JPH0510626B2 - - Google Patents

Info

Publication number
JPH0510626B2
JPH0510626B2 JP58147364A JP14736483A JPH0510626B2 JP H0510626 B2 JPH0510626 B2 JP H0510626B2 JP 58147364 A JP58147364 A JP 58147364A JP 14736483 A JP14736483 A JP 14736483A JP H0510626 B2 JPH0510626 B2 JP H0510626B2
Authority
JP
Japan
Prior art keywords
microcapsules
diisocyanate
physiological saline
antibody
diluted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58147364A
Other languages
Japanese (ja)
Other versions
JPS6039562A (en
Inventor
Yasushi Akyoshi
Fujio Kakimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP58147364A priority Critical patent/JPS6039562A/en
Publication of JPS6039562A publication Critical patent/JPS6039562A/en
Publication of JPH0510626B2 publication Critical patent/JPH0510626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は感䜜効率の高い免疫分析甚マむクロカ
プセルの補造法に関する。 抗原又は抗䜓を免疫孊的に怜査する方法ずしお
埓来から赀血球凝集反応が行われおいる。たたポ
リスチレンラテツクスを担䜓ずするラテツクス凝
集反応もすでに実甚化されおいる。しかしながら
これら埓来法においおは非特異凝集が起りやす
い、感床が䞍充分である、長期保存性が悪い、刀
定たでに長時間を芁する等の欠点がある。 このような赀血球やラテツクスなどの代りに、
マむクロカプセルを担䜓ずしお䜿甚する方法が提
案された。特開昭55−94636、同57−19661、同
57−19662等。 この方法においおは、動物由来の担䜓赀血
球に固有の前蚘欠点やラテツクス等の合成担䜓
が有する䞍郜合は解消されおおり、このマむクロ
カプセル担䜓法を適甚すれば、感床䞊昇、簡䟿な
操䜜、オン・オフの確実な刀別など、埓来法に比
べおより改善された効果が埗られるず共に、埓来
法では実甚䞊䞍可胜であ぀た新しい怜査も開拓さ
れ぀぀ある。 本発明者らは免疫怜査甚担䜓ずしおのマむクロ
カプセルの性胜に぀いおさらに皮々怜蚎を重ねお
いたずころ、芯物質、壁材及び添加剀の特定の組
合せでマむクロカプセル化を行なうず、感床の高
い免疫怜査詊薬を䞎えるマむクロカプセルが埗ら
れるこずを芋出した。 すなわち本発明はポリビニルアルコヌルずポリ
スチレンスルホン酞ずを含む氎溶液に倚䟡む゜シ
アネヌトず油性物質からなる油性物質液を添加し
ポリビニルアルコヌルずポリスチレンスルホン酞
ずの共存䞋に乳化分散し、぀いで氎溶性倚䟡アミ
ノ化合物を前蚘乳化分散液に加えお前蚘倚䟡む゜
シアネヌトず重合させるこずを特城ずする免疫分
析甚マむクロカプセルの補造法に関する。 本発明のマむクロカプセルは以䞋の工皋により
補造される。 (1) 芯を圢成する油性物質に油溶性の倚䟡む゜シ
アネヌト、む゜チオシアネヌトたたはそれらの
プレポリマヌ以䞋む゜シアネヌトで䞡者を代
衚する。を溶解し油性物質液を調補する。 (2) PVAPSSの䞡者を溶解した氎溶液PVA
−PSS氎溶液ずいうこずがあるを調補する。 (3) PVA−PSS氎溶液に油性物質液を添加し、
PVAずPSSずの共存䞋に乳化分散する。 (4) 乳化分散液に倚䟡アミノ化合物を加える。 (5) 熱重合を行なう60〜90℃皋床、通垞玄70℃
で時間以䞊、普通時間䜍加熱する。 以䞊の工皋によりマむクロカプセル化が完了す
る。瞮重合反応の進行が遅い倚䟡む゜シアネヌト
ず倚䟡アミノ化合物ずの組合せでは(4)の工皋は(2)
の工皋に合䜵するこずができるが望たしいこずで
はない。PVAずPSSずは倚䟡む゜シアネヌトの
乳化分散に際しお必ず共存した状態でなければな
らない。䟋えばどちらか䞀方で乳化分散を行ない
他方をその埌加えお共存系を構成しおも本発明の
マむクロカプセルは埗られない。 こうしお埗られたマむクロカプセルは抗原又は
抗䜓を感䜜したマむクロカプセル詊薬ずした堎
合、凝集反応においお非垞に高い怜出感床を瀺
す。本発明のマむクロカプセルは前蚘の組合せ条
件においおのみ補造するこずができ、どの䞀぀が
欠けおも所期のマむクロカプセルは埗られない。
その理由は必ずしも明らかではないが、PVA−
PSSの共存䞋では界面での重合が極めお巧劙にコ
ントロヌルされるものず思われる、しかも壁衚面
の凹凞が倚く埓぀お壁の衚面積が倧きくな぀おい
るこずが寄䞎しおいるものず思われる。 PVAは通垞200〜1500皋床の重合床をも぀もの
が䜿甚される。重合床があたり䜎いず乳化分散力
が匱く、高すぎるず抗原又は抗䜓が結合しにく
い。PVAは油性物質に察し〜16重量皋床䜿
甚するのが望たしい。感圧玙甚マむクロカプセル
で芳祭されおいる特開昭55−132631ようなけ
ん化床ずの盞関は特にないが、実甚的には玄85
以䞊のものがよい。 PSSは10䞇から200䞇皋床の分子量のものが適
しおおり、奜たしくは20䞇〜100䞇、実甚䞊は50
䞇䜍のもので、スルホン化床が40〜99の範囲で
䜿甚される。䜿甚量はPVAに察し10〜100重量
の範囲が適圓である。 本発明のマむクロカプセルにおいお壁材の成分
ずしお䜿甚される倚䟡アミノ化合物は、氎溶性の
第玚アミノ化合物である。䟋えば盎鎖ゞアミン
゚チレン−、テトラメチレン−、ヘキサメチレ
ン−、オクタメチレンゞアミン等、ゞ゚チレン
トリアミン、トリ゚チレンテトラミン、テトラ゚
チルペンタミン、芳銙族ゞアミンプニレン
−、キシレンゞアミン、ゞアミノ安息銙酞、アミ
ノプニル゚チルアミン等、異節環ゞアミン
ゞアミノ−ピリゞン、−トリアゟヌル、−ピリミ
ゞン、−メルカプトピリミゞン等、塩基性アミノ
酞アルギニン、リゞン、ヒドロキシリゞン、オ
ルニチン、シトルリン、グルタミン、アスパラギ
ン等トリアミントリアミノ−プロパン、−ベ
ンれン、−ピリミゞン等があり、䞭でも盎鎖ゞ
アミン及び塩基性アミノ酞、特にヘキサメチレン
ゞアミンずリゞンが奜たしい。 カプセルの芯物質ずなる油性物質ずしおは倩然
鉱物油、動物油、怍物油および合成油があげられ
る。これら芯物質は、衚面がカプセル壁で完党に
おおわれるため、抗原や抗䜓ぞの盎接の圱響はな
いず思われるが、生化孊的に掻性なものは、避け
た方が奜たしい。 鉱物油の䟋ずしお、ケロシン、ナフサ、パラフ
むン油があり、動物油の䟋では、魚油、ラヌド
油、がある。怍物油の䟋は、萜花生油、亜麻仁
油、倧豆油、ひたし油及びずうもろこし油等があ
る。合成油の䟋ずしおは、ビプニル化合物
䟋む゜プロピルビプニル、む゜アミルビフ
゚ニル、タヌプニル化合物、ナフタレン化合
物䟋ゞむ゜プロピルナフタレン、アルキル
化ゞプニルアルカン䟋−ゞメチルゞ
プニルメタン、フタル酞化合物䟋ゞ゚チ
ルフタレヌト、ゞブチルフタレヌト、ゞオクチル
フタレヌト、塩化パラフむン等が挙げられる。
倚䟡む゜シアナヌト、倚䟡む゜チオシアネヌト又
はこれらのプレポリマヌずは、個以䞊のむ゜シ
アナヌト基又はむ゜チオシアナヌト基を有し、か
぀油性物質に可溶の化合物を指す。具䜓䟋ずしお
は、−プニレンゞむ゜シアナヌト、−プ
ニレンゞむ゜シアナヌト、−トリレンゞむ
゜シアナヌト、−トリレンゞむ゜シアナヌ
ト、ナフタレン−−ゞむ゜シアナヌト、ゞ
プニルメタン−4′−ゞむ゜シアナヌト、
3′−ゞメトキシ−4′−ビプニルゞむ゜
シアナヌト、3′ゞメチルゞプニルメタン−
4′−ゞむ゜シアナヌト、キシリレン−
−ゞむ゜シアナヌト、キシリレン−−ゞむ
゜シアナヌト、4′−ゞプニルプロパンゞむ
゜シアナヌト、トリメチレンゞむ゜シアナヌト、
ヘキサメチレンゞむ゜シアナヌト、プロピレン−
−ゞむ゜シアナヌト、ブチレン−−
ゞむ゜シアナヌト、゚チリゞンゞむ゜シアナヌ
ト、シクロヘキシレン−−ゞむ゜シアナヌ
ト、シクロヘキシレン−−ゞむ゜シアナヌ
ト、−プニレンゞむ゜チオシアナヌト、キシ
リレン−−ゞむ゜チオシアナヌト、゚チリ
ゞンゞむ゜チオシアナヌト等のゞ゜シアナヌト又
はゞむ゜チオシアナヌト4′4″−トリプ
ニルメタントリむ゜シアナヌト、トル゚ン−
−トリむ゜シアナヌト、ポリメチレンポリ
プニルトリむ゜シアナヌト、−トリ
ス〔−む゜シアナヌト−−メチルプニル
カルバモむルオキシメチル〕プロパンの劂きトリ
む゜シアナヌト4′−ゞメチルゞプニルメ
タン−2′5′−テトラむ゜シアナヌトの
劂きテトラむ゜シアナヌトヘキサメチレンゞむ
゜シアナヌトずヘキサントリオヌルの付加物、
−トリレンゞむ゜シアナヌトずブレンツカ
テコヌルの付加物、トリレンゞむ゜シアナヌトず
ヘキサントリオヌルの付加物、トリレンゞむ゜シ
アナヌトずトリメチロヌルプロパンの付加物、キ
シリレンゞむ゜シアナヌトずトリメチロヌルプロ
パンの付加物、ヘキサメチレンゞむ゜シアナヌト
ずトリメチロヌルプロパンの付加物の劂きポリむ
゜シアナヌトプレポリマヌ又はこれ等に類䌌す
る任意の適圓なポリむ゜シアナヌト又はポリむ゜
チオシアナヌトが挙げられる。これら二皮以䞊を
䜵甚するこずも可胜である。䜿甚量は油性物質液
100郚に察し0.1〜20郚皋床、特に〜10郚皋床が
奜たしい。 本発明のマむクロカプセルの補造方法に適甚し
うるマむクロカプセル化のその他の条件等は近藀
朝士著「マむクロカプセル」日刊工業新聞瀟刊
昭和45幎、特開昭56−72346等に詳蚘されおい
る。 本発明のマむクロカプセルの比重は芯物質を倉
えるこずによ぀お自圚に倉えるこずができるが、
免疫怜査ずしおの甚途から䞀般には0.85−1.25の
範囲内のものが適圓である。 マむクロカプセルの平均サむズは、0.5Ό〜
20Ό、奜たしくは、1Ό〜10Όの範囲から遞
択するのが望たしい。 本発明のマむクロカプセルは非垞に高い感䜜効
率を瀺すので、免疫怜査詊薬の担䜓ずしお極めお
有甚である。たた非垞に比の高い高感床の
免疫怜査甚詊薬を䞎えるので補造コストの点で極
めお有利である。 以䞋実斜䟋により本発明をさらに詳现に説明す
る。 実斜䟋  ゞむ゜プロピルナフタレン8.4ず塩玠化パラ
フむントペパラツクス150、東掋曹達瀟補塩玠
化床5016.6ずの混合油比重玄1.14に油
溶性赀色螢光染料オレオゟヌル・レツドBB
Oleosol Red BB䜏友化孊補C.I 261050.25
を溶解した。埗られた溶液に−トリス
〔−む゜シアナト−−メチルプニルカル
バモむルオキシメチル〕プロパンバヌノツク
−750、倧日本むンキ瀟補1.6をメチル゚チル
ケトンに溶解した溶液を混合した。この油性
物質液をポリビニルアルコヌル、PVA−105ク
ラレ瀟補、ケン化床98、重合床500ずポ
リスチレンスルホン酞の䞀郚ナトリりム塩プロ
クタヌ・ギダンブル瀟補、VERSA、TL−500、
平均分子量50䞇ずを氎75mlに溶解した溶液
の䞭に加えお、撹拌、乳化し、油滎の平均サむズ
を玄5Όに調補した。これにヘキサメチレンゞ
アミン2.6を氎25mlに溶解した溶液を加え、氎
75mlで垌釈した埌、70℃で時間反応させおマむ
クロカプセル化を行な぀た。 マむクロカプセル生成埌、生理食塩氎で遠沈掗
浄しお未反応残存物を陀去し、マむクロカプセル
粒子濃床が10になるように生理食塩氎に分散し
た。 比范甚マむクロカプセル ポリビニルアルコヌル、PVA−105の代わりに
ポリビニルアルコヌル、PVA−117クラレ瀟補、
ケン化床98、重合床1700を甚いる他は実斜䟋
ず同じ条件でマむクロカプセルを調補した。 比范甚マむクロカプセル ポリスチレンスルホン酞は䜿甚しないで、ポリ
ビニルアルコヌル、PVA−105を甚い、その
他は実斜䟋ず同じ条件でマむクロカプセルを
調補した。 比范甚マむクロカプセル ポリビニルアルコヌル、PVA−105を䜿甚しな
いで、ポリスチレンスルホン酞を甚い、その
他は実斜䟋ず同じ条件でマむクロカプセルを
調補した。 以䞊皮類のマむクロカプセルを䜿甚しお以䞋
の操䜜によりマむクロカプセル詊薬を䜜成し、そ
れぞれの感床を比范した。 マむクロカプセル詊薬の調補及びその評䟡 本発明のマむクロカプセルによる詊薬甲 実斜䟋で調補した本発明のマむクロカプセ
ル1.5を分取し、生理食塩氎8.5mlに垌釈分散
した。次に25グルタルアルデヒド氎溶液を生
理食塩氎で100倍に垌釈した液10mlを垌釈マむ
クロカプセル液に加え、37℃で45分反応させ
た。反応終了埌、遠沈掗浄し10mlの生理食塩氎
に再分散した。このmlを分取しアフむニテむ
クロマト粟補抗ヒトIgG抗䜓ヒツゞ免疫、和
光玔薬瀟補、液を生理食塩氎で200倍に
垌釈した液mlを加え、37℃で120分むンキナ
ベヌトした。次いで0.2グリシン含有0.15M
リン酞緩衝生理食塩氎PBSPH7.2で
回遠沈掗浄を行な぀た埌、りシ血枅アルブ
ミンBSA含有PBSに分散しお、ヒトIgG怜
出詊薬ずした。 比范甚マむクロカプセル詊薬及び 比范甚マむクロカプセル及びそれぞ
れを工皋ず同様にしおグルタルアルデヒド凊
理を行ない、アフむニテむクロマト粟補抗ヒト
IgG抗䜓の50倍垌釈液を甚い工皋ず同じ条件
でその埌の反応を行ない、比范甚詊薬及
びを埗た。 詊薬の評䟡 で䜜成した詊薬甲に぀いお以䞋の操䜜に
埓い、マむクロタむタヌ法を甚いお抗原抗䜓反
応を行な぀た。明らかな凝集を認めた管を陜性
ずし、陜性を瀺す血枅の最高垌釈倍数を求め、
それを抗䜓䟡ずした。 ヒトIgGマむルス瀟補溶液を
BSA含有PBSで䞇倍に垌釈したものおよび
陰性コントロヌルずしお正垞ダギ血枅を同じく
BSA含有PBSで10倍垌釈した。字底マ
むクロプレヌトの各管孔に、それぞれを25ÎŒ
づ぀採取し、BSA含有PBSを甚いお倍
間隔に垌釈しお倍数垌釈列を䜜成した。 次にで䜜成した詊薬甲の25Όをドロツ
パヌで採取し、マむクロプレヌトの被怜液垌釈
列の管孔に滎䞋した。マむクロプレヌトを分
間振動し、抗原抗䜓反応を進めた。宀枩で時
間静眮埌、マむクロプレヌト管底の凝集像を芳
察し、第衚の劂き抗䜓䟡を埗た。 で埗られた比范甚マむクロカプセル詊薬
〜に぀いおヒトIgG1溶液をBSA含
有PBSで100倍に垌釈したものを甚いる他は詊
甲薬に぀いおの操䜜ず同じ条件で操䜜し、第
衚の劂き抗䜓䟡を埗た。
The present invention relates to a method for producing microcapsules for immunoanalysis with high sensitization efficiency. BACKGROUND ART A hemagglutination reaction has traditionally been used as a method for immunologically testing antigens or antibodies. Furthermore, a latex aggregation reaction using polystyrene latex as a carrier has already been put into practical use. However, these conventional methods have drawbacks such as easy non-specific aggregation, insufficient sensitivity, poor long-term storage, and a long time required for determination. Instead of such red blood cells or latex,
