JPH056665B2 - - Google Patents

Info

Publication number
JPH056665B2
JPH056665B2 JP14358983A JP14358983A JPH056665B2 JP H056665 B2 JPH056665 B2 JP H056665B2 JP 14358983 A JP14358983 A JP 14358983A JP 14358983 A JP14358983 A JP 14358983A JP H056665 B2 JPH056665 B2 JP H056665B2
Authority
JP
Japan
Prior art keywords
microcapsules
antigen
antibodies
sensitivity
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14358983A
Other languages
Japanese (ja)
Other versions
JPS6035266A (en
Inventor
Shinzo Kobayashi
Yoshiji Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP14358983A priority Critical patent/JPS6035266A/en
Publication of JPS6035266A publication Critical patent/JPS6035266A/en
Publication of JPH056665B2 publication Critical patent/JPH056665B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多種抗体を同時に検出することができ
る改良されたマイクロカプセル試薬並びにこのよ
うなマイクロカプセル試薬の製造方法に関する。 病原性の細菌やウイルスなどの抗原とこれによ
り生起した抗体との間の反応性は極めて特異性が
高いことが知られている。この血清型特異性が極
めて高いことを利用して血清型の判別を行なうた
め、特開昭58−21565において血清型の異なる二
種以上の抗原を感作したマイクロカプセルが使用
された。この方法によれば血清型と厳密に対応す
る抗原抗体反応により診断を行なうので、診断の
精度は非常に高い。問題は感作に際してそれぞれ
異なる抗原成分の感度レベルをいかにして同じ程
度にそろえるかにある。感度レベルが同じである
ことは再現性をよくするための重要な条件である
が、異種抗原を感作するのであるから一般的には
各感度レベルにばらつきがあるのがむしろ当然で
ある。これは菌自身の成長の遅速や成長条件など
により菌数や活性に違いがあるためであろう。実
際問題としては感作されたマイクロカプセルにお
ける抗原成分それぞれが同じ感度レベルにあるも
のだけを選別して使用するので、感作にばらつき
のあるマイクロカプセルは製造上の損失として扱
われていた。 本発明者らは感度レベルが不均一であるマイク
ロカプセルであつても、これに感度レベルが不足
している抗原を単独感作したマイクロカプセルを
補助的に混合すると感度の均一性がよくなりさら
に凝集パターンが明瞭になるという知見を得た。 本発明の多種抗体検出用混合マイクロカプセル
は、抗体に対して不均一な感度レベルを示す2以
上の異種抗原で感作され各抗原の抗体に対する凝
集感度が異なる主マイクロカプセルと、前記異種
抗原のうち抗体に対し低い感度レベルを示す抗原
で単独感作されている補助マイクロカプセルとを
含有することを特徴とする。 また本発明の多種抗体検査用混合マイクロカプ
セルの製造方法は、抗体に対して不均一な感度レ
ベルを示す二以上の異種抗原を混合した後感作し
た主マイクロカプセルを使用して抗原抗体反応を
行つた後、感度レベルが不足していた抗原で単独
感作して補助マイクロカプセルを調製し、これら
前記主マイクロカプセルと前記補助マイクロカプ
セルとを混合して混合系マイクロカプセルを調製
することを特徴とする。 例えばAの抗原成分が所望の感度レベルをもち
Bの抗原成分の感度レベルが前者のレベルに達し
ていないとする場合、A及びBを混合した後同時
感作した主マイクロカプセルに対し抗原成分Bの
みを単独感作したマイクロカプセルを補助マイク
ロカプセルとして混合するのである。この混合系
マイクロカプセルにおいて、抗原成分Bの感度上
昇は達成されるが一方、抗原成分Aからみるとノ
イズが増えたのと同じことであり、抗原成分Aの
感度は下ると思われた。ところが意外にも抗原成
分Aの減感は起らず当初の感度が実質上維持され
ていた。このような効果は前記とは逆に抗原成分
Aが感度レベルにおいて不足している場合でも、
補助マイクロカプセルとしてA成分を単独感作し
たマイクロカプセルを混合することによつて同様
に得ることができる。また、主マイクロカプセル
のA成分のみが所望感度レベルであつてB成分及
びC成分のそれが不足しているならば、B成分を
単独感作したもの、C成分のみを単独感作したも
のを補助マイクロカプセルとして混じればよい。 補助マイクロカプセルは主マイクロカプセルに
対して50容量%以下、好ましくは15〜45容量%の
範囲の混合するのが望ましい。補助マイクロカプ
セルの量が上限を越えると感度低下が生じ、あま
り少量であると主マイクロカプセル自体の欠点が
表出する。 本発明において感作抗原として使用できるもの
は、ホルモン、薬物代謝産物、特異蛋白質、ビー
ルス、細菌、細胞および人起源の抗原等広範囲に
わたる抗原から選択される。具体的には例えば、
梅毒トレポネーマ抗原、HBs抗原、トキソプラズ
マ抗原、マイコプラズマ抗原、赤痢菌、レプトス
ピラ菌、、コレラ菌、等がある。これらの中で血
清型の異なる抗原成分であるレプトスピラ菌を感
作抗原とした本発明の試薬は特に価値が高い。こ
れら感作用抗原の量は、その種類や目的とする測
定の精度等種々の条件により、適宜選択される
が、一般的にはマイクロカプセルの固型分に対し
て、0.01〜10重量%の範囲内である。 抗原をマイクロカプセルに感作する方法は特開
昭58−21565に詳細に記載されている。 本発明において担体として使用するマイクロカ
プセルは油性物質の芯とこれを包囲する壁材とか
らなる。その一般的な製法は例えば近藤朝士著
「マイクロカプセル」日刊工業新聞社刊(昭和45
年)に詳説されている。また具体的な油性物質や
壁材、各種添加剤等については特開昭57−
196621、同57−19662等に詳細な記載がある。 抗原又は抗体をマイクロカプセルに感作するに
は周知の方法が用いられ、特に架橋剤を用いる方
法が好都合である(千畑一郎著「固定化酵素」講
談社(昭和50年)等参照)。 担体として用いられるマイクロカプセルは0.85
−1.25の範囲内の比重をもち、0.5〜20μm程度、
好ましくは1〜10μmの範囲の平均粒子サイズを
もつものが好適である。 マイクロカプセル担体は固型分として通常1〜
3重量%程度の範囲内で使用するのが望ましい。 本発明の試薬はマイクロタイター法に適用して
凝集像を観察し抗体を検出する免疫検査に用いら
れる。本発明によれば一種の試薬で多種抗体の検
出が可能であり、さらに本発明の試薬に特徴的な
免疫学的交叉反応性をも併せ観察すると、複数個
の血清型特異性をもつ菌の感染症も唯一回の操作
で適確に診断できる。本発明においては主/補助
マイクロカプセル混合系とすることによつて製造
上の得率を上げることができ、工業上非常に有用
である。 以下実施例により本発明をさらに詳細に説明す
る。 実施例 1 二種菌株感作マイクロカプセルAの作成: ジイソプロピルナフタレン11.8gと塩素化パラ
フイン(塩素化度50%、トヨパラツクス150)
13.2gとの混合油(比重約1.10)に油溶性赤色染
料オレオゾール・レツドBB(住友化学製)0.25g
を溶解した。得られた油性物質液を、無水マレイ
ン酸−メチルビニルエーテル共重合体
(GANTREZ AN−149、ゼネラルアニリンアン
ドフイルム社製)2.5gを水75mlに溶解した溶液
に加えた。攪拌、乳化し、コールターカウンター
TA−型で油滴のサイズを測定し平均サイズが
約5μmとなるように調製した。これに尿素2.5g
とレゾルシン0.25gと塩化アンモニウム0.3gと
を水25mlに溶解した溶液を加えた。さらに水50ml
を加えて希釈し、37%ホルムアルデヒド水溶液7
mlを加えた後、60℃で2時間反応させてマイクロ
カプセル化を行なつた。その後1N水酸化ナトリ
ウム水溶液を加えPHを9.0に調整してマイクロカ
