main meridian, the radius of curvature γ 2 in the direction of the other main meridian, and the angle of twist α (step 87),
The information is displayed on the display device 80 (step 88).

このようにして上記実施例では、平板状のチヨ
ツパ円板の連続回転によつて直交する2方向の走
査を行なうことができるので、構成が簡単でかつ
精度の良いチヨツパ円板を安価に作ることができ
る。そしてさらに、所定の方向の法線上において
常にスリツトが直交する2方向へ択一走査するよ
うな曲線(式(1)、式(2)による……勿論は45度と
135度に限らない)にてスリツトを形成したから、
受光器の配置に融通性が生ずる、という利点があ
る。
In this way, in the above embodiment, scanning in two orthogonal directions can be performed by continuous rotation of the flat chipper disk, so that a chipper disk with a simple configuration and high precision can be manufactured at a low cost. I can do it. Furthermore, on the normal line of a predetermined direction, the slit always scans alternatively in two perpendicular directions (according to equations (1) and (2)...of course, it is 45 degrees).
Since the slit was formed at an angle of 135 degrees,
This has the advantage of providing flexibility in the arrangement of the light receivers.

なお、受光器の配置に融通性を持たせるという
ことを無視すれば、第10図に示したように、所
定の方向の法線上でかつまた所定の半径上におい
てスリツトが直交する2方向へ択一走査するよう
に、直線スリツトを形成することができる。この
ものは、受光器を所定の方向の法線上でかつまた
所定の半径R1上に置かなければならないとう制
約はあるものの、その余は第4図のチヨツパ円板
と同一の効果を有する。
By the way, if we ignore the need to have flexibility in the placement of the photoreceiver, as shown in Figure 10, the slits can be selected in two directions perpendicular to each other on the normal line of a predetermined direction and on a predetermined radius. A straight slit can be formed in one scan. This device has the same effect as the Chotsupa disk shown in FIG. 4, although there is a restriction that the receiver must be placed on the normal line in a predetermined direction and on a predetermined radius R1 .

さらに、上述の第4図、第10図のような平板
状のチヨツパではなしに、ドラム形のチヨツパを
用いることもできる。その場合にはドラムの回転
中心を対物レンズ6の光軸と平行になすと共に、
対物レンズ6の光軸がドラムの内周面から外側面
に通過するようにその光軸を直角プリズム等で折
り曲げ、ドラムの側面に所定の2方向に直交走査
するスリツトを形成すれば良い。
Furthermore, a drum-shaped chopper can be used instead of the flat chopper shown in FIGS. 4 and 10 above. In that case, the center of rotation of the drum should be made parallel to the optical axis of the objective lens 6, and
The optical axis of the objective lens 6 may be bent with a right angle prism or the like so that it passes from the inner peripheral surface to the outer surface of the drum, and a slit that scans orthogonally in two predetermined directions may be formed on the side surface of the drum.

(発明の効果) 以上述べたように本発明によれば、光路を変更
するプリズム等を不用とし、直交するX、Y2方
向へ走査するチヨツパ部材を用いることによつ
て、安価かつ構造の簡単な光像間隔の測定装置を
得ることができる。
(Effects of the Invention) As described above, according to the present invention, a prism or the like for changing the optical path is not required, and by using a chopper member that scans in the orthogonal X and Y directions, the invention is inexpensive and has a simple structure. A device for measuring the distance between optical images can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を曲率半径の自動
測定装置に応用した光学系を示す図、第2図は第
1図の光学系を被検眼E1の方向から見た図、第
3図は第1図のA−A′矢視図、第4図は第1実
施例のチヨツパ円板の平面図、第5図a,bはチ
ヨツパ円板による受光器の走査の様子を説明する
図、第6図は受光器と受光器上のピンホール像の
走査方向への射影間隔を示す図、第7図a,bは
受光器を形成する光電変換素子から得られる信号
の様子を示す図、第8図は曲率半径を求めるため
の電気ブロツク図、第9図は第8図のコンピユー
タのフローチヤート、第10図はチヨツパ円板の
他の実施例を示す平面図、である。 (主要部分の符号の説明)、7……チヨツパ円
板、8……受光器、9……フオトインタラプタ装
置、10……モータ、75……第1時間差測定回
路、76……第2時間差測定回路、77……コン
ピユータ、78……領域識別装置。
FIG. 1 is a diagram showing an optical system in which the first embodiment of the present invention is applied to an automatic radius of curvature measurement device, FIG. 2 is a diagram of the optical system in FIG. Figure 3 is a view taken along the line A-A' in Figure 1, Figure 4 is a plan view of the Chiotsupa disc of the first embodiment, and Figures 5a and b illustrate how the optical receiver is scanned by the Chiotspa disc. Figure 6 shows the photoreceiver and the projection interval of the pinhole image on the photoreceiver in the scanning direction, and Figures 7a and b show the state of the signal obtained from the photoelectric conversion element forming the photoreceiver. 8 is an electrical block diagram for determining the radius of curvature, FIG. 9 is a flowchart of the computer shown in FIG. 8, and FIG. 10 is a plan view showing another embodiment of the chopper disk. (Explanation of symbols of main parts), 7... Chotsupa disk, 8... Light receiver, 9... Photo interrupter device, 10... Motor, 75... First time difference measurement circuit, 76... Second time difference measurement Circuit, 77...computer, 78...area identification device.