A method using microcapsules as a carrier was proposed. (Unexamined Japanese Patent Publication No. 55-94636, No. 57-19661, No.
57−19662, etc.). This method eliminates the above-mentioned drawbacks inherent to animal-derived carriers (red blood cells) and the disadvantages of synthetic carriers such as latex.If this microcapsule carrier method is applied, sensitivity can be increased, simple operation, and - Improved effects compared to conventional methods, such as reliable determination of off state, are being obtained, and new tests that are practically impossible with conventional methods are being developed. The present inventors continued to conduct various studies on the performance of microcapsules as carriers for immunoassays, and found that microcapsules with a specific combination of core material, wall material, and additives could be used for highly sensitive immunoassays. It has been found that microcapsules can be obtained that provide reagents. That is, in the present invention, an oily substance liquid consisting of a polyvalent isocyanate and an oily substance is added to an aqueous solution containing polyvinyl alcohol and polystyrene sulfonic acid, emulsified and dispersed in the coexistence of polyvinyl alcohol and polystyrene sulfonic acid, and then a water-soluble polyvalent amino acid is added. The present invention relates to a method for producing microcapsules for immunoanalysis, which comprises adding a compound to the emulsified dispersion and polymerizing it with the polyvalent isocyanate. The microcapsules of the present invention are manufactured by the following steps. (1) An oily substance liquid is prepared by dissolving an oil-soluble polyvalent isocyanate, isothiocyanate, or a prepolymer thereof (hereinafter referred to as isocyanate) in an oily substance that forms the core. (2) Aqueous solution containing both PVA and PSS (PVA
-Prepare a PSS aqueous solution). (3) Adding an oily substance liquid to the PVA-PSS aqueous solution,
Emulsifying and dispersing in the coexistence of PVA and PSS. (4) Add a polyvalent amino compound to the emulsified dispersion. (5) Perform thermal polymerization (about 60 to 90℃, usually about 70℃)
(heat for at least 1 hour, usually about 2 hours). Microencapsulation is completed through the above steps. In the combination of a polyvalent isocyanate and a polyvalent amino compound, in which the condensation polymerization reaction progresses slowly, step (4) is
process, but this is not desirable. PVA and PSS must always coexist when emulsifying and dispersing polyvalent isocyanate. For example, even if one of them is emulsified and dispersed and the other is added afterwards to form a coexistence system, the microcapsules of the present invention cannot be obtained. The microcapsules thus obtained exhibit very high detection sensitivity in agglutination reactions when used as microcapsule reagents sensitized with antigens or antibodies. The microcapsules of the present invention can be produced only under the above combination conditions, and if any one of them is missing, the desired microcapsules will not be obtained.
The reason is not necessarily clear, but PVA−
In the coexistence of PSS, polymerization at the interface is thought to be controlled extremely skillfully, and this seems to be due to the fact that the wall surface has many irregularities and therefore has a large surface area. PVA having a polymerization degree of about 200 to 1500 is usually used. If the degree of polymerization is too low, the emulsifying and dispersing power will be weak; if the degree of polymerization is too high, it will be difficult for antigens or antibodies to bind. It is desirable to use PVA in an amount of about 4 to 16% by weight based on the oily substance. There is no particular correlation with the degree of saponification as shown in microcapsules for pressure-sensitive paper (Japanese Patent Application Laid-Open No. 132631/1983), but in practical terms it is approximately 85%.
The above is good. A suitable PSS has a molecular weight of about 100,000 to 2 million, preferably 200,000 to 1 million, but practically 50
It is used with a degree of sulfonation ranging from 40 to 99%. The amount used is 10 to 100% by weight of PVA.
A range of is appropriate. The polyvalent amino compound used as a component of the wall material in the microcapsules of the present invention is a water-soluble primary amino compound. For example, linear diamines (ethylene, tetramethylene, hexamethylene, octamethylene diamine, etc.), diethylenetriamine, triethylenetetramine, tetraethylpentamine, aromatic diamines (phenylene, xylene diamine, diaminobenzoic acid, aminophenylethylamine) ), heterocyclic diamines (diamino-pyridine, -triazole, -pyrimidine, -mercaptopyrimidine, etc.), basic amino acids (arginine, lysine, hydroxylysine, ornithine, citrulline, glutamine, asparagine, etc.), triamines (triamino-propane, -benzene, -pyrimidine, etc.), among which linear diamines and basic amino acids, particularly hexamethylene diamine and lysine, are preferred. Oily substances that serve as capsule core materials include natural mineral oils, animal oils, vegetable oils, and synthetic oils. Since the surface of these core substances is completely covered by the capsule wall, they do not seem to have a direct effect on antigens or antibodies, but it is preferable to avoid biochemically active substances. Examples of mineral oils include kerosene, naphtha, and paraffin oil; examples of animal oils include fish oil and lard oil. Examples of vegetable oils include peanut oil, linseed oil, soybean oil, castor oil and corn oil. Examples of synthetic oils include biphenyl compounds (e.g., isopropylbiphenyl, isoamylbiphenyl), terphenyl compounds, naphthalene compounds (e.g., diisopropylnaphthalene), and alkylated diphenylalkanes (e.g., 2,4-dimethyldiphenylmethane). , phthalic acid compounds (eg, diethyl phthalate, dibutyl phthalate, dioctyl phthalate), chlorinated paraffin, and the like.
A polyvalent isocyanate, a polyvalent isothiocyanate, or a prepolymer thereof refers to a compound having two or more isocyanate groups or isothiocyanate groups and is soluble in an oily substance. Specific examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate, diphenylmethane. -4,4'-diisocyanate,
3,3'-dimethoxy-4,4'-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-
4,4'-diisocyanate, xylylene-1,4
-diisocyanate, xylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate, trimethylene diisocyanate,
Hexamethylene diisocyanate, propylene-
1,2-diisocyanate, butylene-1,2-
Diisocyanate, ethyridine diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexylene-1,4-diisocyanate, p-phenylene diisothiocyanate, xylylene-1,4-diisothiocyanate diisocyanate or diisothiocyanate such as diisothiocyanate, ethyridine diisothiocyanate; 4,4′,4″-triphenylmethane triisocyanate, toluene-2,