プセルを作成した。 このようにして作成したマイクロカプセルを生
理食塩水で遠沈洗浄することにより、未反応残存
物を除去した。マイクロカプセル粒子濃度が10%
になるように生理食塩水に分散し、これをマイク
ロカプセルAとした。 二種菌株感作マイクロカプセル試薬Aの作成: 得られたマイクロカプセルA1.5mlをとり、8.5
mlの生理食塩水を加え分散した。 次に、25%グルタルアルデヒド水溶液100μ
を混合し、室温で1時間反応させ、遠沈洗浄後、
10mlの生理食塩水に再分散した。レプトスピラ菌
オータムナリス・秋疫A株をコルトフ培地(10%
正常ウサギ血清を含む)で増殖させ、培養6〜10
日目の培養菌液を9000rpmで20分(5℃)遠心分
離して得られた沈澱菌体を、生理食塩水で2回洗
浄した。次いで生理食塩水に浮遊させ、20kHzの
音波破砕器(大岳製作所製)で10分破砕処理を行
なつた。この音波破砕処理溶液を分光光度計を用
いて280nmの波長で測定し、光学濃度を0.1に調
製したものを抗原液1とした。 レプトスピラ菌ヘブドマデイス・ヘブドマデイ
ス株をコルトフ培地で秋疫A株と同様に増殖させ
た。洗浄後、音波破砕処理を行なつた。得られた
遠心上清を280nmの波長で測定した時の光学濃度
が0.1になるように調製し、これを抗原液2とし
た。 抗原液1および2の各2mlを混合し、これを前
記グルタルアルデヒド処理したマイクロカプセル
2mlと混合した。37℃で1時間インキユベートし
た後、4℃の冷蔵庫に18時間静置した。 次に、0.2%グリシン含有生理食塩水で2回洗
浄後、2mlの3%ウシ血清アルブミン含有の
0.15Mリン酸緩衝生理食塩水(PBSPH=7.2)に
再分散し、試薬Aを得た。 性能試験: この試薬Aの性能を、後述する方法で調製した
オータムナリス秋疫A株及びヘブドマデイス・ヘ
ブドマデイス株の各抗血清を用いてマイクロタイ
ター法により予備テストを行なつた。 得られた結果を第1表、「試薬A」の欄に示す。
The present invention relates to an improved microcapsule reagent capable of simultaneously detecting multiple antibodies, and a method for producing such a microcapsule reagent. It is known that the reactivity between antigens such as pathogenic bacteria and viruses and antibodies generated thereby is extremely highly specific. In order to discriminate between serotypes by taking advantage of this extremely high serotype specificity, microcapsules sensitized with two or more antigens of different serotypes were used in JP-A-58-21565. According to this method, diagnosis is made based on antigen-antibody reactions that strictly correspond to serotypes, so the accuracy of diagnosis is extremely high. The problem lies in how to equalize the sensitivity levels of different antigen components during sensitization. Having the same sensitivity level is an important condition for improving reproducibility, but since sensitization is performed with a heterologous antigen, it is natural for each sensitivity level to generally vary. This is probably due to differences in the number and activity of bacteria depending on the growth rate and growth conditions of the bacteria themselves. In practice, only those sensitized microcapsules in which each of the antigen components has the same sensitivity level are selected and used, so microcapsules with uneven sensitization were treated as a manufacturing loss. The present inventors have found that even if microcapsules have uneven sensitivity levels, if they are supplemented with microcapsules sensitized with an antigen that lacks sensitivity levels, the uniformity of sensitivity can be improved. We obtained the knowledge that the aggregation pattern became clearer. The mixed microcapsule for detecting multiple antibodies of the present invention comprises a main microcapsule that is sensitized with two or more foreign antigens exhibiting non-uniform sensitivity levels to antibodies, and each antigen has a different agglutination sensitivity to the antibody; It is characterized in that it contains auxiliary microcapsules which are solely sensitized with an antigen that exhibits a low sensitivity level to antibodies. In addition, the method for producing mixed microcapsules for testing multiple antibodies of the present invention involves mixing two or more different antigens that exhibit non-uniform sensitivity levels with respect to antibodies, and then using the sensitized main microcapsules to conduct an antigen-antibody reaction. After this, auxiliary microcapsules are prepared by sensitizing them alone with the antigen for which the sensitivity level was insufficient, and mixed microcapsules are prepared by mixing the main microcapsules and the auxiliary microcapsules. shall be. For example, if the antigen component A has a desired sensitivity level and the sensitivity level of the antigen component B has not