JPH0566544B2 - - Google Patents

Info

Publication number
JPH0566544B2
JPH0566544B2 JP60034119A JP3411985A JPH0566544B2 JP H0566544 B2 JPH0566544 B2 JP H0566544B2 JP 60034119 A JP60034119 A JP 60034119A JP 3411985 A JP3411985 A JP 3411985A JP H0566544 B2 JPH0566544 B2 JP H0566544B2
Authority
JP
Japan
Prior art keywords
cast iron
iron product
product
type
mechanical vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60034119A
Other languages
Japanese (ja)
Other versions
JPS61193067A (en
Inventor
Katsuhiko Honjo
Keiichi Sudo
Junichi Masuda
Kishio Arita
Koichi Takayama
Chiharu Nagano
Yoshitaka Koide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60034119A priority Critical patent/JPS61193067A/en
Publication of JPS61193067A publication Critical patent/JPS61193067A/en
Publication of JPH0566544B2 publication Critical patent/JPH0566544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は鋳鉄材、鋳鉄製品の品種、引張強さ、
クラツクによる劣化の程度を、振動法を用い非破
壊で評価する方法及び装置に関する。 〈従来の技術〉 鋳鉄材は例えばJIS G5501「ねずみ鋳鉄品」に
より、ねずみ鋳鉄品1種から6種までが定めら
れ、FC10,FC15,FC20,FC25,FC30,FC35
の記号で表わされている。これらの記号中の数字
は、直径30mmの鋳放し材の強さにもとずいてい
る。 これら鋳鉄品の試験は引張試験、抗析試験、化
学分析など、破壊を伴う試験が用いられ、非破壊
でその品種や引張強さを測定する方法や装置はな
かつた。 また鋳鉄品の劣化の測定法としては、試料に励
起された誘導電流が発生したクラツクによつて変
化することを利用する渦電流法、クラツク付近に
浸透液を塗布して目視により判定する浸透法、入
射した超音波のクラツクからの反射を利用する超
音波法、クラツクの発生、進展によつて伝播する
アコーステイツク・エミツシヨン(AE)数を計
数するAE法などがあつた。また振動解析を用い
る方法、装置としては主として構造物の解析用の
ものがあつた。 〈発明が解決しようとする問題点〉 このように従来の方法では、鋳鉄品の引張強さ
を測定するには破壊試験によらざるを得ず、クラ
ツクによる劣化の測定を非破壊で行なう方法も熟
練を要し、操作性よく短時間で測定するという面
で欠ける点があつた。更に引張強さと劣化を非破
壊で同時に測定する方法はなかつた。 本発明はこのような問題を解決するためになさ
れたもので、振動解析法によつて、鋳鉄品の材
質、引張強さ、クラツクによる劣化の程度を非破
壊で、かつ同時に測定する方法及び装置を提供す
るものである。 〈問題点を解決するための手段〉 本発明においては、鋳鉄品に打撃を加えて振動
を生ぜしめ、その共振周波数から引張強さを計算
し表示させ、振動振幅の減衰率から引張強さ及び
鋳鉄品の品種を判定し、更に共振周波数の低周波
数側への移動量から荷重履歴に応じたクラツクに
よる劣化の程度を計算し、表示させる。 第1図は本発明装置の構成を示す図であつて、
1は鋳鉄品、2はハンマーなどの打撃用具、3は
鋳鉄品の機械的振動を鋳鉄品の表面に直接接触さ
せて検出しこれを電気信号にかえる振動プローブ
で加速度ピツクアツプコイルなどが利用できる。
4は増幅器、5は波形解析器で、増幅器4の出力
から鋳鉄品の機械的振動の共振周波数を測定する
周波数測定部6と振幅を時間と共に測定する波形
測定部7からなつている。8は周波数測定部、波
形測定部による測定結果を記憶し、また常数項な
ど所要のデータを記憶するフロツピーデイスクな
どのメモリ部、9は測定結果より引張強さ、減衰
率などを計算する演算部でマイクロコンピユータ
を用いる。10はプリンタなどの出力部である。
鋳鉄品1はスポンジなどのクツシヨン材11上に
おくことが望ましい。 〈作用〉 鋳鉄品1に打撃を与えると、その形状に応じた
共振振動数で振動する。共振周波数iは i=(λi/l)2(EI/ρA)1/2 (1) で与えられる。但し、iは振動の次数、lは鋳鉄
品の長さ、Iは断面2次モーメント、Aは断面
積、Eはヤング率、ρは密度、λiは常数でλ1
4730,λ2=7853,λ3=10996,…である。更に鋳
鉄の場合、引張強さσとヤング率Eとは
McEleeMooreの式 σ=(E/2900)2.32 (2) によつて関係づけられているので、あらかじめ、
鋳鉄品の形状、密度及びλを第1図のメモリ部8
に記憶させておいて、共振周波数を測定すれば、
引張強さσは(1),(2)から得られる。 σ={1/2900・ρA/I(l/λi)4・fi}2.32(
3) を第1図の演算部9で計算して、その結果を共振
周波数と共に出力部10上に打ちだすことができ
る。 打撃によつて生じた鋳鉄品の共振振動は減衰振
動に移るが、その減衰率が鋳鉄品の品種、引張強
さによつて異ることが本発明者によつて見出され
た。鋳鉄品1の振動の減衰率を波形解析器5で測
定することにより、鋳鉄品1の引張強さ、品種を
判定し、その結果を表示できる。 更に本発明者は鋳鉄品の共振周波数が、その荷
重履歴によつて低周波数側へ移動すること、それ
が荷重履歴によつて生じたクラツクによるもので
あることを見出した。健全な鋳鉄品の共振周波数
またはあらかじめ作製した検量線をメモリ部8に
記憶させ、劣化試料の共振周波数をそれらと比較
すれば、劣化の程度を知ることができ、また履歴
荷重を破断荷重との比で定量化して出力すること
もできる。 〈実施例〉 以下実施例をもとずいて詳細に説明する。 (実施例 1) 共振周波数から引張強さを測定した。 JISG5501ねずみ鋳鉄品のうち、FC15,FC20,
FC30の丸棒から試料を作成した。試料は長さ460
mm、直径32mmの丸棒を切削して厚さ20mmの板状と
したものである。各試料をスポンジにのせ、ハン
マで打撃を加え、その振動をプルーブ3によつて
電気信号にかえ、共振周波数を測定した。あらか
じめ試料の長さ、断面積、断面2次モーメント、
密度、λをメモリ部8に記憶させておき、演算部
9において(3)式によつて共振周波数fiから引張強
さσを計算した。得られた結果を第2図に示す。
計算結果は規格値と良く一致している。 (実施例 2) 共振振幅の減衰から鋳鉄品の引張強さ、品種を
判定した。試料として実施例1と同一形状、寸法
のものを使用した。鋳鉄品に打撃を加え、振動を
生じさせた時の振動波形を模式的に第3図に示
す。振幅は打撃を受けた後、ある時間を経て最大
値に達し、その後減衰振動に移る。FC15,
FC20,FC30各試料について、振動の波形を測定
した。振幅の包絡線を第4図に示す。同じねずみ
鋳鉄であつても、品種によつて減衰の様子が全く
異なる。第3図または第4図において、振幅が最
大となる時間をt=0、その時の振幅をu0とすれ
ば、以後の減衰振動の振幅u(t)は時間tと共
に u(t)=u0e-t (4) に従つて減小する。αは減衰率である。(4)式より α=1/tlnu0/u(t) (5) となるので、波形測定部6で測定された減衰波形
にもとずいて、演算部9で減衰αを計算し、出力
させる。このようにして得られたFC15,FC20,
FC30の減衰率を第1表に示す。
<Industrial Application Field> The present invention is applicable to cast iron materials, cast iron product types, tensile strength,