4,6-triisocyanate, polymethylene polyphenyl triisocyanate, 1,1,1-tris [(3-isocyanato-4-methylphenyl)
triisocyanates such as carbamoyloxymethyl]propane; tetraisocyanates such as 4,4'-dimethyldiphenylmethane-2,2',5,5'-tetraisocyanate; addition of hexamethylene diisocyanate and hexanetriol thing,
Adduct of 2,4-tolylene diisocyanate and Brenz catechol, adduct of tolylene diisocyanate and hexanetriol, adduct of tolylene diisocyanate and trimethylolpropane, adduct of xylylene diisocyanate and trimethylolpropane , a polyisocyanate prepolymer such as an adduct of hexamethylene diisocyanate and trimethylolpropane; or any similar suitable polyisocyanate or polyisothiocyanate. It is also possible to use two or more of these in combination. The amount used is oil-based liquid
It is preferably about 0.1 to 20 parts, particularly about 1 to 10 parts, per 100 parts. Other conditions for microencapsulation that can be applied to the method for producing microcapsules of the present invention are described in detail in "Microcapsules" by Asashi Kondo, published by Nikkan Kogyo Shimbun (1971), JP-A-72346-1973, etc. has been done. Although the specific gravity of the microcapsules of the present invention can be freely changed by changing the core material,
Generally speaking, a value within the range of 0.85-1.25 is appropriate for use as an immunological test. The average size of microcapsules is 0.5 ÎŒm ~
It is desirable to select from the range of 20 ÎŒm, preferably from 1 ÎŒm to 10 ÎŒm. Since the microcapsules of the present invention exhibit extremely high sensitization efficiency, they are extremely useful as carriers for immunoassay reagents. Furthermore, since it provides a highly sensitive immunological test reagent with a very high S/N ratio, it is extremely advantageous in terms of manufacturing costs. The present invention will be explained in more detail with reference to Examples below. Example 1 Oil-soluble red fluorescent dye oleosol Red BB was added to a mixed oil (specific gravity approximately 1.14) of 8.4 g of diisopropylnaphthalene and 16.6 g of chlorinated paraffin (Toyoparax 150, Toyo Soda Co., Ltd., chlorination degree 50%).
Oleosol Red BB (Sumitomo Chemical CI 26105) 0.25g
was dissolved. To the resulting solution was added 1,1,1-tris[(3-isocyanato-4-methylphenyl)carbamoyloxymethyl]propane (Burnock D
-750, manufactured by Dainippon Ink Co., Ltd.) dissolved in 2 g of methyl ethyl ketone was mixed. This oily substance liquid was mixed with 2 g of polyvinyl alcohol, PVA-105 (manufactured by Kuraray Co., Ltd., saponification degree 98%, polymerization degree 500) and a partial sodium salt of polystyrene sulfonic acid (manufactured by Procter-Gamble Co., Ltd., VERSA, TL-500,
(average molecular weight: 500,000) was added to a solution of 75 ml of water, and stirred and emulsified to prepare oil droplets with an average size of about 5 ÎŒm. Add a solution of 2.6 g of hexamethylene diamine dissolved in 25 ml of water, and
After diluting with 75 ml, the mixture was reacted at 70°C for 2 hours to perform microencapsulation. After the microcapsules were produced, they were centrifuged and washed with physiological saline to remove unreacted residues, and then dispersed in physiological saline so that the microcapsule particle concentration was 10%. Comparative microcapsule A: Polyvinyl alcohol, PVA-117 (manufactured by Kuraray Co., Ltd., instead of polyvinyl alcohol, PVA-105)
Microcapsules A were prepared under the same conditions as in Example 1, except that the degree of saponification was 98% and the degree of polymerization was 1700. Comparative Microcapsule B: Microcapsule B was prepared under the same conditions as in Example 1 except that 3 g of polyvinyl alcohol, PVA-105, was used without using polystyrene sulfonic acid. Comparative Microcapsule C: Microcapsule C was prepared under the same conditions as in Example 1 except that 2 g of polystyrene sulfonic acid was used without using polyvinyl alcohol or PVA-105. Using the above four types of microcapsules, microcapsule reagents were prepared by the following operations, and their sensitivities were compared. Preparation of microcapsule reagent and evaluation thereof Reagent A using microcapsules of the present invention 1.5 g of the microcapsules of the present invention prepared in Example 1 were taken out and diluted and dispersed in 8.5 ml of physiological saline. Next, 10 ml of a 25% glutaraldehyde aqueous solution diluted 100 times with physiological saline was added to the diluted microcapsule solution and reacted at 37°C for 45 minutes. After the reaction was completed, the mixture was washed by centrifugation and redispersed in 10 ml of physiological saline. Aliquot 2 ml of this, add 2 ml of Affinity chromatography-purified anti-human IgG antibody (sheep immune, manufactured by Wako Pure Chemical Industries, Ltd., 1% solution) diluted 200 times with physiological saline, and incubate at 37°C for 120 minutes. did. Then 0.15M containing 0.2% glycine
3 with phosphate buffered saline (PBS, PH=7.2)
After centrifugation and washing, it was dispersed in PBS containing 3% bovine serum albumin (BSA) to prepare a human IgG detection reagent. Comparative microcapsule reagents A, B, and C Comparative microcapsules A, B, and C were each treated with glutaraldehyde in the same manner as in the process, and Afinitei chromatographic purified anti-human
A subsequent reaction was performed using a 50-fold diluted solution of IgG antibody under the same conditions as in the step to obtain comparative reagents A, B, and C. Evaluation of reagents. An antigen-antibody reaction was performed using the microtiter method using the reagent A prepared in the following procedure. The tube in which obvious agglutination was observed was considered positive, and the highest dilution factor of the serum showing positive was determined.
This was taken as the antibody titer. 1% human IgG (Miles) 1% solution
Normal goat serum was diluted 20,000 times with PBS containing BSA, and normal goat serum was diluted 10 times with PBS containing 1% BSA as a negative control. Place 25Ό of each into each tube hole of the V-bottom microplate.
A dilution series was prepared by diluting the samples at 2-fold intervals using PBS containing 1% BSA. next. 25Ό of the reagent A prepared in step A was collected with a dropper and dropped into the tube hole of the test solution dilution row of the microplate. The microplate was shaken for 5 minutes to advance the antigen-antibody reaction. After standing at room temperature for 3 hours, the aggregation image at the bottom of the microplate tube was observed, and the antibody titers as shown in Table 1 were obtained.  Comparative microcapsule reagents A to C obtained in 1.
Antibody titers as shown in the table were obtained.