reached the former level, after mixing A and B, the antigen component B is The microcapsules sensitized only with the microcapsules are mixed as auxiliary microcapsules. In this mixed microcapsule, an increase in the sensitivity of antigen component B was achieved, but on the other hand, from the perspective of antigen component A, noise increased, and the sensitivity of antigen component A was thought to decrease. However, surprisingly, no desensitization of antigen component A occurred and the initial sensitivity was substantially maintained. Contrary to the above, such an effect is possible even when antigen component A is insufficient at the sensitivity level.
It can be similarly obtained by mixing microcapsules sensitized with component A alone as auxiliary microcapsules. In addition, if only the A component of the main microcapsule has the desired sensitivity level, but the B and C components are insufficient, the B component alone or the C component alone may be sensitized. It may be mixed as auxiliary microcapsules. It is desirable that the auxiliary microcapsules be mixed with the main microcapsules in an amount of 50% by volume or less, preferably in the range of 15 to 45% by volume. If the amount of auxiliary microcapsules exceeds the upper limit, the sensitivity will decrease, and if the amount is too small, the drawbacks of the main microcapsules themselves will become apparent. Sensitizing antigens that can be used in the present invention are selected from a wide range of antigens, including hormones, drug metabolites, specific proteins, viruses, bacteria, cells, and antigens of human origin. Specifically, for example,
These include Treponema pallidum antigen, HBs antigen, Toxoplasma antigen, Mycoplasma antigen, Shigella, Leptospira, and Vibrio cholerae. Among these, the reagent of the present invention using Leptospira bacteria, which is an antigen component of a different serotype, as a sensitizing antigen is particularly valuable. The amount of these sensitizing antigens is appropriately selected depending on various conditions such as the type thereof and the accuracy of the intended measurement, but generally it is in the range of 0.01 to 10% by weight based on the solid content of the microcapsule. It is within. The method of sensitizing microcapsules with antigens is described in detail in JP-A-58-21565. The microcapsules used as carriers in the present invention consist of a core of an oily substance and a wall material surrounding the core. A typical manufacturing method is, for example, "Microcapsules" by Asashi Kondo, published by Nikkan Kogyo Shimbun (1977).
(2013). For specific oil-based substances, wall materials, various additives, etc., please refer to JP-A-57-
There are detailed descriptions in 196621, 57-19662, etc. Well-known methods are used to sensitize microcapsules with antigens or antibodies, and methods using crosslinking agents are particularly convenient (see "Immobilized Enzymes" by Ichiro Chibata, Kodansha (1975), etc.). Microcapsules used as carriers are 0.85
It has a specific gravity within the range of −1.25, about 0.5 to 20 μm,
Preferably, those having an average particle size in the range from 1 to 10 μm are suitable. Microcapsule carriers usually have a solid content of 1 to