The present invention relates to a method and apparatus for nondestructively evaluating the degree of deterioration caused by cracks using a vibration method. <Conventional technology> For example, JIS G5501 "Gray cast iron products" specifies gray cast iron types 1 to 6, including FC10, FC15, FC20, FC25, FC30, and FC35.
It is represented by the symbol. The numbers in these symbols are based on the strength of the as-cast material with a diameter of 30 mm. Destructive tests such as tensile tests, anti-deposition tests, and chemical analyzes were used to test these cast iron products, and there was no method or device to non-destructively measure the product type or tensile strength. In addition, methods for measuring the deterioration of cast iron products include the eddy current method, which uses the fact that the induced current excited in the sample changes depending on the crack, and the penetration method, which uses a penetrant solution near the crack and visually checks it. , the ultrasonic method that uses the reflection of incident ultrasonic waves from cracks, and the AE method that counts the number of acoustic emissions (AE) that propagate as cracks occur and develop. In addition, methods and devices using vibration analysis were mainly used for analyzing structures. <Problems to be solved by the invention> As described above, conventional methods have no choice but to use destructive tests to measure the tensile strength of cast iron products, and there is also a non-destructive method for measuring deterioration due to cracks. It required skill, and was lacking in terms of ease of use and short measurement time. Furthermore, there was no method to simultaneously measure tensile strength and deterioration in a non-destructive manner. The present invention has been made to solve these problems, and provides a method and apparatus for nondestructively and simultaneously measuring the material quality, tensile strength, and degree of deterioration due to cracks of cast iron products using a vibration analysis method. It provides: <Means for solving the problem> In the present invention, a cast iron product is struck to cause vibration, the tensile strength is calculated and displayed from the resonance frequency, and the tensile strength and The type of cast iron product is determined, and the degree of deterioration due to cracks according to the load history is calculated and displayed from the amount of movement of the resonance frequency toward the lower frequency side. FIG. 1 is a diagram showing the configuration of the device of the present invention,
1 is a cast iron product, 2 is a striking tool such as a hammer, and 3 is a vibration probe that detects the mechanical vibration of the cast iron product by directly contacting the surface of the cast iron product and converts it into an electrical signal, and an acceleration pickup coil or the like can be used.
Reference numeral 4 indicates an amplifier, and reference numeral 5 indicates a waveform analyzer, which is comprised of a frequency measuring section 6 that measures the resonance frequency of mechanical vibration of the cast iron product from the output of the amplifier 4, and a waveform measuring section 7 that measures the amplitude over time. 8 is a memory section such as a floppy disk that stores the measurement results from the frequency measurement section and the waveform measurement section, and also stores necessary data such as constant terms; 9 is an operation that calculates the tensile strength, attenuation rate, etc. from the measurement results. A microcomputer is used in the department. 10 is an output unit such as a printer.
Preferably, the cast iron product 1 is placed on a cushion material 11 such as sponge. <Operation> When the cast iron product 1 is struck, it vibrates at a resonant frequency corresponding to its shape. The resonance frequency i is given by i=(λi/l) 2 (EI/ρA) 1/2 (1). However, i is the order of vibration, l is the length of the cast iron product, I is the second moment of area, A is the cross-sectional area, E is Young's modulus, ρ is the density, λi is a constant, and λ 1 =