【衚】 本発明のマむクロカプセルに抗ヒトIgG抗䜓
を感䜜した詊薬甲は、比范甚詊薬に比べ800
倍、抗䜓䟡が高いこずが芋出された。たた陰性
コントロヌルによる非特異凝集性は比范甚詊薬
及びより䜎く、極めおSN比の高い詊薬が
埗られた。本発明のマむクロカプセルを䜿甚し
お埗た詊薬は比范甚詊薬に比べより䜎い抗䜓濃
床で充分高い抗䜓䟡を䞎えるので補造コストの
点で極めお有利である。 アフむニテむクロマトグラフむにより粟補し
た抗ヒトIgG抗䜓の代りにアフむニテむクロマ
トグラフむによる粟補を行な぀おいない抗ヒト
IgG抗䜓マむルズ瀟補を生理食塩氎で20倍
垌釈しお甚いる他は工皋ず同じ条件で反応を
行ない、抗ヒトIgG怜出詊薬乙を埗た。操䜜
に埓い、マむクロタむタヌ法により抗原抗䜓反
応を進めお抗䜓䟡を求め、第衚に瀺す結果を
埗た。
[Table] Reagent A, in which the microcapsules of the present invention are sensitized with anti-human IgG antibodies, is 800% lower than comparative reagent A.
It was found that the antibody titer was twice as high. In addition, the non-specific agglutination property measured by the negative control was lower than that of comparative reagents B and C, and a reagent with an extremely high signal-to-noise ratio was obtained. The reagent obtained using the microcapsules of the present invention provides a sufficiently high antibody titer at a lower antibody concentration than the comparative reagent, and is therefore extremely advantageous in terms of production cost. Anti-human that has not been purified by Affinity chromatography instead of anti-human IgG antibody purified by Affinity chromatography
The reaction was carried out under the same conditions as in the step except that IgG antibody (manufactured by Miles) was diluted 20 times with physiological saline to obtain anti-human IgG detection reagent B. According to the procedure, the antigen-antibody reaction was carried out using a microtiter method to determine the antibody titer, and the results shown in Table 2 were obtained.