It is desirable to use it within a range of about 3% by weight. The reagent of the present invention is used in immunoassays in which antibodies are detected by observing agglutination images by applying the microtiter method. According to the present invention, it is possible to detect multiple types of antibodies with a single reagent, and furthermore, when observing the immunological cross-reactivity characteristic of the reagent of the present invention, it is possible to detect bacteria with multiple serotype specificities. Infectious diseases can also be accurately diagnosed in just one operation. In the present invention, by using a mixed system of main/auxiliary microcapsules, it is possible to increase production yields, which is very useful industrially. The present invention will be explained in more detail with reference to Examples below. Example 1 Preparation of microcapsule A sensitized with two bacterial strains: 11.8 g of diisopropylnaphthalene and chlorinated paraffin (degree of chlorination 50%, Toyoparax 150)
13.2g of oil (specific gravity approx. 1.10) mixed with 0.25g of oil-soluble red dye Oleosol Red BB (manufactured by Sumitomo Chemical)
was dissolved. The obtained oily substance liquid was added to a solution in which 2.5 g of maleic anhydride-methyl vinyl ether copolymer (GANTREZ AN-149, manufactured by General Aniline and Film Co., Ltd.) was dissolved in 75 ml of water. Stir, emulsify, and coulter counter
The size of oil droplets was measured using a TA-type and adjusted so that the average size was about 5 μm. Add this to 2.5g of urea.
A solution of 0.25 g of resorcinol and 0.3 g of ammonium chloride dissolved in 25 ml of water was added. Plus 50ml of water
Dilute by adding 37% formaldehyde aqueous solution 7
ml was added and reacted at 60°C for 2 hours to perform microencapsulation. Thereafter, a 1N aqueous sodium hydroxide solution was added to adjust the pH to 9.0 to create microcapsules. The microcapsules thus prepared were centrifuged and washed with physiological saline to remove unreacted residues. Microcapsule particle concentration is 10%
The microcapsules were dispersed in physiological saline to give microcapsules A. Preparation of microcapsule reagent A sensitized with two bacterial strains: Take 1.5 ml of the obtained microcapsule A and add 8.5 ml of microcapsule reagent A.
ml of physiological saline was added and dispersed. Next, 100μ of 25% glutaraldehyde aqueous solution
were mixed, reacted for 1 hour at room temperature, and washed by centrifugation.
Redispersed in 10 ml of saline. Leptospira autumnalis strain A strain was grown in Kortov medium (10%
(containing normal rabbit serum) and cultured for 6 to 10
The precipitated bacterial cells obtained by centrifuging the day-old culture solution at 9000 rpm for 20 minutes (5°C) were washed twice with physiological saline. Next, it was suspended in physiological saline and crushed for 10 minutes using a 20kHz sonic crusher (manufactured by Otake Seisakusho). This sonication treatment solution was measured at a wavelength of 280 nm using a spectrophotometer, and the optical density was adjusted to 0.1, which was designated as antigen solution 1. The Leptospira hebdomadeis strain was grown in Kortov's medium in the same manner as the autumn plague A strain. After washing, sonication treatment was performed. The obtained centrifuged supernatant was prepared so that the optical density was 0.1 when measured at a wavelength of 280 nm, and this was used as antigen solution 2. 2 ml each of antigen solutions 1 and 2 were mixed, and this was mixed with 2 ml of the glutaraldehyde-treated microcapsules. After incubating at 37°C for 1 hour, it was left standing in a refrigerator at 4°C for 18 hours. Next, after washing twice with physiological saline containing 0.2% glycine, 2 ml of saline containing 3% bovine serum albumin was added.
Reagent A was obtained by redispersing in 0.15M phosphate buffered saline (PBSPH=7.2). Performance test: The performance of this reagent A was preliminarily tested by the microtiter method using antisera of Autumnalis autumnalis A strain and Hebdomadeis hebdomadeis strain prepared by the method described below. The results obtained are shown in Table 1, in the "Reagent A" column.

