JPH056654B2 - - Google Patents

Info

Publication number
JPH056654B2
JPH056654B2 JP59084116A JP8411684A JPH056654B2 JP H056654 B2 JPH056654 B2 JP H056654B2 JP 59084116 A JP59084116 A JP 59084116A JP 8411684 A JP8411684 A JP 8411684A JP H056654 B2 JPH056654 B2 JP H056654B2
Authority
JP
Japan
Prior art keywords
signal
slag
furnace
slopping
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59084116A
Other languages
Japanese (ja)
Other versions
JPS60228931A (en
Inventor
Jujiro Ueda
Mitsuo Yagi
Yukinori Shigeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59084116A priority Critical patent/JPS60228931A/en
Priority to AU32558/84A priority patent/AU558925B2/en
Priority to CA000462485A priority patent/CA1250356A/en
Priority to DE8484110571T priority patent/DE3468127D1/en
Priority to EP84110571A priority patent/EP0162949B1/en
Priority to ES535715A priority patent/ES535715A0/en
Priority to BR8404496A priority patent/BR8404496A/en
Publication of JPS60228931A publication Critical patent/JPS60228931A/en
Publication of JPH056654B2 publication Critical patent/JPH056654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0205Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は転炉の操業に有用な装置、詳しくは吹
錬中発生すれば操業上大きな障害となるスロツピ
ングの検出装置に関するものである。 従来技術 転炉における溶銑・溶鋼の精錬は、転炉の炉口
から炉内に挿入されたランスより噴出させる純酸
素ガスを溶鋼に吹付けて溶鋼を攪拌しつゝ脱炭
し、さらに転炉内に投入された造滓剤により滓化
生成する溶融スラグの反応により脱燐脱硫等を行
うものであるが、この滓化の過程でスラグ組成、
粘性、スラグ中の酸素量等の諸条件によりスラグ
がフオーミング化し、これが過度に進行するとス
ラグさらには溶鋼までも炉口より溢出するいわゆ
るスロツピングが発生することがある。このスロ
ツピングが発生すると、溶鋼成分、製鋼歩留り等
に大きな影響を与えると共に、作業効率の低下、
回収ガスのカロリー低下、赤煙の発生などの作業
環境の悪化、装置の損傷など、種々の問題を惹起
する。したがつてスロツピングの発生を極力抑制
する必要がある。 したがつて転炉炉内の状況をいち早く予測し、
スロツピングの発生を防止するなど適正な転炉操
業を行う必要があり、転炉炉況の把握のため従来
種々の提案が行われている。 すなわち、特開昭52−101618号においては、転
炉製鋼法において吹錬中の排ガス情報をもとに酸
素バランスを計算して炉内の生成酸化物すなわち
溶滓量を推定する方式が開示されている。この方
式では、分析・解析による時間のおくれは避けら
れず、またスロツピングの発生要因は溶滓量のみ
によるものではないので、スロツピング発生予知
精度は低いものであつた。 また物理的測定方法によつてスラグレベルを検
知しようとする試みも種々なされていて、音響測
定法(特開昭54−33790号)、振動測定法(特開昭
54−114414号)、炉内圧測定法(特開昭55−
104417号)、マイクロ波測定法(特開昭57−
140812号)、炉体表面温度測定法(特開昭58−
48615号)などが提案されている。 音響測定法は吹錬中に炉内より発生する音響の
周波数および強度の変化を把えてスラグレベルを
推定してスロツピング発生を予知しようとするも
のであり、振動測定法は吹錬中のランスの振動の
変化、波形の推移を把えてスラグレベル又はスラ
グの状態を推定してスロツピング発生を予知しよ
うとするものであり、炉内圧測定法は吹錬中の炉
口排ガス噴出圧の変動を把えてスロツピング発生
を予知しようとするものであり、マイクロ波測定
法は吹錬中に炉内にマイクロ波を直接投射して
FMレーダーの原理によりスラグレベルを直接測
定してスロツピング発生を予知しようとするもの
であり、炉体表面温度測定法は炉体の上部および
下部の放射エネルギーを温度として把え、その温
度変化、ピーク値などからスロツピングの発生と
その量を検知しようとするものである。 上述した音響測定法、振動測定法、炉内圧測定
法、炉体表面温度測定法はいずれも間接的測定法
であり、スラグレベルおよびスラグの状態を定量
的に把握することができず、スロツピングの予知
精度は低い。マイクロ波測定法は、スラグレベル
の直接的測定が可能であるが、吹錬中の転炉内
は、溶湯、スラグ、ガス等が極めて複雑な動きを
しているため、異常を検出あるいは推定すること
は容易でないうえ、信号処理等にも高度な技術が
必要であるため、装置が高価になることは避けら
れなかつた。 これらに対し本出願人は先に、炉内光の強度ま
たは、波長変化もしくはその双方を検出して転炉
異常反応を検出する方法を特許出願(特願昭58−
37872号)した。本発明は該特許のさらに改良を
図るものである。 発明の目的 本発明の目的は、すぐれた転炉スロツピング検
出装置を提供し、以て高精度の転炉操業に活用さ
せようとするものである。 発明の構成・作用 本発明の構成は、転炉炉体側壁に設けられた貫
通孔に光プローブを挿入離脱自在に嵌着可能な検
出装置と、該検出装置からの光電変換映像信号を
あらかじめ設定した複数の波長域に分別する分別
装置と、前記分別された波長域毎の映像が全映像
中に占める面積をパルスカウンターによつて演算
する装置と、該演算装置からの入力信号をあらか
じめ定めたスロツピング判定基準と比較しスロツ
ピング検出信号を出力する装置とを備えてなるこ
とを特徴とする転炉スロツピング検出装置であ
る。 以下本発明を図面を用いて説明する。 第1図は本発明の装置の全貌を模式的に示した
説明図である。第1図に示すように転炉1の側壁
2に炉内3まで貫通する貫通孔4を設ける。この
貫通孔は、出鋼孔であつてもよく、図の如く出鋼
孔とは別に設けてもよい。検出装置6は一例とし
て転炉1の近傍に支持架台5を設け、移動装置8
によつて移動できるごとくし、検出装置の一構成
部分である光プローブ7は貫通孔4に挿入離脱自
在に移動される。 貫通孔は吹錬時あるいは、出鋼時、溶銑装入時
等に溶湯に浸漬されない、炉体側壁の任意の場所
を選ぶことができる。又、前述のように検出装置
6は自在に移動できることから出鋼孔を利用する
ことも可能である。 検出装置には、先端が貫通孔に挿入離脱される
光プローブ7と、プローブの後端にコネクタ9を
介して装着される光電変換素子10を有し、光プ
ローブから伝送される炉内光は光電変換され、光
電変換映像信号として分別装置11に送られる。 分別装置11においては該信号は、あらかじめ
設定された複数の波長域に分別される。 前記分別された信号は、波長域毎にその映像信
号中に占める面積をパルスカウンターによつて映
像パルス信号のパルス数として演算する演算装置
12で各波長域毎の面積量が演算され、この演算
装置からの入力信号を、あらかじめ定めたスロツ
ピング判断基準と比較し、スロツピング検出信号
を出力する判定装置13でスロツピングが検出さ
れる。 さらに要部について説明する。 本発明で光プローブとは、光導体を内蔵する筒
状物である。光導体とは例えば石英系光フアイバ
の如く高温物体から放射される放射光を低損失で
伝送する導体を言う。光プローブは前述の如く貫
通孔に挿入されて、高温の炉内に面するので損耗
のおそれがあり、少くともその先端は何等かの手
段により冷却保護する必要がある。 一例として第2図に光プローブの最も簡単な2
重管タイプを示す。光導体71は耐熱保護内管7
2に内蔵され、耐熱保護外管73との空隙には、
冷却用ガスが導入されて光プローブ7の先端方向
に矢印の如く流れながら両保護管を冷却すると共
に、光導体の前端を保護する前面透明体74の曇
りや粉塵の付着を防止して、炉内に放出される。 光プローブを貫通孔内に挿入離脱するように移
動させる装置については、第1図には架台5にと
りつけられたレール81上に跨設した移動架台8
2に光プローブを載置し、移動装置8で移動架台
82を移動させる装置を例示したがこれにこだわ
るものではない。 しかして光プローブが貫通孔内に挿入離脱自在
になしたのは、光プローブを実際に炉内状況を検
出装置に入力する必要のあるときのみ挿入し、出
鋼時、次回吹錬までの待時間あるいは原材料チヤ
ージ時間等に不要の熱負荷や粉塵などの悪影響か
ら避けるためである。 光導体の先端で把えられる光の映像は、コネク
タ9を介して取付けられる光電変換素子10によ
り光電変換映像信号に変換される。こゝで光電変
換素子とは、光をその強度に比例して波長別に電
気信号に変換させる機能を有するもので、例えば
ITVカメラ、分光器と組合せた光電子倍増管等
である。これらは苛酷な条件下にある光導体の受
光面から充分離れた距離にあるので、その機能を
発揮する好環境下にある。 こゝで吹錬中の炉内状況の典型例を第3図に示
す。 第3図は、滓化量の比較的少ない炉内の状況
を想定したもので、光プローブ前面の円形受光面
の視野に第3図′に示すように炉内の高温ガス
雰囲気18が白色に見える。さらに滓化が進行し
て、第3図のごとくスラグ16の量が増すと、
スラグの表面はランスから噴出する酸素および吹
錬反応により発生するCOガス等により激動し、
上部のガス雰囲気よりも低温の、エマルジヨン状
態のスラグは、第3図′のごとく受光面視野に
黄色の波形状に捉えられる。エマルジヨン状態の
スラグが第3図のごとく、いわゆるスロツピン
グをおこして炉外に溢れ出るようになれば、受光
面の視野は第3図′のごとく、全面が黄色系を
呈する。 すなわち転炉操業中の炉内の滓化がある程度進
行してスラグ16上部のガス18の温度がスラグ
の温度よりも高くなると、ガス雰囲気の発する光
と、スラグの発する光の、波長と強度の関係は、
明らかに差が現われ、この差を特異敵に取り出す
ことにより、スロツピングの検出装置を完成した
ものである。本発明装置の炉内光受光からスロツ
ピング検出信号出力までの全体ブロツク図を第4
図に示した。 前述の吹錬中のスラグとスラグ上部のガス雰囲
気の放射する光の波長と強度の関係は第5図のよ
うである。吹錬中の炉内光は絶えず変動している
が、これを波長別にB(青)、G(緑)、R(赤)に
分別し、ある短時間のアナログ信号として例示し
たものが第6図である。図においてR信号は曲線
21のような変化を、G信号は曲線22のような
変化を、B信号は曲線23のような変化を示した
とすれば、第4図の2値化回路51でそれぞれの
波長域のストシヨルドレベル24,25,26を
基準に2値化した後のR信号は第7図27のよう
に、G信号は28のように、B信号は29のよう
に表わされ、3者を総合して色名で表わせば横軸
の小区分に記入したように、赤、マゼンタ、赤、
黄、赤となり、受光しなかつた部分は黒として表
示できる。したがつて2値化されたR信号、G信
号、B信号のあらゆる組合せを考えると、受光し
ないときも含めて8種類の色に相当する信号が得
られる。 しかしてスロツピング発生はスラグの量とその
量の変化の大きさに相関があると考えられること
から、前述の色別の、映像中に占める面積割合と