【衚】 本発明のマむクロカプセルはこれに垂販の抗
䜓をそのたた固定しおも充分高い抗䜓䟡を䞎え
るこずが刀明した。比范䟋〜のマむクロカ
プセルに぀いおず同じ条件の操䜜を行な぀
たが、ヒトIgGの垌釈列で凝集像は認められな
か぀た。 工皋においお、垌釈マむクロカプセルにグ
ルタルアルデヒド凊理を行なうこずなくアフむ
ニテむクロマト粟補抗ヒトIgG抗䜓の100倍垌
釈液を甚いお37℃で90分むンキナベヌトし吞着
反応させた。次いでPBSで遠心掗浄を回繰
り返し、BSA含有PBSに分散しおヒトIgG
怜出詊薬䞙を埗た。 接䜜に埓い、マむクロタむタヌ法により抗䜓
䟡を求めた。埗られた結果を第衚に瀺す。
[Table] It has been found that the microcapsules of the present invention give sufficiently high antibody titers even when commercially available antibodies are directly immobilized thereon. Regarding the microcapsules of Comparative Examples A to C. Although the same conditions as above were performed, no agglutination images were observed in the human IgG dilution series. In the step, the diluted microcapsules were incubated at 37°C for 90 minutes using a 100-fold dilution of Affinitei chromatography-purified anti-human IgG antibody without being treated with glutaraldehyde to cause an adsorption reaction. Next, centrifugal washing with PBS was repeated three times, and human IgG was dispersed in PBS containing 3% BSA.
Detection reagent C was obtained. Following the inoculation, the antibody titer was determined by the microtiter method. The results obtained are shown in Table 3.