【表】 以上の予備試験から抗ヘブドマデイス・ヘブド
マデイス抗体に対しては、目的の感度(10240)
を得ることができたが、抗オータムナリス・秋疫
A抗体に対する感度は、目的とする感度(10240)
に達していないことがわかつた。 そこで、あらかじめ、オータムナリス・秋疫A
を単独で感作し、目的の感度(10240)を有する
一種株感作試薬を準備した。このものを試薬Aに
容量比で、試薬A:オータムナリス・秋疫A単独
感作試薬=3:1となるように混合し、試薬
A′を得た。 試薬Aと同様に、対応する2つの抗血清を用い
てマイクロタイターテストを行なつた。得られた
結果を第1表、「試薬A′」の欄に示した。 試薬A(オータムナリス・秋疫A及びヘブドマ
デイス・ヘブドマデイス株2種感作試薬)にオー
タムナリス・秋疫A単独感作試薬を混合して得ら
れる本発明の試薬A′においては、予備テストで
目的とする感度に達していなかつた抗オータムナ
リス・秋疫A抗体に対する感度が目的感度にまで
上昇した。従つて各抗体に対して感度レベルを同
一にそろえることができ、その結果、ノイズが増
加することなしに抗体の検出感度が上昇した。 実施例 2 三種菌株感作マイクロカプセル試薬Bの作成: 実施例1と同様にして、レプトスピラ菌オータ
ムナリス・秋疫A株、ヘブドマデイス・ヘブドマ
デイス株、イクテロヘモラギエ、RGA株の三種
の菌株をそれぞれコルトフ培地で増殖させた。洗
浄後、それぞれ音波破砕処理を行なつた。280nm
の波長で光学濃度が0.1を示すように調製したそ
れぞれの音波破砕処理溶液を抗原液とした。三種
の菌株の抗原液2mlを混合し、実施例1と同様に
マイクロカプセルに混合して反応させ、試薬Bに
得た。 実施例1と同様に、三種の菌株に対応する抗血
清を用いてマイクロタイター法により、予備テス
トを行なつた。 得られた結果を第2表、「試薬B」の欄に示す。
[Table] From the above preliminary tests, the desired sensitivity (10240) for anti-Hebdomadeis and Hebdomadeis antibodies was determined.
However, the sensitivity for anti-Autumnalis/Autumnella A antibody was lower than the desired sensitivity (10240).
It was found that this had not been reached. Therefore, in advance, Autumnalis/Autumn Pest A.
was sensitized alone to prepare a single strain sensitization reagent with the desired sensitivity (10240). Mix this with reagent A in a volume ratio of 3:1: Reagent A: Autumnalis Autumn Pest A single sensitization reagent = 3:1.
I got A′. Similar to Reagent A, microtiter tests were performed using the two corresponding antisera. The results obtained are shown in Table 1, in the "Reagent A'" column. Reagent A' of the present invention, which is obtained by mixing reagent A (sensitizing reagent for two strains of Autumnalis and Autumn Plague A and Hebdomades Hebdomadeis strains) with a single sensitization reagent for Autumn nalis and Autumn Plague A, has been tested in a preliminary test. The sensitivity for anti-autumnalis/fallensis A antibody, which had not reached the desired sensitivity, increased to the desired sensitivity. Therefore, the sensitivity level could be made the same for each antibody, and as a result, the detection sensitivity of antibodies was increased without increasing noise. Example 2 Preparation of three bacterial strain sensitized microcapsule reagent B: In the same manner as in Example 1, three bacterial strains, Leptospira autumnalis Autumnitis A strain, Hebdomadeis hebdomadeis strain, Icterohaemoragiae, and RGA strain, were prepared. Grown in Kortov's medium. After washing, each sample was subjected to sonication treatment. 280nm
Each sonication treatment solution prepared so that the optical density showed 0.1 at the wavelength of was used as the antigen solution. Reagent B was obtained by mixing 2 ml of antigen solutions of three types of bacterial strains and reacting them in microcapsules in the same manner as in Example 1. As in Example 1, a preliminary test was conducted using antisera corresponding to three types of bacterial strains by the microtiter method. The results obtained are shown in Table 2, column "Reagent B".