その変化を検出するため面積演算装置12に信号
を送る。面積演算装置12での処理は、第8図の
ように示される。 2値化回路51でRGBの3成分に関して2値
化された映像信号96は、面積演算装置12内の
8つの積算パルスカウンタ90によつてRGB3成
分の組み合わせによる8色それぞれについての積
算がなされる。 その演算は、カウントパルス発生器91によつ
て発生される7MHzのパルスをそれぞれの色をあ
らわすRGBの組み合わせに従つた映像信号96
の状態の時のみカウントし積算することで行われ
る。1回の積算時間は約16.7msecで、垂直同期
信号95を受けて制御cpu93から発生されるリ
セツトパルス94によつて、色別面積量信号63
の出力、積算値のリセツト及び次の積算の開始が
指令される。 このようにして、垂直同期信号95によるリセ
ツトパルス94を受けてから次のリセツトパルス
94を受けるまで、すなわち、1映像画面内に占
める8色それぞれの面積量信号63を16.7msec
同期で出力することができる。 このようにして得られた面積演算装置12の出
力である色別の面積量信号63は、2系統に分け
られる。1系統は色別の面積量そのものを2値化
回路55を通して面積量の2値化信号として判定
装置13に入力し、もう1つの系統は面積量の変
化として入力させるために、高域透過フイルター
52、正値化回路53、2値化回路54を通して
変化量を強調した色別面積量信号65として判定
装置13に入力する。 スロツピング判断基準については、前記色別の
面積量の2値化信号と変化量を強調した色別の面
積量2値化信号の組合せより第1表のようにな
る。
INDUSTRIAL APPLICATION FIELD The present invention relates to a device useful for the operation of a converter, and more particularly to a device for detecting slopping, which can be a major hindrance to the operation if it occurs during blowing. Prior Art The refining of hot metal and molten steel in a converter involves spraying pure oxygen gas onto the molten steel from a lance inserted into the furnace from the mouth of the converter, stirring the molten steel and decarburizing it. Dephosphorization and desulfurization are performed by the reaction of the molten slag that is formed into slag by the slag-forming agent introduced into the slag, and during this slag formation process, the slag composition,
Forming of slag occurs depending on various conditions such as viscosity and the amount of oxygen in slag, and if this progresses excessively, so-called slopping may occur in which slag and even molten steel overflow from the furnace mouth. When this slopping occurs, it has a major impact on the molten steel composition, steelmaking yield, etc., and also reduces work efficiency.
This causes various problems such as a decrease in calories in the recovered gas, deterioration of the working environment such as the generation of red smoke, and damage to equipment. Therefore, it is necessary to suppress the occurrence of sloping as much as possible. Therefore, it is possible to quickly predict the situation inside the converter furnace,
It is necessary to operate the converter appropriately, such as by preventing the occurrence of slopping, and various proposals have been made to understand the condition of the converter. Specifically, JP-A-52-101618 discloses a method for estimating the amount of oxides produced in the furnace, that is, slag, by calculating the oxygen balance based on exhaust gas information during blowing in the converter steel manufacturing process. ing. In this method, a time delay due to analysis is unavoidable, and since the cause of slopping is not only due to the amount of slag, the accuracy of predicting the occurrence of sloping is low. Various attempts have also been made to detect the slag level using physical measurement methods, including the acoustic measurement method (Japanese Patent Application Laid-Open No. 54-33790) and the vibration measurement method (Japanese Patent Application Laid-open No. 33790/1989).
No. 54-114414), Furnace Pressure Measurement Method (Unexamined Japanese Patent Publication No. 1983-
104417), microwave measurement method (Unexamined Japanese Patent Publication No. 104417),
140812), Furnace Surface Temperature Measuring Method (Unexamined Japanese Patent Publication No. 1983-
48615) have been proposed. The acoustic measurement method attempts to predict the occurrence of sloping by estimating the slag level by ascertaining changes in the frequency and intensity of the sound generated from inside the furnace during blowing, while the vibration measurement method attempts to predict the occurrence of slopping. This method attempts to predict the occurrence of slopping by estimating the slag level or state by understanding vibration changes and waveform transitions, while the furnace pressure measurement method attempts to predict the occurrence of slopping by understanding changes in the furnace exhaust gas injection pressure during blowing. This method attempts to predict the occurrence of slopping, and the microwave measurement method involves directly projecting microwaves into the furnace during blowing.
This method uses the principle of FM radar to directly measure the slag level and predict the occurrence of slopping.The furnace surface temperature measurement method captures the radiant energy at the top and bottom of the furnace body as temperature, and measures temperature changes and peaks. It attempts to detect the occurrence and amount of sloping from values etc. The acoustic measurement method, vibration measurement method, furnace pressure measurement method, and furnace body surface temperature measurement method described above are all indirect measurement methods, and cannot quantitatively grasp the slag level and slag condition, so they are difficult to detect due to slopping. Prediction accuracy is low. The microwave measurement method can directly measure the slag level, but since the molten metal, slag, gas, etc. move in an extremely complex manner inside the converter during blowing, it is difficult to detect or estimate abnormalities. This is not easy, and requires advanced technology for signal processing, etc., so it is inevitable that the equipment will be expensive. In response to these issues, the present applicant previously filed a patent application for a method for detecting abnormal reactions in a converter by detecting the intensity of light in the furnace, changes in wavelength, or both.