【衚】 本発明のマむクロカプセルにグルタルアルデヒ
ドなどの架橋剀を甚いるこずなく盎接抗䜓を物理
吞着させおも充分高い抗䜓䟡が埗られた。 実斜䟋  ヘキサメチレンゞアミンの代りに塩酞DL−リ
ゞン1.2を氎25mlに溶解し、苛性゜ヌダ溶液で
䞭和しお甚いる他は実斜䟋ず同じ条件でマむク
ロカプセルを調補した。 本実斜䟋で調補したマむクロカプセル1.5を
分取し、生理食塩氎8.5mlに垌釈分散した。次に
−゚チル−−−ゞメチルアミノプロピル
カルボゞむミド塩酞塩0.2重量含有生理食塩氎
10mlを垌釈マむクロカプセルに加え、37℃で45分
反応させた。反応終了埌、遠沈掗浄し、10mlの生
理食塩氎に再分散した。このmlに以䞋の条
件でアフむニテむクロマト粟補抗ヒトIgG抗䜓を
反応させお埗られた感䜜マむクロカプセルをヒト
IgG怜出詊薬ずした。 操䜜に埓い、マむクロタむタヌ法により抗䜓
䟡を求めた。埗られた結果を第衚に瀺す。
[Table] Sufficiently high antibody titers were obtained even when antibodies were directly physically adsorbed onto the microcapsules of the present invention without using a crosslinking agent such as glutaraldehyde. Example 2 Microcapsules were prepared under the same conditions as in Example 1, except that 1.2 g of DL-lysine hydrochloride was dissolved in 25 ml of water instead of hexamethylene diamine, and the solution was neutralized with a caustic soda solution. 1.5 g of the microcapsules prepared in this example were taken out and diluted and dispersed in 8.5 ml of physiological saline. Then 1-ethyl-3-(3-dimethylaminopropyl)
Physiological saline containing 0.2% by weight of carbodiimide hydrochloride
10ml was added to the diluted microcapsules and reacted at 37°C for 45 minutes. After the reaction was completed, the mixture was washed by centrifugation and redispersed in 10 ml of physiological saline. Add the following to this 2ml. Sensitized microcapsules obtained by reacting Affinitei chromatographically purified anti-human IgG antibodies under
It was used as an IgG detection reagent. According to the procedure, the antibody titer was determined by the microtiter method. The results obtained are shown in Table 4.