【表】 予備テストの結果、抗オータムナリス・秋疫A
抗体に対しては、目的の感度(10240)を得るこ
とができたが、抗イクテロヘモラギエ・RGA抗
体および抗ヘブドマデイス・ヘブドマデイス抗体
に対する感度は目的とする感度(10240)に達し
ていないことがわかつた。 そこで、あらかじめ、イクテロヘモラギエ・
RGAおよびヘブドマデイス・ヘブドマデイスを
各々単独で感作し、目的の感度(10240)を有し
ている一種株感作試薬を準備しておいた。このも
のを試薬Bに、容量比で試薬B:イクテロヘモラ
ギエ・RGA単独試薬:ヘブドマデイス・ヘブド
マデイス株単独試薬=3:1:1となるように混
合し、試薬B′を得た。 試薬Bと同様に3つの抗血清を用いてマイクロ
タイターテストを行なつた。 得られた結果を第2表、「試薬B′」の欄に示し
た。 予備テストにおいて目的の感度(10240)に達
していなかつた抗イクテロヘモラギエ・RGA抗
体及びヘブドマデイス・ヘブドマデイス抗体に対
する感度は本発明の試薬B′においては目的とす
る感度に高められた。従つて各抗体に対する感度
レベルが同一となり、その結果、ノイズが増加す
ることなしに三種の抗体が同時に再現性よく高い
精度で検出できた。 抗血清を用いるマイクロプレートテスト: 実施例1および2で調製した試薬A,A′、B,
B′の性能は以下の抗血清を用い、マイクロタイ
ター法により抗体価で評価した。 (抗血清の調製) (a) レプトスピラ菌イクテロヘモラギエ・RGA
株、 (b) オータムナリス・秋疫A株、 (c) ヘブドマデイス・ヘブドマデイス株、 上記(a),(b),(c)それぞれの菌株でウサギを高度
免疫して、抗血清を作成した。 それぞれの菌株のコルトフ培地培養菌液を遠心
分離し、沈澱した菌体を生理食塩水に浮遊させ、
これを4〜5日間隔で2回ウサギに皮下注射し、
更に4〜5日間隔で9回静脈注射を行なつた。最
初の皮下注射から7〜8週経過し、所定の抗体価
をもつたことを確認した後、全採血を行ない、
各々の菌株の抗血清を作成した。 (マイクロタイター法によるテスト) レプトスピラ菌体成分を感作した試薬A,A′,
B及びB′については、マイクロタイター法に用
いて抗原抗体反応を進めた。明らかな凝集を認め
た管を陽性とし、前記3種の菌株に対する抗血清
の最高希釈倍数を求め、それをもつて抗体価とし
た。3種の菌体の抗血清について、マイクロプレ
ートの各管孔に、25μの被検血清を0.15Mリン
酸緩衝生理食塩水(PBSPH7.2)を用いて2倍間
隔に希釈し、倍数希釈列を作成した。 次に、前記レプトスピラ菌体成分を感作したマ
イクロカプセル試薬A,A′,B及びB′各25μを
ドロツパーで採取し、マイクロプレートの抗血清
の希釈列の管孔に順次滴下した。マイクロプレー
トを5分間振動して抗原抗体反応を進めて後、4
℃の冷蔵庫に18時間静置した。その後とり出し、
ライトテーブル上にマイクロプレートを置いて管
底の凝集像を観察し、凝集を示した血清の最高希
釈倍数をもつて抗体価とした。
[Table] Preliminary test results, anti-autumnalis, autumn plague A
Although we were able to obtain the desired sensitivity (10240) for the antibody, the sensitivity for anti-Icterohaemoragiae RGA antibody and anti-Hebdomadeis antibody did not reach the desired sensitivity (10240). I understand. Therefore, in advance, Icterohemoragie
A single strain sensitization reagent having the desired sensitivity (10240) was prepared by sensitizing RGA and Hebdomadeis individually. This product was mixed with reagent B in a volume ratio of reagent B: Icterohemoragie RGA single reagent: Hebdomadeis hebdomadeis strain single reagent = 3:1:1 to obtain reagent B'. Similar to reagent B, a microtiter test was performed using three antisera. The results obtained are shown in Table 2, in the "Reagent B'" column. The sensitivities for anti-Icterohaemoragiae RGA antibody and Hebdomadeis hebdomadeis antibody, which had not reached the target sensitivity (10240) in the preliminary test, were increased to the target sensitivity with reagent B' of the present invention. Therefore, the sensitivity level for each antibody was the same, and as a result, three types of antibodies could be detected simultaneously with good reproducibility and high accuracy without increasing noise. Microplate test using antiserum: Reagents A, A', B, prepared in Examples 1 and 2
The performance of B' was evaluated by antibody titer using the microtiter method using the following antiserum. (Preparation of antiserum) (a) Leptospira icterohemoragiae RGA
rabbits were hyperimmunized with each of the strains (a), (b), and (c) above to prepare antisera. The Kortov medium culture solution of each bacterial strain was centrifuged, and the precipitated bacterial bodies were suspended in physiological saline.
This was subcutaneously injected into rabbits twice at an interval of 4 to 5 days.
Nine additional intravenous injections were given at 4-5 day intervals. Seven to eight weeks have passed since the first subcutaneous injection, and after confirming that the prescribed antibody titer has been obtained, whole blood is collected.
Antiserum for each strain was prepared. (Test by microtiter method) Reagents A, A', sensitized to Leptospira bacterial cell components
For B and B', antigen-antibody reactions were carried out using the microtiter method. Tubes in which clear agglutination was observed were considered positive, and the highest dilution factor of the antiserum against the three types of bacterial strains was determined, which was used as the antibody titer. For the antisera of the three types of bacterial cells, dilute 25μ of the test serum into each tube hole of the microplate at 2-fold intervals using 0.15M phosphate buffered saline (PBSPH7.2), and perform a multiple dilution series. It was created. Next, 25 µm each of the microcapsule reagents A, A', B, and B' sensitized with the Leptospira cell components were collected with a dropper and sequentially dropped into the tube holes of the antiserum dilution series of the microplate. After shaking the microplate for 5 minutes to advance the antigen-antibody reaction,
It was left in the refrigerator at ℃ for 18 hours. Then take it out,
The microplate was placed on a light table and the agglutination image at the bottom of the tube was observed, and the highest dilution of the serum that showed agglutination was taken as the antibody titer.