No. 37872). The present invention is a further improvement on that patent. OBJECTS OF THE INVENTION An object of the present invention is to provide an excellent converter slopping detection device, which can be utilized for highly accurate converter operation. Structure and operation of the invention The structure of the present invention includes a detection device that can insert and remove an optical probe into a through hole provided in a side wall of a converter furnace body, and a photoelectric conversion video signal from the detection device that is set in advance. a separation device that separates the images into a plurality of wavelength ranges, a device that uses a pulse counter to calculate the area occupied by the video of each of the separated wavelength regions in the total video, and an input signal from the calculation device that is determined in advance. This is a converter slopping detection device characterized by comprising a device that compares it with a sloping criterion and outputs a sloping detection signal. The present invention will be explained below using the drawings. FIG. 1 is an explanatory diagram schematically showing the overall appearance of the apparatus of the present invention. As shown in FIG. 1, a through hole 4 is provided in the side wall 2 of the converter 1 to penetrate into the furnace interior 3. This through hole may be a tapping hole, or may be provided separately from the tapping hole as shown in the figure. As an example, the detection device 6 includes a support frame 5 provided near the converter 1, and a moving device 8.
The optical probe 7, which is a component of the detection device, can be inserted into and removed from the through hole 4. The through hole can be selected from any location on the side wall of the furnace body that is not immersed in molten metal during blowing, tapping, charging of hot metal, etc. Furthermore, since the detection device 6 can be moved freely as described above, it is also possible to utilize the tapping hole. The detection device includes an optical probe 7 whose tip is inserted into and removed from a through hole, and a photoelectric conversion element 10 that is attached to the rear end of the probe via a connector 9, and the in-furnace light transmitted from the optical probe is It is photoelectrically converted and sent to the sorting device 11 as a photoelectrically converted video signal. In the separation device 11, the signal is separated into a plurality of predetermined wavelength ranges. The separated signals are processed by a calculation unit 12 that calculates the area occupied in the video signal for each wavelength range as the number of pulses of the video pulse signal using a pulse counter, and calculates the area amount for each wavelength range. Slopping is detected by a determining device 13 which compares the input signal from the device with a predetermined sloping criterion and outputs a sloping detection signal. Further, the main parts will be explained. In the present invention, an optical probe is a cylindrical object containing a light guide. A light guide is a conductor, such as a quartz optical fiber, that transmits radiation emitted from a high-temperature object with low loss. As described above, the optical probe is inserted into the through hole and faces the inside of the high-temperature furnace, so there is a risk of wear and tear, so at least its tip must be protected by some means of cooling. As an example, Figure 2 shows the simplest two optical probes.
Indicates heavy pipe type. The light guide 71 is a heat-resistant protective inner tube 7
2, and in the gap between it and the heat-resistant protection outer tube 73,
Cooling gas is introduced and flows in the direction of the tip of the optical probe 7 as shown by the arrow, cooling both protective tubes and preventing the front transparent body 74 that protects the front end of the optical guide from fogging up and dust from adhering to the furnace. released within. Regarding the device for moving the optical probe so that it is inserted into and removed from the through hole, FIG.
Although an example of a device in which an optical probe is mounted on the device 2 and a moving pedestal 82 is moved by the moving device 8 has been exemplified, the present invention is not limited to this. However, the optical probe was made to be able to be inserted into and removed from the through-hole at will.The optical probe was inserted only when it was actually necessary to input the furnace conditions to the detection device, and the optical probe was inserted into the through hole only when it was necessary to input the situation inside the furnace to the detection device. This is to avoid harmful effects such as unnecessary heat load and dust on the time or material charge time. The light image captured at the tip of the photoconductor is converted into a photoelectric conversion image signal by a photoelectric conversion element 10 attached via a connector 9. Here, a photoelectric conversion element has the function of converting light into electrical signals for each wavelength in proportion to its intensity. For example,