【衚】 マむクロカプセルの壁圢成のコンポヌネントず
しおリゞンを甚いた本発明のマむクロカプセルに
抗䜓を結合した詊薬䞁は極めお高い抗䜓䟡を䞎え
た。 実斜䟋  実斜䟋で䜜成したマむクロカプセル1.5を
分取し、生理食塩氎8.5mlに垌釈分散した液に、
−プロピルアミン重量含有生理食塩氎10ml
を混合し、37℃で45分むンキナベヌトした。遠沈
掗浄埌、生理食塩氎10mlに分散し、これに25グ
ルタルアルデヒド氎溶液を生理食塩氎で100倍に
垌釈した液10mlを加え、37℃45分反応させた。反
応終了埌遠沈掗浄し、10mlの生理食塩氎に再分散
した。このmlをずり工皋ず同様にアフむニテ
むクロマト粟補抗ヒトIgG抗䜓を反応させヒト
IgG怜出詊薬ずした。 操䜜に埓い、マむクロタむタヌ法により抗䜓
䟡を求めた。埗られた結果を第衚に瀺す。
[Table] The reagent conjugated with antibodies to the microcapsules of the present invention using lysine as a component for forming the microcapsule wall gave extremely high antibody titers. Example 3 1.5 g of the microcapsules prepared in Example 1 were taken and diluted and dispersed in 8.5 ml of physiological saline.
10ml of physiological saline containing 1% by weight of n-propylamine
were mixed and incubated at 37°C for 45 minutes. After centrifugation and washing, the mixture was dispersed in 10 ml of physiological saline, and 10 ml of a 25% glutaraldehyde aqueous solution diluted 100 times with physiological saline was added thereto, followed by reaction at 37° C. for 45 minutes. After the reaction was completed, the mixture was washed by centrifugation and redispersed in 10 ml of physiological saline. Take 2 ml of this and react with Affinity chromatography purified anti-human IgG antibody in the same manner as in the step.
It was used as an IgG detection reagent. According to the procedure, the antibody titer was determined by the microtiter method. The results obtained are shown in Table 5.

【衚】 本発明のマむクロカプセルにアミン化合物を吞
着させ、グルタルアルデヒドなどの架橋剀を甚い
お抗䜓を結合した詊薬は非特異凝集性がやゝ匷く
なるが、極めお高い抗䜓䟡を䞎えた。 さらに盎鎖アミン−プロピルアミン及び
−ブチルアミン、ゞアミンヘキサメチレンゞ
アミン及びオクタメチレンゞアミン及び塩基性
アミノ酞リゞン、アルギニン、ヒドロキシリゞ
ンを甚いお同様の実隓を行な぀た。埗られた詊
薬はいずれも極めお高い抗䜓䟡を䞎えた。 参考䟋 レプトスピラ菌オヌタムナリス秋疫株をコル
トフ培地10正垞りサギ血枅を含むで増殖さ
せ、培逊〜10日目の培逊菌液を9000R.P.M.で
℃で20分遠心分離した。沈枣を生理食塩氎で
回掗浄埌、生理食塩氎に再分散し、20kHzの音波
砎砕噚倧岳補䜜所補で10分砎砕凊理を行な぀
た。これを12000R.P.M.で遠心分離し、沈査を生
理食塩氎で原料の10倍に垌釈し抗原液むずする。
䞀方䞊枅は50000R.P.M.で時間さらに遠心分離
を行ない、その䞊枅を分光光床蚈で280nmの波長
の光孊濃床が0.2になるように調敎し、抗原液ロ
ずする。 実斜䟋で調補したマむクロカプセル1.5を
分取し、生理食塩氎8.5mlに垌釈分散した。この
分散液に25グルタルアルデヒド氎溶液を生理食
塩氎で100倍に垌釈した液10mlを加え、37℃で45
分反応させた。次いで遠沈掗浄し、10mlの生理食
塩氎に再分散した。これをmlづ぀ずり、䞊蚘抗
原液むおよびロをそれぞれmlづ぀加え、37℃で
120分むンキナベヌトした。次に0.2グリシン含
有PBSで回遠沈掗浄を行な぀お埌、BSA
含有PBSに分散しお、レプトスビラ秋疫症怜
出詊薬むおよびロを埗た。 レプトスピラ菌オヌタムナリス秋疫株でりサ
ギを高床免疫しお抗血枅を䜜成した。秋疫株の
コルトフ培地培逊菌液を遠心分離し、沈殿した菌
䜓を生理舎塩氎に浮遊させた。この浮遊液を〜
日間隔で回りサギに皮䞋泚射し、曎に〜
日間隔で回静脈泚射を行なう。最初の皮䞋泚射
から〜週経過し、所定の抗䜓䟡をも぀たこず
を確認した埌、党採血を行ない、抗血枅を䜜成し
た。 操䜜に埓い、マむクロタむタヌ法によりレプ
トスピラ秋疫症怜出詊薬(ã‚€)および(ロ)を甚い䞊蚘
抗血枅の100倍垌釈液で抗䜓䟡を求めた。埗られ
た結果を第衚に瀺す。
[Table] The reagent in which an amine compound was adsorbed to the microcapsules of the present invention and an antibody was bound using a crosslinking agent such as glutaraldehyde had a slightly stronger nonspecific aggregation property, but gave an extremely high antibody titer. In addition, linear amines (n-propylamine and n
-butylamine), diamines (hexamethylene diamine and octamethylene diamine) and basic amino acids (lysine, arginine, hydroxylysine). All of the obtained reagents gave extremely high antibody titers. Reference Example Leptospira autumnalis strain A was grown in Kortov's medium (containing 10% normal rabbit serum), and the culture solution after 6 to 10 days of culture was centrifuged at 9000 RPM for 20 minutes at 5°C. Dilute the sediment with physiological saline
After washing twice, it was redispersed in physiological saline and crushed for 10 minutes using a 20kHz sonicator (manufactured by Otake Seisakusho). This is centrifuged at 12,000 R.PM, and the precipitate is diluted with physiological saline to 10 times the original amount to prepare the antigen solution.
On the other hand, the supernatant was further centrifuged at 50,000 R.PM for 1 hour, and the supernatant was adjusted to have an optical density of 0.2 at a wavelength of 280 nm using a spectrophotometer, and used as an antigen solution. 1.5 g of the microcapsules prepared in Example 1 were separated and diluted and dispersed in 8.5 ml of physiological saline. To this dispersion, add 10 ml of a 25% glutaraldehyde aqueous solution diluted 100 times with physiological saline, and
It was allowed to react for a minute. Then, the mixture was washed by centrifugation and redispersed in 10 ml of physiological saline. Take 2 ml of this, add 2 ml each of the above antigen solutions A and B, and heat at 37℃.
Incubated for 120 minutes. Next, perform centrifugation washing three times with PBS containing 0.2% glycine, then 3% BSA
By dispersing it in PBS containing Leptosvira autumnalis A disease detection reagents A and B were obtained. Rabbits were hyperimmunized with Leptospira autumnalis strain A to prepare antiserum. The Kortov medium culture of the autumn plague strain A was centrifuged, and the precipitated bacterial bodies were suspended in saline water. 4~
Rabbits were injected subcutaneously twice at 5-day intervals, followed by an additional 4-5
Nine intravenous injections are given at daily intervals. Seven to eight weeks had passed since the first subcutaneous injection, and after confirming that the mice had a predetermined antibody titer, whole blood was collected and antiserum was prepared. According to the procedure, the antibody titer was determined using a 100-fold dilution of the above antiserum using Leptospirosis A disease detection reagents (a) and (b) using the microtiter method. The results obtained are shown in Table 6.

