JPH0566534U - Triaxial semiconductor force sensor - Google Patents

Triaxial semiconductor force sensor

Info

Publication number
JPH0566534U
JPH0566534U JP2026292U JP2026292U JPH0566534U JP H0566534 U JPH0566534 U JP H0566534U JP 2026292 U JP2026292 U JP 2026292U JP 2026292 U JP2026292 U JP 2026292U JP H0566534 U JPH0566534 U JP H0566534U
Authority
JP
Japan
Prior art keywords
strain
semiconductor
force sensor
mounting surface
generating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2026292U
Other languages
Japanese (ja)
Other versions
JP2602590Y2 (en
Inventor
満 川上
靖 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP1992020262U priority Critical patent/JP2602590Y2/en
Publication of JPH0566534U publication Critical patent/JPH0566534U/en
Application granted granted Critical
Publication of JP2602590Y2 publication Critical patent/JP2602590Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 【目 的】三軸用半導体力覚センサーにおいて、起歪体
を取り付け面に取り付けることによって発生する起歪体
の変形の影響を、半導体歪ゲージに伝わりにくくする。 【構 成】起歪体に薄肉部を設けて、起歪体をネジ締め
するとき発生する起歪体の変形を、該薄肉部が大きく変
形することで、起歪体の他の部分の変形量を少なくし、
更に起歪体に取り付け用の足を好ましくは三本設けて、
取り付け面の平面度の影響が起歪体に及びにくくする。
(57) [Abstract] [Objective] In a triaxial semiconductor force sensor, the influence of deformation of the strain-generating body caused by mounting the strain-generating body on the mounting surface is less likely to be transmitted to the semiconductor strain gauge. [Structure] By providing a thin-walled portion on the strain-flexing body, the deformation of the strain-generating body that occurs when the strain-flexing body is screwed is deformed by the large deformation of the thin-walled portion. Reduce the amount,
Furthermore, preferably three legs for attachment are provided on the flexure element,
The flatness of the mounting surface is less likely to affect the flexure element.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、自動化製造装置やロボットの物品把握部で把握力の自動設定等に使 用する力覚センサーの入力装置に関し、特に拡散型歪ゲージを形成したシリコン 単結晶基板を起歪体状に接合してなる三次元力覚センサーに関する。 The present invention relates to an input device of a force sensor used for automatic setting of grasping force in an automated manufacturing equipment or an article grasping part of a robot, and in particular, a silicon single crystal substrate having a diffusion type strain gauge formed into a strain body. The present invention relates to a three-dimensional force sensor formed by joining.

【0002】[0002]

【従来の技術】[Prior Art]

本考案の対象とする三軸用半導体力覚センサーの検出部分は、図8、9に示す ように、円板状の起歪体とシリコン単結晶基板を用いた半導体歪ゲージより構成 されている。 起歪体の入力軸5に外力を加えると起歪体1が変形する。変形は剛性の低いと ころほど大きくなるので、起歪体1の中心部Aを図9に示すように薄くして剛性 の低くし、その上に半導体歪ゲージ2を隙間のないように接合し、中心部Aが変 形するとその変形に合わせて半導体歪みゲージ2が歪むようにしてある。半導体 歪ゲージとは、歪みの量が変化すると抵抗率が変化する現象即ちピエゾ抵抗効果 を利用して歪みの変化を検出するものである。 入力軸5に加えた外力の大きさと方向を、前記中心部Aの歪みの変化を検出す ることによって知る。 As shown in FIGS. 8 and 9, the detection portion of the triaxial semiconductor force sensor, which is the subject of the present invention, is composed of a disc-shaped strain element and a semiconductor strain gauge using a silicon single crystal substrate. .. When an external force is applied to the input shaft 5 of the flexure element, the flexure element 1 is deformed. Deformation increases as the rigidity decreases, so the central portion A of the strain-generating body 1 is made thin as shown in FIG. 9 to reduce the rigidity, and the semiconductor strain gauge 2 is bonded on top of it so that there is no gap. When the center portion A is deformed, the semiconductor strain gauge 2 is distorted according to the deformation. The semiconductor strain gauge detects a change in strain by utilizing the phenomenon that the resistivity changes when the amount of strain changes, that is, the piezoresistance effect. The magnitude and direction of the external force applied to the input shaft 5 are known by detecting the change in strain of the central portion A.