4730, λ 2 = 7853, λ 3 = 10996, ... Furthermore, in the case of cast iron, what are the tensile strength σ and Young's modulus E?
Since they are related by McEleeMoore's equation σ=(E/2900) 2.32 (2), in advance,
The shape, density and λ of the cast iron product are stored in the memory section 8 in Figure 1.
If you memorize it and measure the resonant frequency,
The tensile strength σ can be obtained from (1) and (2). σ={1/2900・ρA/I(l/λi) 4・fi} 2.32 (
3) can be calculated by the calculation section 9 in FIG. 1, and the result can be outputted onto the output section 10 together with the resonance frequency. The resonant vibration of a cast iron product caused by impact is transferred to damped vibration, and the inventors have found that the damping rate differs depending on the type and tensile strength of the cast iron product. By measuring the vibration damping rate of the cast iron product 1 with the waveform analyzer 5, the tensile strength and type of the cast iron product 1 can be determined, and the results can be displayed. Furthermore, the present inventor found that the resonant frequency of a cast iron product shifts to a lower frequency side depending on its load history, and that this is due to cracks caused by the load history. By storing the resonant frequency of a healthy cast iron product or a previously prepared calibration curve in the memory section 8 and comparing the resonant frequency of a deteriorated sample with them, the degree of deterioration can be determined, and the historical load can be compared with the breaking load. It is also possible to quantify and output the ratio. <Example> A detailed description will be given below based on an example. (Example 1) Tensile strength was measured from the resonance frequency. Among JISG5501 gray cast iron products, FC15, FC20,
A sample was made from a round bar of FC30. Sample length 460
mm, a round bar with a diameter of 32 mm was cut into a plate shape with a thickness of 20 mm. Each sample was placed on a sponge, hit with a hammer, the vibration was converted into an electrical signal by probe 3, and the resonance frequency was measured. In advance, the sample length, cross-sectional area, second moment of area,
The density, λ, was stored in the memory unit 8, and the tensile strength σ was calculated from the resonance frequency fi using equation (3) in the calculation unit 9. The results obtained are shown in FIG.
The calculation results are in good agreement with the standard values. (Example 2) The tensile strength and type of cast iron products were determined from the attenuation of resonance amplitude. A sample having the same shape and dimensions as in Example 1 was used. Figure 3 schematically shows the vibration waveform when a cast iron product is struck and vibrates. The amplitude reaches its maximum value after a certain period of time after being hit, and then transitions to a damped oscillation. FC15,
The vibration waveforms were measured for each of the FC20 and FC30 samples. The amplitude envelope is shown in FIG. Even if they are made of the same gray cast iron, the manner of attenuation differs depending on the type. In Figure 3 or Figure 4, if the time when the amplitude reaches its maximum is t = 0, and the amplitude at that time is u 0 , then the amplitude u(t) of the subsequent damped oscillation will change with time t as u(t) = u 0 e -t (4). α is the attenuation rate. From equation (4), α=1/tlnu 0 /u(t) (5) Therefore, based on the attenuation waveform measured by the waveform measurement unit 6, the calculation unit 9 calculates the attenuation α, and outputs the let FC15, FC20 obtained in this way,
Table 1 shows the attenuation rate of FC30.