These include an ITV camera and a photomultiplier tube combined with a spectrometer. These are located at a sufficient distance from the light-receiving surface of the light guide, which is under severe conditions, and are therefore in a favorable environment to perform their functions. Figure 3 shows a typical example of the situation inside the furnace during blowing. Figure 3 assumes a situation inside the furnace where the amount of slag is relatively small, and the high-temperature gas atmosphere 18 inside the furnace appears white in the field of view of the circular light-receiving surface in front of the optical probe, as shown in Figure 3'. appear. As slag formation progresses further and the amount of slag 16 increases as shown in Figure 3,
The surface of the slag is shaken by the oxygen ejected from the lance and the CO gas generated by the blowing reaction.
The slag, which is in an emulsion state and whose temperature is lower than that of the upper gas atmosphere, is captured in the field of view of the light-receiving surface as a yellow wave shape, as shown in FIG. 3'. When the slag in the emulsion state causes so-called slopping and overflows out of the furnace as shown in FIG. 3, the field of view of the light-receiving surface takes on a yellowish color over the entire surface as shown in FIG. 3'. In other words, when slag formation in the furnace progresses to some extent during converter operation and the temperature of the gas 18 above the slag 16 becomes higher than the temperature of the slag, the wavelength and intensity of the light emitted by the gas atmosphere and the light emitted by the slag will change. The relationship is
A clear difference appears, and by extracting this difference to a specific enemy, we have completed a sloping detection device. The overall block diagram of the device of the present invention from receiving the light in the furnace to outputting the slopping detection signal is shown in Figure 4.
Shown in the figure. The relationship between the wavelength and intensity of the light emitted by the slag during blowing and the gas atmosphere above the slag is shown in FIG. The light inside the furnace during blowing is constantly fluctuating, but this is classified into B (blue), G (green), and R (red) by wavelength, and is exemplified as a short-time analog signal in Part 6. It is a diagram. In the figure, if the R signal shows a change like curve 21, the G signal shows a change like curve 22, and the B signal shows a change like curve 23, then the binarization circuit 51 in FIG. After being binarized based on the stochjold levels 24, 25, and 26 in the wavelength range, the R signal is expressed as 27 in FIG. 7, the G signal as 28, and the B signal as 29. , if we combine the three and express them in terms of color names, we get red, magenta, red, as shown in the subdivisions on the horizontal axis.
The colors are yellow and red, and the areas that do not receive light can be displayed as black. Therefore, considering all combinations of the binarized R signal, G signal, and B signal, signals corresponding to eight different colors can be obtained, including when no light is received. However, since the occurrence of slopping is considered to be correlated with the amount of slag and the magnitude of change in that amount, the area calculation device 12 is used to detect the proportion of area occupied in the video by color and its change. send a signal. The processing in the area calculation device 12 is shown as shown in FIG. The video signal 96 that has been binarized with respect to the three RGB components by the binarization circuit 51 is integrated by the eight integration pulse counters 90 in the area calculation device 12 for each of the eight colors based on the combination of the three RGB components. . The calculation is performed by converting 7MHz pulses generated by a count pulse generator 91 into a video signal 96 according to the combination of RGB representing each color.
This is done by counting and integrating only when the state is . One integration time is about 16.7 msec, and the color area amount signal 63 is reset by the reset pulse 94 generated from the control CPU 93 in response to the vertical synchronization signal 95.
commands to output, reset the integrated value, and start the next integration. In this way, from receiving the reset pulse 94 by the vertical synchronizing signal 95 until receiving the next reset pulse 94, that is, the area amount signal 63 of each of the eight colors occupying one video screen is controlled for 16.7 msec.
Can be output synchronously. The area amount signal 63 for each color, which is the output of the area calculating device 12 obtained in this way, is divided into two systems. One system inputs the area amount itself for each color to the determination device 13 as a binary signal of the area amount through the binarization circuit 55, and the other system inputs the area amount itself as a binary signal of the area amount, and a high-pass transmission filter is used to input it as a change in the area amount. 52, a positive value conversion circuit 53, and a binarization circuit 54, the signal is inputted to the determination device 13 as a color-specific area amount signal 65 in which the amount of change is emphasized. The slopping judgment criteria are as shown in Table 1, based on the combination of the color-based area amount binary signal and the color-based area amount binary signal that emphasizes the amount of change.