【衚】 氎䞍溶性の抗原ず氎可溶性の抗原ずを分別し、
それぞれ別々に本発明のマむクロカプセルに感䜜
したずころそれぞれの抗䜓を怜出し埗る詊薬を䜜
補するこずができた。
[Table] Separate water-insoluble antigens and water-soluble antigens,
When the microcapsules of the present invention were sensitized to each antibody separately, reagents capable of detecting each antibody could be prepared.

Claims (1)

【特蚱請求の範囲】[Claims]  ポリビニルアルコヌルずポリスチレンスルホ
ン酞ずを含む氎溶液に倚䟡む゜シアネヌトず油性
物質からなる油性物質液を添加しポリビニルアル
コヌルずポリスチレンスルホン酞ずの共存䞋に乳
化分散し、぀いで氎溶性倚䟡アミノ化合物を前蚘
乳化分散液に加えお前蚘倚䟡む゜シアネヌトず重
合させるこずを特城ずする免疫分析甚マむクロカ
プセルの補造法。
1 Add an oily substance liquid consisting of a polyvalent isocyanate and an oily substance to an aqueous solution containing polyvinyl alcohol and polystyrene sulfonic acid, emulsify and disperse in the coexistence of polyvinyl alcohol and polystyrene sulfonic acid, and then add the water-soluble polyvalent amino compound to the above-mentioned solution. A method for producing microcapsules for immunoanalysis, which comprises polymerizing the polyvalent isocyanate in addition to an emulsified dispersion.
JP58147364A 1983-08-12 1983-08-12 Microcapsule for immunoreaction and its production Granted JPS6039562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58147364A JPS6039562A (en) 1983-08-12 1983-08-12 Microcapsule for immunoreaction and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58147364A JPS6039562A (en) 1983-08-12 1983-08-12 Microcapsule for immunoreaction and its production

Publications (2)

Publication Number Publication Date
JPS6039562A JPS6039562A (en) 1985-03-01
JPH0510626B2 true JPH0510626B2 (en) 1993-02-10

Family

ID=15428534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58147364A Granted JPS6039562A (en) 1983-08-12 1983-08-12 Microcapsule for immunoreaction and its production

Country Status (1)

Country Link
JP (1) JPS6039562A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059809Y2 (en) * 1987-08-21 1993-03-10

Also Published As

Publication number Publication date
JPS6039562A (en) 1985-03-01

Similar Documents

Publication Publication Date Title
US4342739A (en) Novel material for immunological assay of biochemical components and a process for the determination of said components
US4738932A (en) Reaginic test for syphilis
JPS6223826B2 (en)
US4650769A (en) Microcapsules for immune response
US4483928A (en) Microcapsules sensitized with antibody and a method for measurement of lymphocyte using the same based on cell-mediated immunity
US4997772A (en) Water-insoluble particle and immunoreactive reagent, analytical elements and methods of use
CA1227424A (en) Enhanced agglutination method and kit
EP0174195A1 (en) Diagnostic test methods
JP2541793B2 (en) Method for detecting Chlamydia trachomatis antigen and Neisseria gonorrhoeae antigen
EP0038960A2 (en) Diagnostic reagents for immunological tests and a process for preparing the same
AU3939493A (en) Immunoassays employing generic anti-hapten antibodies and materials for use therein
US3882225A (en) Direct agglutination immunological reagent
EP1709451B1 (en) Reducing time to result for blood bank diagnostic testing
US3562384A (en) Immunological indicator and test system
CA1226217A (en) Diagnostic reagent for rheumatoid factor, process for its preparation and method and kit for its use
JPH0510626B2 (en)
US4096138A (en) Immunological test procedure
JPS6058420B2 (en) Microcapsule group for immune reaction and discrimination method using the same
JPS6217709B2 (en)
WO1984003358A1 (en) Insoluble surfaces treated to inhibit non-specific protein binding
EP0280556B1 (en) Water-insoluble particle and immunoreactive reagent, analytical elements and methods of use
JPH02168162A (en) Measuring method for immunity
JPS6035268A (en) Microcapsule reagent for immunological reaction and examination using the same
JPH056665B2 (en)
JPH0231348B2 (en)