【0003】 実際に三軸用半導体力覚センサーの検出部として使用する場合は、半導体歪ゲ ージ2を起歪体1に接合後、半導体歪ゲージ2を保護するために起歪体1の中心 部Aを蔽うようにカバー11を取り付ける。 カバー11は、図9に示すように起歪体1の外周面より突出しているので、起 歪体1を取り付ける場合、取り付け面9にカバー11を挿入可能な穴9aを設け る。その穴9aは、カバー11よりも大きめにして、カバー11と穴9aが接触 しないようにすることが望ましい。When actually used as a detection part of a triaxial semiconductor force sensor, after the semiconductor strain gauge 2 is bonded to the strain body 1, the strain body 1 is protected to protect the semiconductor strain gauge 2. The cover 11 is attached so as to cover the central portion A. Since the cover 11 projects from the outer peripheral surface of the flexure element 1 as shown in FIG. 9, when the flexure element 1 is attached, the mounting surface 9 is provided with a hole 9a into which the cover 11 can be inserted. The hole 9a is preferably made larger than the cover 11 so that the cover 11 and the hole 9a do not come into contact with each other.

【0004】 カバー11を前記の穴9aに挿入後、複数のネジ6によって起歪体1を取り付 け面9に固定する。 このとき、各ネジの締め付け力が均等でなかったり、取り付け面9が平らでな いと、起歪体1が変形してしまう。起歪体1が変形すると、半導体歪ゲージ2に 歪みが発生し、入力軸5に外力が加わっているかのように作用してしまう。After inserting the cover 11 into the hole 9 a, the flexure element 1 is fixed to the mounting surface 9 with a plurality of screws 6. At this time, if the tightening force of each screw is not uniform or the mounting surface 9 is not flat, the flexure element 1 will be deformed. When the flexure element 1 is deformed, the semiconductor strain gauge 2 is distorted and acts as if an external force is applied to the input shaft 5.

【0005】 そこで、起歪体1を取り付け面9に固定後、半導体歪ゲージ2に発生した歪み の量を検出し、三軸用半導体力覚センサーの表示装置を調整して、前記の歪みの 量のとき、力の大きさをゼロと表示されるようにゼロ調整する。この調整を行っ てから、三軸用半導体力覚センサーを使用することになる。Therefore, after fixing the strain element 1 to the mounting surface 9, the amount of strain generated in the semiconductor strain gauge 2 is detected, and the display device of the triaxial semiconductor force sensor is adjusted to detect the strain. In the case of quantity, zero the magnitude of the force so that it is displayed as zero. After making this adjustment, the triaxial semiconductor force sensor will be used.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし、取り付けのたびに表示装置を調整するのは大変手間がかかる。そのた め、何度も取り付け位置を変更するような使用方法に用いる場合、非常に不便で ある。 また、起歪体の取り付け時に発生する変形が大きいと、半導体歪ゲージの測定 可能範囲が、入力軸に加えられる特定の方向の力に対しては極端に狭くなってし まい、使用上不都合が起こることがあった。 However, it is very time-consuming to adjust the display device each time it is attached. Therefore, it is very inconvenient when it is used in a method of changing the mounting position many times. In addition, if the deformation that occurs when the flexure element is attached is large, the measurable range of the semiconductor strain gauge will be extremely narrow with respect to the force applied to the input shaft in a specific direction, which is inconvenient for use. It happened.