【表】 しかして、実際には判断時の転炉の操業状況も
考慮する必要がある。すなわち、吹錬初期ではス
ロツピングはおこり得ないし、炉内ガス温度も低
いから、前表の判断は正確でない。また鉱石投入
や生石灰、ドロマイト等の副材投入が予め操業シ
ーケンスに組込まれている時点では、敢て警報は
要らないし、溶銑中のシリコン量が予め定められ
た値より高くなつている場合はスロツピングの可
能性は大きい。このような判断ロジツクも加え、
第1表のスロツピング発生可能性大のケースを展
開すると第2表のようになる。 何れにしても、色別の面積量2値化信号および
色別の面積量変化量の2値化信号の基準となるス
レシヨルドレベルをどこにとるかが判断の基本と
なるもので、これは多数の操業実績と本発明装置
によるこれら信号の相関から決定されなければな
らない。 以上のような判定の基準を予め決めておき、こ
の基準と前述の2種類の面積量2値化信号とを比
較して、スロツピング発生の可能性大、小、無し
に応じてスロツピング検出信号67を判定装置1
3から出力することができる。 実施例 170t/CHの上底吹転炉の、炉底から約4mの
高さの側壁に貫通孔を設け、本発明装置によるス
ロツピングの検出を行つた。この時の溶銑条件は
〔Si〕含有量が0.30〜0.50%である。スロツピング
検出装置で警報が出た場合、実際にスロツピング
発生を確認するまで、そのまゝ操業するのは現実
的でないので、実施例の結果の表のスロツピング
発生可能性の大、小は、スロツピング抑制アクシ
ヨンも実施して判断したものである。 実施例 1 黄色および赤色それぞれの面積量2値化信号お
よび面積量の変化量の2値化信号を組合せて、ス
ロツピング発生可能性の検出を行い、第3表の結
果を得た。 実施例 2 黄色および白色それぞれの面積量2値化信号お
よび面積量の変化量の2値化信号を組合せて、ス
ロツピング発生可能性の検出を行い、第4表の結
果を得た。 実施例 3 実施例1,2のようなスロツピング発生の可能
性をスロツピング予知警報として受取り、実際に
スロツピング抑制アクシヨン、たとえばコークス
粉・石灰粉などの抑制剤投入、底吹流量増加、送
酸量低減などを行つた場合と、行なわなかつた場
合の合計95回の実績をとりまとめると第5表の通
りで、スロツピング予知成功率は94.7%、過検出
率は、5.3%であり、警報が無くてスロツピング
が発生したことは皆無であつた。
[Table] However, in reality, it is necessary to consider the operational status of the converter at the time of judgment. That is, in the early stage of blowing, slopping cannot occur and the gas temperature in the furnace is low, so the judgment in the previous table is not accurate. Furthermore, when the input of ore and auxiliary materials such as quicklime and dolomite have been incorporated into the operation sequence, there is no need to issue a warning, and if the amount of silicon in the hot metal is higher than a predetermined value, slopping occurs. There is a great possibility. In addition to this kind of decision logic,
Table 2 shows the cases in which slopping is likely to occur in Table 1. In any case, the basis of judgment is where to set the threshold level that serves as the standard for the area amount binary signal for each color and the area amount change amount binary signal for each color. It must be determined from a large number of operational records and the correlation of these signals by the device of the present invention. The above judgment criteria are determined in advance, and the sloping detection signal 67 is determined depending on whether the possibility of sloping occurring is high, low, or absent by comparing this standard with the two types of area amount binary signals described above. Judgment device 1
It can be output from 3. Example A through hole was provided in the side wall of a 170 t/CH top-bottom blowing converter at a height of approximately 4 m from the bottom of the furnace, and slopping was detected using the apparatus of the present invention. The hot metal conditions at this time are that the [Si] content is 0.30 to 0.50%. When a warning is issued by the sloping detection device, it is not realistic to continue operation until it is confirmed that sloping has actually occurred. This judgment was made by also performing actions. Example 1 The possibility of slopping occurring was detected by combining the yellow and red area amount binary signals and the area amount change amount binary signal, and the results shown in Table 3 were obtained. Example 2 The possibility of slopping occurring was detected by combining the area amount binary signals of yellow and white and the area amount change amount binary signal, and the results shown in Table 4 were obtained. Example 3 The possibility of sloping occurrence as in Examples 1 and 2 is received as a sloping prediction warning, and slopping suppression actions are actually taken, such as adding inhibitors such as coke powder or lime powder, increasing bottom blow flow rate, and reducing oxygen supply amount. Table 5 summarizes the results for a total of 95 cases with and without such a warning.The success rate of sloping prediction was 94.7%, and the overdetection rate was 5.3%. There were no occurrences.