【表】 表に見られるように、減衰率は鋳鉄の品種によ
つて異なるので、減衰率から品種、ひいては引張
強さを判定できる。 (実施例 3) 共振周波数の低周波側への移動から、鋳鉄材の
クラツクによる劣化の程度を測定した。実施例1
と同一形状、寸法の試料を作製し、まず通常の抗
析試験機を用いて抗析試験を行なつた。最大抗析
荷重はFC15で420Kg,FC20で700Kg,FC30
で900Kgであつた。次に同じ抗析試験機により、
FC15では100Kgから400Kgまで50Kgきざみ
で、FC20では300Kgから680Kgまで100Kgき
ざみで、FC30では450Kg,600Kg,750Kg,
890Kgで、あらかじめ曲げ荷重を与えた。これ
らの各試料の共振周波数を第1図の装置で測定し
たところ、共振周波数は、履歴荷重と共に低周波
数側へ移動することがわかつた。 荷重履歴のない鋳鉄材の共振周波数をあらかじ
め測定してメモリ部8に記憶しておく。履歴荷重
を与えた鋳鉄材の共振周波数を測定して荷重履歴
のない時の共振周波数との差Δを演算部9で計
算して出力部10で出力する。第5図は履歴荷重
とΔとの関係を示したもので、Δは履歴荷重と
共に増加し、またその増加の様子は鋳鉄の品種に
よつて異る。第5図のΔ−履歴荷重曲線を検量
線として、鋳鉄品の共振周波数からその鋳鉄品の
荷重履歴を知ることができる。この荷重履歴は鋳
鉄品の劣化の程度を示すものであることが次の実
験事実から示される。各試料に履歴荷重としての
曲げ荷重を加える際、同時にアコーステイツクエ
ミツシヨン(AE)を測定する。第6図はその結
果、第7図は第5図と第6図から求めたΔとAE
数の関係を示すものである。よく知られているよ
うにAE数は試片に発生するクラツク量すなわち
クラツク面積に比例するので、荷重履歴による共
振周波数の低周波側への移動量Δはクラツクに
よるの発生量、クラツクによる劣化に対応するも
のである。 FC15,FC20,FC30の各種別毎に荷重履歴の
ない場合、及び既知の履歴荷重を与えた場合の共
振周波数を測定し、各種別毎に履歴荷重、共振周
波数、Δ値の表(以下履歴荷重表という)をメ
モリ部に記憶させておく、品種のわかつている鋳
鉄品の共振周波数を測定し、演算部でこの履歴荷
重表を参照して履歴荷重を出力部より出力するこ
とができる。また履歴荷重(W)の破断荷重
(WB)に対する100分比を劣化度として出力るこ
ともできる。 (実施例 4) 共振周波数と振幅減衰率から鋳鉄品の材質とク
ラツクによる劣化の程度を測定した。試料の形
状、寸法は実施例1と同じである。 実施例3と同様に、各試料に履歴荷重としての
曲げ荷重(W)を加えた後、打撃によつて振動を
発生させ、その減衰振動部における減衰率を測定
した。第8図はその結果を示したもので、履歴荷
重は規格化するため、FC15,FC20,FC30のそ
れぞれについて、抗析荷重(破断荷重(WB))に
対する100分比で表してある。第8図で注目すべ
きことは、共振周波数は前述したように履歴荷重
に依存するが、減衰率は履歴に影響されずほゞ品
種によつて一定なことである。先に減衰率によつ
て鋳鉄品の引張強さ、品種を判定できることを述
べたが、荷重履歴を有する鋳鉄品についても減衰
率から品種を判定できる。 第9図はFC15,FC20,FC30の各種について、
荷重履歴のないもの、第8図に示した履歴荷重を
加えたものの共振周波数と減衰率とを一平面上に
示したものである。鋳鉄品はその品種によつて、
この共振周波数−減衰率面上で、互いに分離した
集団を形成しており、このことを利用して品種、
経歴の未知な鋳鉄材の評価が可能になる。 一例として第10図に示すフローチヤートにも
とずいて、評価法を説明する。鋳鉄品より所定の
形状の試験片を切り出して、打撃を加え、振動さ
せる。試験片に直接接触させた振動プルーブによ
り機械的振動を電気信号にかえ増幅し、周波数及
び減衰波形を測定する。この測定値と、メモリ部
にあらかじめ記憶させておいた所要のデータを用
い、演算部において引張強さ、減衰率、共振周波
数の移動量Δを計算する。共振周波数が300<
340の範囲ならFC15,340<390なら
FC20、390<420ならFC30と予備的に判断
し、共振周波数がこの範囲外であればエラとす
る。以下300<340の場合について説明する。
計算された減衰率αが8<α<11であればFC15
と判定し、αがこの範囲外であればエラとする。
FC15と判定すると履歴荷重表のうちFC15の表を
選択して表を参照し、Δ値より履歴荷重(W)
を判定し、クラツクによる劣化度としてWの破断
荷重(WB)に対する100分比を計算する。判定さ
れた品種、引張強さ、クラツクによる劣化度、共
振周波数、減衰率のその他所望の事項を出力して
測定あ終了する。FC20,FC30の場合も同様であ
る。このようにして共振周波数、減衰率から試験
片の品種、引張強さ、クラツクによる劣化度を知
ることができる。 なお、第10図及びそれにもとずく説明におい
て、共振周波数について300<340,340<
390,390<420などが用いられているが、
これは実施例1で具体的に述べた鋳鉄品の形状、
寸法に対応するものであり、試験片の形状、寸法
に応じた標準データを準備し、用いることができ
る。また丸棒、板などの試験片でなく、鉄蓋その
他鋳鉄製品そのものについて、標準データを求め
ておき、未知の製品の材質、強度、クラツクによ
る劣化度などを判定することができる。 〈発明の効果〉 以上説明したように、本発明は振動解析によつ
て鋳鉄品の引張強さとクラツクによる劣化度を非
破壊で同時に評価できるので、マンホールの鉄
蓋、管その他鋳鉄製品の材質、劣化度の判定及び
履歴荷重からの寿命予測など広く利用することが
できる。
[Table] As seen in the table, the attenuation rate varies depending on the type of cast iron, so the type and, in turn, the tensile strength can be determined from the attenuation rate. (Example 3) The degree of deterioration due to cracks in the cast iron material was measured from the shift of the resonant frequency to the lower frequency side. Example 1
A sample with the same shape and dimensions was prepared, and an anti-deposition test was first conducted using an ordinary anti-deposition tester. Maximum drag load is 420Kg for FC15, 700Kg for FC20, FC30
It weighed 900Kg. Next, using the same anti-analytical tester,
FC15 from 100Kg to 400Kg in 50Kg increments, FC20 from 300Kg to 680Kg in 100Kg increments, FC30 from 450Kg, 600Kg, 750Kg,