【0007】 そこで、起歪体の取り付け部分の剛性を高めて、取り付けによって起こる起歪 体の変形を無くす方法が考えられる。 しかし、起歪体の取り付け部分の剛性を高めるためには、取り付け部分の起歪 体の厚さを非常に厚くしなければならず、小型の三軸用半導体力覚センサーに上 記の方法を用いることは小型である特徴を損なう為、好ましくないという問題が あった。本考案は、上記の如き問題を解消することを目的とする。Therefore, a method of increasing the rigidity of the mounting portion of the flexure element to eliminate the deformation of the flexure element caused by the attachment can be considered. However, in order to increase the rigidity of the mounting portion of the strain-flexing body, the thickness of the strain-generating body of the mounting portion must be made extremely large, and the above method can be applied to a small-sized triaxial semiconductor force sensor. There is a problem that it is not preferable to use because it impairs the feature of being small. The present invention aims to solve the above problems.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、上記の問題を解決するために、起歪体に溝状の薄肉部を設けて、各 ネジの締め付けの不均一によって発生する変形を前記薄肉部によって吸収するこ とで、半導体歪ゲージに伝わりにくくすると共に、起歪体に取り付け用の細い好 ましくは3本又はそれ以上の足を設けて、平面度の良くない取り付け面に取り付 けても起歪体が変形しにくくなるようにしたものである。 In order to solve the above problems, the present invention provides a strain-generating body with a groove-shaped thin portion, and absorbs the deformation caused by uneven tightening of each screw by the thin portion, so that the semiconductor strain In addition to making it difficult to transmit to the gauge, the strain element is provided with thin, preferably three or more legs for mounting, and the strain element does not easily deform even if it is attached to a mounting surface with poor flatness. It was made to become.

【0009】[0009]

【作 用】[Work]

上記構成により、起歪体に設けた細い3本の足を取り付け面に接触させる。前 記各足の内部には、取り付け用ネジのための孔があり、この孔にネジを挿入して 、さらにこのネジを取り付け面に設けられた雌ネジに螺着させることによって取 り付ける。但し、このとき、前記足部以外の起歪体の各部分は取り付け面やその 他の物と接触しないようにする。 面に取り付ける場合、3点で取り付けた場合が最も面の影響が起歪体に及びに くく、しかも安定するが、それ以上の部分で取り付けるようにしても勿論かまわ ない。この際、溝状の薄肉部によって変形を吸収させる。薄肉だと剛性が他の部 分より低くなるので、その部分が大きく変形し、他の部分はほとんど変形しない 。 With the above configuration, the three thin legs provided on the flexure element are brought into contact with the mounting surface. There is a hole for a mounting screw inside each of the above-mentioned feet, and the screw is inserted into this hole, and then the screw is attached to the female screw provided on the mounting surface. However, at this time, each portion of the flexure element other than the foot portion is prevented from coming into contact with the mounting surface or other objects. When it is attached to the surface, the effect of the surface is the most influential to the flexure element when it is attached at three points, and it is stable, but it is of course possible to attach it to more than that. At this time, the groove-shaped thin portion absorbs the deformation. If it is thin, the rigidity will be lower than other parts, so that part will deform significantly, and other parts will hardly deform.

【0010】[0010]