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 以上詳述したように本発明の転炉スロツピング
検出装置はスロツピング検出率高く、これにより
スロツピングの抑制を効果的に行い得るため、転
炉操業上きわめて大きな価値を有するものであ
る。
[Table] Effects of the Invention As detailed above, the converter slopping detection device of the present invention has a high slopping detection rate and can effectively suppress sloping, so it is extremely valuable for converter operation. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の模式的説明図、第2図は光プ
ローブの1例を示す1部断面図、第3図は炉況と
受光面映像を表わす説明図、第4図は信号系の全
体ブロツク図、第5図はスラグとスラグ上部のガ
スの放射する光の波長と強度の関係を示す図、第
6図は炉内光のアナログ信号図、第7図は炉内光
の2値化信号図、第8図は演算装置の処理を表す
ブロツク図である。 1……転炉、2……側壁、3……炉内、4……
貫通孔、5……支持架台、6……検出装置、61
……光電変換映像信号、62……波長域毎の映像
信号、63……色別面積量信号、64……色別面
積量2値化信号、65……色別面積量変化量2値
化信号、66……鉱石・副材等投入信号、67…
…スロツピング検出信号、7……光プローブ、7
1……光導体、72……保護内管、73……保護
外管、74……前面透明体、8……移動装置、8
1……レール、82……移動架台、9……コネク
タ、10……光電変換素子、11……分別装置、
12……演算装置、13……判定装置、16……
スラグ、17……溶湯、18……高温ガス雰囲
気、19……ランス、21……アナログR信号、
22……アナログG信号、23……アナログB信
号、24……R信号スレシヨルドレベル、25…
…G信号スレシヨルドレベル、26……B信号ス
レシヨルドレベル、27……2値化R信号、28
……2値化G信号、29……2値化B信号、51
……2値化回路、52……高域透過フイルター、
53……正値化回路、54……2値化回路、55
……2値化回路、56……転炉プロセス、90…
…積算パルスカウンタ、91……カウントパルス
発生器、92……カウントパルス、93……制御
cpu、94……リセツトパルス、95……垂直同
期信号、96……RGB2値信号。
Fig. 1 is a schematic explanatory diagram of the present invention, Fig. 2 is a partial sectional view showing an example of an optical probe, Fig. 3 is an explanatory diagram showing the furnace condition and light receiving surface image, and Fig. 4 is an illustration of the signal system. Overall block diagram, Figure 5 is a diagram showing the relationship between the wavelength and intensity of light emitted by the slag and the gas above the slag, Figure 6 is an analog signal diagram of the light inside the furnace, and Figure 7 is the binary value of the light inside the furnace. FIG. 8 is a block diagram showing the processing of the arithmetic unit. 1...Converter, 2...Side wall, 3...Furnace interior, 4...
Through hole, 5... Support frame, 6... Detection device, 61
...Photoelectric conversion video signal, 62...Video signal for each wavelength range, 63...Area amount signal for each color, 64...Binarized area amount signal for each color, 65...Binarization of area amount change amount for each color Signal, 66...Input signal for ore, auxiliary materials, etc., 67...
...Sloping detection signal, 7...Optical probe, 7
1... Light guide, 72... Protective inner tube, 73... Protective outer tube, 74... Front transparent body, 8... Moving device, 8
1... Rail, 82... Moving frame, 9... Connector, 10... Photoelectric conversion element, 11... Sorting device,
12... Arithmetic device, 13... Judgment device, 16...
Slag, 17... Molten metal, 18... High temperature gas atmosphere, 19... Lance, 21... Analog R signal,
22...Analog G signal, 23...Analog B signal, 24...R signal threshold level, 25...
...G signal threshold level, 26...B signal threshold level, 27...Binarized R signal, 28
... Binarized G signal, 29 ... Binarized B signal, 51
... Binarization circuit, 52 ... High frequency transmission filter,
53... Positive value conversion circuit, 54... Binarization circuit, 55
...Binarization circuit, 56...Converter process, 90...
...Integration pulse counter, 91...Count pulse generator, 92...Count pulse, 93...Control
cpu, 94...Reset pulse, 95...Vertical synchronization signal, 96...RGB binary signal.