Claims (1)

【特許請求の範囲】 1 受光器の受光面上に生じた少くとも2つの光
像の第1方向と第2方向における間隔を前記受光
器から出力される光電変換信号によつて求める光
像間隔の測定装置において、 前記受光面上を第1方向へ走査する第1のスリ
ツト及び前記受光面上を第2方向へ走査する第2
のスリツトを面分割して形成されると共に、前記
受光面に隣接して配設されるチヨツパ部材と、 前記チヨツパ部材を回転せしめる回転駆動装置
と、 前記チヨツパ部材が前記受光面上を前記第1方
向と前記第2方向のいずれの方向へ走査している
かの識別信号を出力する識別信号出力装置と、 前記識別信号と前記受光器からの光電変換信号
とを入力し、前記受光面上が前記第1方向へ走査
されているときに前記光電変換信号から前記光像
の前記第1方向での間隔を求めると共に、前記受
光面が前記第2方向へ走査されているときに前記
光電変換信号から前記光像の前記第2方向での間
隔を求める演算装置と、 を設けたことを特徴とする光像間隔の測定装置。
[Scope of Claims] 1. An optical image interval in which the interval in a first direction and a second direction between at least two optical images generated on a light receiving surface of a light receiver is determined by a photoelectric conversion signal output from the light receiver. In the measuring device, a first slit scans the light-receiving surface in a first direction, and a second slit scans the light-receiving surface in a second direction.
a chopper member formed by dividing a slit into faces and disposed adjacent to the light-receiving surface; a rotational drive device for rotating the chopper member; an identification signal output device that outputs an identification signal indicating which direction of the scanning direction and the second direction; and an identification signal output device that inputs the identification signal and a photoelectric conversion signal from the light receiver, The distance between the optical images in the first direction is determined from the photoelectric conversion signal when the light receiving surface is scanned in the second direction, and An apparatus for measuring an interval between optical images, comprising: an arithmetic device for determining an interval between the optical images in the second direction.
JP14510485A 1985-07-02 1985-07-02 Measuring apparatus for distance between luminous images Granted JPS625109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14510485A JPS625109A (en) 1985-07-02 1985-07-02 Measuring apparatus for distance between luminous images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14510485A JPS625109A (en) 1985-07-02 1985-07-02 Measuring apparatus for distance between luminous images

Publications (2)

Publication Number Publication Date
JPS625109A JPS625109A (en) 1987-01-12
JPH0566962B2 true JPH0566962B2 (en) 1993-09-22

Family

ID=15377466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14510485A Granted JPS625109A (en) 1985-07-02 1985-07-02 Measuring apparatus for distance between luminous images

Country Status (1)

Country Link
JP (1) JPS625109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102366468B1 (en) * 2021-06-28 2022-02-23 강구봉 Rolling processing equipment for manufacturing linear guides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102366468B1 (en) * 2021-06-28 2022-02-23 강구봉 Rolling processing equipment for manufacturing linear guides

Also Published As

Publication number Publication date
JPS625109A (en) 1987-01-12

Similar Documents

Publication Publication Date Title
US4572628A (en) Method of and apparatus for measuring radius
JPH06194144A (en) Rotational information detecting device
JPH08304043A (en) Three-dimensional image pickup apparatus
US4458982A (en) Optical scanning system including a rotatable drum with mirrors and including a rotatable optical shutter
JP3150404B2 (en) Method and apparatus for measuring refractive power in optical system
JPS61280543A (en) Apparatus for measuring refractive power of optical system
JP2780409B2 (en) Angle detector
EP0110937B1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
US4348108A (en) Automatic lens meter
US4770523A (en) Apparatus for measuring curvature
US5428414A (en) Apparatus for measuring the refractive power of an optical system
US3552857A (en) Optical device for the determination of the spacing of an object and its angular deviation relative to an initial position
US4641961A (en) Apparatus for measuring the optical characteristics of an optical system to be examined
US3154626A (en) Device for determining the position of a mark in a transparent or translucent plate or film
JPH0566962B2 (en)
JPH0346774B2 (en)
JPH05256666A (en) Rotary encoder
JP2851927B2 (en) Optical power measurement system
JPS6346130A (en) Objective eye refractive power measuring apparatus
SU673956A1 (en) Autocollimation shadow device
JPH0578776B2 (en)
SU419724A1 (en) DEVICE FOR MEASURING THE CLEAR VISIBILITY OF TRANSPARENT GLASS GLASSES
JPH11151205A (en) Refractometer
SU783579A1 (en) Apparatus for monitoring angular position of objects
JPS58108403A (en) Photoelectric length measuring apparatus