A bending load of 890 kg was applied in advance. When the resonant frequency of each of these samples was measured using the apparatus shown in FIG. 1, it was found that the resonant frequency shifted to the lower frequency side with the hysteresis load. The resonance frequency of a cast iron material with no load history is measured in advance and stored in a memory section 8. The resonant frequency of the cast iron material subjected to a historical load is measured, and the difference Δ from the resonant frequency when there is no load history is calculated by the calculation unit 9 and outputted by the output unit 10. FIG. 5 shows the relationship between hysteretic load and Δ. Δ increases with hysteretic load, and the manner of increase differs depending on the type of cast iron. Using the Δ-history load curve in FIG. 5 as a calibration curve, the load history of the cast iron product can be determined from the resonance frequency of the cast iron product. The following experimental facts show that this load history indicates the degree of deterioration of the cast iron product. When applying a bending load as a hysteresis load to each sample, the acoustic emission (AE) is measured at the same time. Figure 6 shows the results, and Figure 7 shows Δ and AE obtained from Figures 5 and 6.
It shows the relationship between numbers. As is well known, the number of AEs is proportional to the amount of cracks that occur in the specimen, that is, the crack area, so the amount of shift Δ of the resonant frequency toward the lower frequency side due to the load history is the amount of cracks that occur due to cracks, and the amount of deterioration caused by cracks. It corresponds to this. We measured the resonance frequency for each type of FC15, FC20, and FC30 when there is no load history and when a known historical load is applied, and the table of historical load, resonance frequency, and Δ value for each type (hereinafter referred to as historical load) was measured. A table (referred to as a table) is stored in the memory section.The resonant frequency of a cast iron product of known type is measured, and the calculation section refers to this historical load table to output the historical load from the output section. It is also possible to output the 100-minute ratio of the historical load (W) to the breaking load (W B ) as the degree of deterioration. (Example 4) The material quality of the cast iron product and the degree of deterioration due to cracks were measured from the resonance frequency and amplitude attenuation rate. The shape and dimensions of the sample are the same as in Example 1. As in Example 3, after applying a bending load (W) as a hysteresis load to each sample, vibration was generated by impact, and the damping rate at the damped vibration portion was measured. Figure 8 shows the results. In order to normalize the historical load, it is expressed as a 100% ratio to the anti-destructive load (breaking load (W B )) for each of FC15, FC20, and FC30. What should be noted in FIG. 8 is that although the resonant frequency depends on the hysteresis load as described above, the damping rate is not affected by the hysteresis and is almost constant depending on the product type. It was mentioned above that the tensile strength and type of cast iron products can be determined based on the damping rate, but the type of cast iron products that have a load history can also be determined from the damping rate. Figure 9 shows various types of FC15, FC20, and FC30.
The resonant frequency and damping rate of a device without a load history and a device with a history load shown in FIG. 8 are shown on one plane. Depending on the type of cast iron,
On this resonant frequency-attenuation factor surface, groups are formed that are separated from each other.
It becomes possible to evaluate cast iron materials whose history is unknown. The evaluation method will be explained based on the flowchart shown in FIG. 10 as an example. A test piece of a predetermined shape is cut out from a cast iron product, and it is struck and vibrated. Mechanical vibrations are converted into electrical signals and amplified using a vibrating probe that is in direct contact with the test piece, and the frequency and attenuation waveform are measured. Using this measured value and necessary data previously stored in the memory section, the tensile strength, damping rate, and movement amount Δ of the resonance frequency are calculated in the calculation section. Resonance frequency is 300<