Claims (1)

【特許請求の範囲】 1 抗体に対して不均一な感度レベルを示す二以
上の異種抗原で感作され各抗原の抗体に対する凝
集感度が異なる主マイクロカプセルと、前記異種
抗原のうち抗体に対し低い感度レベルを示す抗原
で単独感作されている補助マイクロカプセルとを
含有することを特徴とする多種抗体検出用混合マ
イクロカプセル。 2 前記異種抗原が血清型の異なる抗原成分であ
る特許請求の範囲第1項に記載の混合マイクロカ
プセル。 3 前記抗原成分がレプトスピラ菌である特許請
求の範囲第2項に記載の混合マイクロカプセル。 4 抗体に対して不均一な感度レベルを示す二以
上の異種抗原を混合した後感作した主マイクロカ
プセルを使用して抗原抗体反応を行つた後、感度
レベルが不足していた抗原で単独感作して補助マ
イクロカプセルを調製し、これら前記主マイクロ
カプセルと前記補助マイクロカプセルとを混合し
て混合系マイクロカプセルを調製することを特徴
とする多種抗体検査用混合マイクロカプセルの製
造方法。 5 前記異種抗原が血清型の異なる抗原成分であ
る特許請求の範囲第4項に記載の製造方法。 6 前記抗原成分がレプトスピラ菌である特許請
求の範囲第5項に記載の製造方法。
[Scope of Claims] 1. Main microcapsules sensitized with two or more foreign antigens exhibiting non-uniform sensitivity levels to antibodies, and each antigen having a different agglutination sensitivity to antibodies, and one of the foreign antigens having a lower sensitivity level to the antibodies. A mixed microcapsule for detecting multiple antibodies, characterized in that it contains an auxiliary microcapsule that is singly sensitized with an antigen that exhibits a sensitivity level. 2. The mixed microcapsule according to claim 1, wherein the foreign antigen is an antigen component of a different serotype. 3. The mixed microcapsule according to claim 2, wherein the antigen component is Leptospira bacteria. 4 After performing an antigen-antibody reaction using the main microcapsules that have been sensitized after mixing two or more foreign antigens that exhibit non-uniform sensitivity levels to antibodies, a single sensitization test is performed using the antigen for which the sensitivity level was insufficient. A method for producing mixed microcapsules for testing multiple antibodies, comprising: preparing auxiliary microcapsules by preparing auxiliary microcapsules, and mixing the main microcapsules and the auxiliary microcapsules to prepare mixed microcapsules. 5. The manufacturing method according to claim 4, wherein the foreign antigen is an antigen component of a different serotype. 6. The manufacturing method according to claim 5, wherein the antigen component is Leptospira bacteria.
JP14358983A 1983-08-05 1983-08-05 Microcapsule for multi-kind antibody detection and inspection using the same Granted JPS6035266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14358983A JPS6035266A (en) 1983-08-05 1983-08-05 Microcapsule for multi-kind antibody detection and inspection using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14358983A JPS6035266A (en) 1983-08-05 1983-08-05 Microcapsule for multi-kind antibody detection and inspection using the same