Claims (1)

【特許請求の範囲】[Claims] 1 転炉炉体側壁に設けられた貫通孔に光プロー
ブを挿入離脱自在に嵌着可能な検出装置と、該検
出装置からの光電変換映像信号をあらかじめ設定
した複数の波長域に分別する分別装置と、前記分
別された波長域毎の映像が全映像中に占める面積
をパルスカウンターによつて演算する装置と、該
演算装置からの入力信号をあらかじめ定めたスロ
ツピング判定基準と比較しスロツピング検出信号
を出力する装置とを備えてなることを特徴とする
転炉スロツピング検出装置。
1. A detection device that allows an optical probe to be inserted into and removed from a through hole provided in the side wall of the converter body, and a sorting device that separates the photoelectric conversion video signal from the detection device into a plurality of preset wavelength ranges. and a device that calculates the area occupied by the video of each of the separated wavelength ranges in the total video using a pulse counter, and a sloping detection signal that compares the input signal from the calculation device with a predetermined sloping criterion. 1. A converter slopping detection device comprising: a device for outputting output;
JP59084116A 1984-04-27 1984-04-27 Slopping detector for converter Granted JPS60228931A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59084116A JPS60228931A (en) 1984-04-27 1984-04-27 Slopping detector for converter
AU32558/84A AU558925B2 (en) 1984-04-27 1984-08-30 Monitoring and controlling the slag-forming conditions in the basic oxygen steel converter
CA000462485A CA1250356A (en) 1984-04-27 1984-09-05 Method and apparatus for measuring slag-forming conditions within converter
DE8484110571T DE3468127D1 (en) 1984-04-27 1984-09-05 Method and apparatus for measuring slag-forming conditions within converter
EP84110571A EP0162949B1 (en) 1984-04-27 1984-09-05 Method and apparatus for measuring slag-forming conditions within converter
ES535715A ES535715A0 (en) 1984-04-27 1984-09-06 A METHOD TO PERFORM A BLOW IN A STEEL REFINE CONVERTER WHILE OBSERVING THE TRAINING CONDITIONS OF SLAG IN ITS CONTAINER.
BR8404496A BR8404496A (en) 1984-04-27 1984-09-06 PROCESS AND APPARATUS FOR THE OBSERVATION OF CONDITIONS FOR FORMING SLAG IN A CONVERTER POT AND PROCESS FOR PERFORMING A TOP AND LOWER PUMPING CONVERTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59084116A JPS60228931A (en) 1984-04-27 1984-04-27 Slopping detector for converter