If it is in the range of 340, FC15, if 340<390
If FC20, 390<420, it is preliminarily determined to be FC30, and if the resonance frequency is outside this range, it is determined to be an error. The case of 300<340 will be explained below.
If the calculated damping rate α is 8 < α < 11, then FC15
If α is outside this range, it is determined as an error.
If it is determined to be FC15, select the FC15 table from the history load table, refer to the table, and calculate the history load (W) from the Δ value.
is determined, and the 100% ratio of W to the breaking load (W B ) is calculated as the degree of deterioration due to cracking. The determined product type, tensile strength, degree of deterioration due to cracks, resonance frequency, damping rate, and other desired items are output and the measurement is completed. The same applies to FC20 and FC30. In this way, the type of specimen, tensile strength, and degree of deterioration due to cracks can be determined from the resonance frequency and damping rate. In addition, in FIG. 10 and the explanation based on it, the resonant frequency is 300<340, 340<
390, 390<420 etc. are used,
This is the shape of the cast iron product specifically described in Example 1,
Standard data corresponding to the shape and dimensions of the test piece can be prepared and used. In addition, standard data can be obtained not only for test pieces such as round bars and plates, but also for iron lids and other cast iron products themselves, so that the material, strength, degree of deterioration due to cracks, etc. of unknown products can be determined. <Effects of the Invention> As explained above, the present invention allows the tensile strength of cast iron products and the degree of deterioration due to cracks to be evaluated simultaneously in a non-destructive manner through vibration analysis. It can be widely used for determining the degree of deterioration and predicting life from historical loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す図、第2図は共振
周波数と引張強さの関係を示す図、第3図は鋳鉄
品の減衰振動の模式図、第4図は振動波形の包絡
線図、第5図は荷重履歴による共振周波数の移動
量を示す図、第6図は荷重とAE数を示す図、第
7図は共振周波数の移動量とAE数の関係を示す
図、第8図は履歴荷重と減衰率の関係を示す図、
第9図は鋳鉄品の共振周波数と減衰率を示す図、
第10図は測定のフローチヤートの1例である。 1……鋳鉄品、2……打撃用ハンマ、3……振
動プルーブ、4……増幅器、5……波形解析器、
6……周波数測定部、7……波形測定部、8……
メモリ部、9……演算部、10……出力部。
Figure 1 is a diagram showing the configuration of the present invention, Figure 2 is a diagram showing the relationship between resonance frequency and tensile strength, Figure 3 is a schematic diagram of damped vibration of cast iron, and Figure 4 is an envelope of the vibration waveform. Figure 5 is a diagram showing the amount of movement of the resonant frequency due to the load history, Figure 6 is a diagram showing the load and the number of AEs, Figure 7 is a diagram showing the relationship between the amount of movement of the resonance frequency and the number of AEs, and Figure 8 is a diagram showing the relationship between the amount of movement of the resonance frequency and the number of AEs. The figure shows the relationship between historical load and damping rate.
Figure 9 is a diagram showing the resonance frequency and damping rate of cast iron products,
FIG. 10 is an example of a measurement flowchart. 1... Cast iron product, 2... Hitting hammer, 3... Vibration probe, 4... Amplifier, 5... Waveform analyzer,
6... Frequency measurement section, 7... Waveform measurement section, 8...
Memory section, 9... calculation section, 10... output section.