Publications (2)

Publication Number Publication Date
JPS6035266A JPS6035266A (en) 1985-02-23
JPH056665B2 true JPH056665B2 (en) 1993-01-27

Family

ID=15342243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14358983A Granted JPS6035266A (en) 1983-08-05 1983-08-05 Microcapsule for multi-kind antibody detection and inspection using the same

Country Status (1)

Country Link
JP (1) JPS6035266A (en)

Also Published As

Publication number Publication date
JPS6035266A (en) 1985-02-23

Similar Documents

Publication Publication Date Title
US4060597A (en) Serological reagent and preparation thereof
JPS6223826B2 (en)
EP0038960A2 (en) Diagnostic reagents for immunological tests and a process for preparing the same
US4711841A (en) Method for determining one or more antigens in a sample
CA2565114A1 (en) Use of ferrofluids for phenotyping blood and related applications
EP0424975B1 (en) Artificial carrier for immobilization of biological proteins and process for production thereof
US4118349A (en) Process for the manufacture of polystyrene latex compounds
US4552633A (en) Fine particulate for use in clinical testing and a process for producing thereof
EP0095932B1 (en) The use of a particulate polymer as a carrier for biological substances and the like and such substances supported on the carrier
US3562384A (en) Immunological indicator and test system
EP1709451B1 (en) Reducing time to result for blood bank diagnostic testing
EP3508849B1 (en) Antibody measurement method using antigen-carrying insoluble carrier particles on which antigen is immobilized by different methods, and reagent for antibody measurement
CA1226217A (en) Diagnostic reagent for rheumatoid factor, process for its preparation and method and kit for its use
JPH056665B2 (en)
JPH01107154A (en) Processed red blood-corpuscle and its manufacturing method
JPS6058420B2 (en) Microcapsule group for immune reaction and discrimination method using the same
EP0062968B2 (en) Support material for use in serological testing and process for the production thereof
EP0134868A1 (en) Unicellular organisms activated by glutaraldehyde as solid carriers for sensitizing agents and uses of sensitized unicellular organisms
EP0599803B1 (en) Process for detecting antibodies and antigens
Kitano et al. Direct examination of chemical kinetic laws by visual imagery. IV. Association processes between antigen‐and fragmented antibody carrying fluorescent latex particles
JPS62138502A (en) Polymer particle
JPH0510626B2 (en)
JPS6035267A (en) Multi-item immunity examination
JPS6035269A (en) Microcapsule reagent for immunological reaction and examination using the same
JPH0666796A (en) Anti-glycated hemoglobin monoclonal antibody and method for measuring glycated hemoglobin