Publications (2)

Publication Number Publication Date
JPS60228931A JPS60228931A (en) 1985-11-14
JPH056654B2 true JPH056654B2 (en) 1993-01-27

Family

ID=13821544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59084116A Granted JPS60228931A (en) 1984-04-27 1984-04-27 Slopping detector for converter

Country Status (1)

Country Link
JP (1) JPS60228931A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125424A (en) * 1991-11-08 1993-05-21 Nippon Steel Corp Method for restraining slag foaming

Also Published As

Publication number Publication date
JPS60228931A (en) 1985-11-14

Similar Documents

Publication Publication Date Title
KR100370228B1 (en) System and method for minimizing slag carryover during the production of steel
JP6414102B2 (en) Refining furnace discharge flow determination apparatus, refining furnace discharge flow determination method, and molten metal refining method
KR101223104B1 (en) Method and apparatus for monitoring an operation of iron & steel-making furnace
KR101216657B1 (en) Method of determining temperature of molten pig iron and method of operating blast furnace using same
US4651976A (en) Method for operating a converter used for steel refining
JP6164173B2 (en) Converter discharge flow determination device, converter discharge flow determination method, hot metal pretreatment method, and converter pretreatment operation method
CN116547392A (en) Converter operation method and converter converting control system
JP5444692B2 (en) Slag outflow detection method
EP0162949B1 (en) Method and apparatus for measuring slag-forming conditions within converter
CN106795573B (en) Method and device for determining the ignition time point in an oxygen converting process
JP7036142B2 (en) Sloping prediction method of converter, operation method of converter and sloping prediction system of converter
JPH056654B2 (en)
JP2013257181A (en) Method and system for measuring tapping hole diameter of blast furnace, and computer program
JPH09209013A (en) Detection of clogging of iron tapping hole by picture processing and method for releasing clogging
JP7243520B2 (en) Slag Discharge Method in Converter Type Hot Metal Pretreatment
US4749171A (en) Method and apparatus for measuring slag-foam conditions within a converter
JP6477751B2 (en) Evaluation method of bottom bottom tuyere integrity of bottom blown converter, method of extending life of bottom tuyere, and operation method of bottom blown converter
JPS6148737A (en) Detecting method of converter slag forming
JPH0379405B2 (en)
Ayres et al. Measurement of thickness of oxygen lance skull in LD converters using artificial vision
JPS6224487B2 (en)
JPS60228929A (en) Converter condition observing apparatus
JPH0238510A (en) Method for prediction-restraining slopping
JPS6144117A (en) Method for preventing clogging of through-hole of converter side wall
JPH09118908A (en) Method for controlling blowing in converter