Claims (1)

【特許請求の範囲】 1 鋳鉄品に機械的振動を生ぜしめ、前記鋳鉄品
の表面に直接接触させた振動プローブにより前記
機械的振動の減衰波形と共振周波数を検出し、前
記減衰波形の減衰率と予め設定した品種固有の減
衰率とを比較して引張強さと前記鋳鉄品の品種
を、前記共振周波数の測定値と予め設定した品種
固有の共振周波数との差に基いて前記鋳鉄品のク
ラツクによる劣化の程度を評価することを特徴と
する鋳鉄品の評価方法。 2 鋳鉄品に機械的振動を生ぜしめる手段と、前
記鋳鉄品の表面に直接接触させ前記機械的振動を
検出し、これを電気信号に変換する手段と、前記
電気信号より前記機械的振動の共振周波数を測定
する手段と、前記電気信号より前記機械的振動の
減衰波形を測定する手段と、前記各々の測定結果
と予め設定した品種固有の共振周波数と減衰率と
を記憶するメモリ部と、前記鋳鉄品の減衰波形よ
り減衰率を求め、該減衰率と前記予め設定した品
種固有の減衰率とを比較して前記鋳鉄品の品種を
決定し、該決定された品種から引張強さを求め、
さらに前記鋳鉄品の共振周波数と前記予め設定さ
れた品種固有の共振周波数との差分から前記鋳鉄
品のクラツクによる劣化度を計算する演算部と、
前記計算結果を出力する出力手段とからなること
を特徴とする鋳鉄品の評価装置。
[Scope of Claims] 1. Mechanical vibration is generated in a cast iron product, a damped waveform and a resonance frequency of the mechanical vibration are detected by a vibration probe that is brought into direct contact with the surface of the cast iron product, and the attenuation rate of the damped waveform is determined. The tensile strength and the type of the cast iron product are determined by comparing the damping rate and the preset type-specific damping rate. A method for evaluating cast iron products characterized by evaluating the degree of deterioration due to 2. A means for generating mechanical vibration in a cast iron product, a means for directly contacting the surface of the cast iron product to detect the mechanical vibration and converting it into an electrical signal, and a means for generating resonance of the mechanical vibration from the electrical signal. a means for measuring a frequency; a means for measuring an attenuation waveform of the mechanical vibration from the electrical signal; a memory section for storing each of the measurement results and a preset product-specific resonance frequency and attenuation rate; Determining the attenuation rate from the attenuation waveform of the cast iron product, determining the type of the cast iron product by comparing the attenuation rate with the preset type-specific attenuation rate, and determining the tensile strength from the determined type;
Further, a calculation unit that calculates the degree of deterioration of the cast iron product due to cracks from the difference between the resonant frequency of the cast iron product and the preset product-specific resonant frequency;
An evaluation device for cast iron products, comprising an output means for outputting the calculation results.
JP60034119A 1985-02-21 1985-02-21 Method and device for evaluating cast iron article Granted JPS61193067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60034119A JPS61193067A (en) 1985-02-21 1985-02-21 Method and device for evaluating cast iron article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034119A JPS61193067A (en) 1985-02-21 1985-02-21 Method and device for evaluating cast iron article

Publications (2)

Publication Number Publication Date
JPS61193067A JPS61193067A (en) 1986-08-27
JPH0566544B2 true JPH0566544B2 (en) 1993-09-22

Family

ID=12405367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034119A Granted JPS61193067A (en) 1985-02-21 1985-02-21 Method and device for evaluating cast iron article

Country Status (1)

Country Link
JP (1) JPS61193067A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134558A (en) * 1988-11-15 1990-05-23 Kanebo Ltd Measurement of mechanical constant of material
WO2015059956A1 (en) * 2013-10-23 2015-04-30 日本電気株式会社 Structure diagnosis device, structure diagnosis method, and program
JP7004005B2 (en) * 2017-11-08 2022-01-21 日本電気株式会社 Estimator, estimation method and computer program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163453A (en) * 1979-06-06 1980-12-19 Kobe Steel Ltd Quality discriminating method of cast metal
JPS5948655A (en) * 1982-09-11 1984-03-19 Okayamaken Method and apparatus for inspecting quality of cast iron product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163453A (en) * 1979-06-06 1980-12-19 Kobe Steel Ltd Quality discriminating method of cast metal
JPS5948655A (en) * 1982-09-11 1984-03-19 Okayamaken Method and apparatus for inspecting quality of cast iron product

Also Published As

Publication number Publication date
JPS61193067A (en) 1986-08-27

Similar Documents

Publication Publication Date Title
Donskoy et al. Vibro-acoustic modulation nondestructive evaluation technique
US20220244156A1 (en) Method and system for analysing a test piece
Chen et al. Measurement of tensile forces in a seven-wire prestressing strand using stress waves
US6880379B2 (en) Method and device for detecting damage in materials or objects
US6330827B1 (en) Resonant nonlinear ultrasound spectroscopy
JP3340702B2 (en) A method for measuring deterioration of a concrete structure and a measuring device therefor.
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
US5714688A (en) EMAT measurement of ductile cast iron nodularity
JP3682041B2 (en) Experimental method for nondestructive stress wave in wood
US4265120A (en) Fatigue detection utilizing acoustic harmonics
Ongpeng et al. Contact and noncontact ultrasonic nondestructive test in reinforced concrete beam
Rizzo et al. Effect of frequency on the acoustoelastic response of steel bars
JPH0566544B2 (en)
Ivanova Damage Detection in Free–Free Glass Fiber Fabric Composite Beams by measuring Flexural and Longitudinal Vibrations
JP3510835B2 (en) Deterioration measurement device for concrete structures.
JP3922459B2 (en) Separation and cavity detection method and apparatus by percussion method
Klima et al. Monitoring crack extension in fracture toughness tests by ultrasonics
RU2146818C1 (en) Method determining characteristics of stress-deformed state of structural materials
Sutin et al. Nonlinear vibro-acoustic nondestructive testing technique
JP2001296214A (en) Deterioration measuring device for concrete structure, and its measuring method
Morbidini et al. The reliable implementation of thermosonics NDT
Fry et al. Evaluation of Anisotropy in Additively Manufactured Materials Using Resonant Ultrasound Spectroscopy
Hlavač Detection of crack in a concrete element by impact-echo method
Shah et al. Correlating tests of progressively damaged concrete with NLU and AE techniques
RU2039353C1 (en) Method of measuring concrete strength

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term