【実施例】【Example】

図1は本考案の三軸用半導体力覚センサーの検出部の一実施例を示す平面図、 図2は取り付け状態を示す断面図である。1は起歪体、2は半導体歪ゲージ、3 は半導体歪ゲージと図示しない半導体歪ゲージの抵抗率変化検出回路に接続する ためのFPC、4は半導体歪ゲージが接合される起歪体1の中心部に設けられた 第一環状薄肉部、5は入力軸、6は取り付け用ネジ、7は取り付けによって発生 する変形を吸収するために第一環状薄肉部を取り巻くように同心に設けられた第 二環状薄肉部、8は起歪体を取り付けるために起歪体1に3ヶ設けられ、取り付 け用ネジ6が貫通する孔を有する足部、9は取り付け面、9aは取り付け面9に 設けられ後述するカバー11が遊嵌する凹部又は孔、10は取り付け面に設けら れた雌ネジ、11は半導体歪ゲージ2の保護のためのカバーである。 FIG. 1 is a plan view showing an embodiment of a detecting portion of a triaxial semiconductor force sensor of the present invention, and FIG. 2 is a sectional view showing a mounting state. Reference numeral 1 is a strain element, 2 is a semiconductor strain gauge, 3 is an FPC for connecting to a semiconductor strain gauge and a resistivity change detection circuit of a semiconductor strain gauge (not shown), and 4 is a strain element 1 to which the semiconductor strain gauge is joined. The first annular thin portion provided in the central portion, 5 is the input shaft, 6 is a mounting screw, and 7 is a concentric first annular portion that surrounds the first annular thin portion to absorb the deformation caused by the attachment. Two annular thin-walled parts, 8 are provided in the strain-generating body 1 to mount the strain-generating body, and three legs are provided with holes through which the mounting screws 6 pass, 9 is a mounting surface, and 9a is a mounting surface 9. A recessed portion or hole is provided, in which a cover 11 described later is loosely fitted, 10 is a female screw provided on the mounting surface, and 11 is a cover for protecting the semiconductor strain gauge 2.

【0011】 上記構成の半導体力覚センサーを所定の取り付け面に固定するに際しては、ま ず、前記の従来の技術で述べたように、起歪体1に取り付けられたカバー11を 取り付け面9に設けられた孔9aに挿入する。すると、足部8が取り付け面9に 接触する。 次に、図2に示すようにネジ6を起歪体1に設けられた取り付けネジ孔に挿入 し、ネジ6を回転させて、取り付け面9に設けられた雌ネジ部10に螺着させる 。When fixing the semiconductor force sensor having the above structure to a predetermined mounting surface, first, as described in the above-mentioned conventional technique, the cover 11 mounted on the flexure element 1 is mounted on the mounting surface 9. It is inserted into the provided hole 9a. Then, the foot portion 8 comes into contact with the mounting surface 9. Next, as shown in FIG. 2, a screw 6 is inserted into a mounting screw hole provided in the flexure element 1, and the screw 6 is rotated to be screwed to a female screw portion 10 provided on the mounting surface 9.

【0012】 前記足部8はなるべく細く作り、取り付け面9の平面度の影響を受けにくくす ると共に、ネジ6も出来るだけ細いものを使用して、ネジ6の締め付けによる影 響も少なくすることが望ましい。但し、起歪体1はしっかり取り付け面9に固定 しないと、測定誤差の原因となるので、足部8とネジ6の太さはこの点を十分考 慮して設計する必要がある。The foot portion 8 should be made as thin as possible so that it is less susceptible to the flatness of the mounting surface 9 and the screw 6 should be as thin as possible to reduce the effect of tightening the screw 6. Is desirable. However, if the flexure element 1 is not firmly fixed to the mounting surface 9, it may cause a measurement error. Therefore, the thicknesses of the foot portion 8 and the screw 6 should be designed in consideration of this point.

【0013】 各足部8の貫通孔に挿入したネジ6を雌ネジ10と螺着させて取り付け面9に 起歪体1を固定するときは、3箇所の各ネジ6は出来るだけ同じ力で締め付けな ければならない。 しかし、どんなに各ネジ6を均一に締め付けても、取り付け面9の平面度によ り起歪体1を少しは変形させてしまう。もし起歪体1が全く変形を起こさない程 度の力で各ネジ6を締め付けた場合、起歪体1が取り付け面9に対して、しっか り固定できていないので、測定誤差を生じる原因の一つとなる。そこで、かかる 起歪体1に発生した変形を、第二環状薄肉部7によって吸収する。すなわち、第 二環状薄肉部7は、図2に示すように第一環状薄肉部4とネジ6の取り付け部分 の間に設けられていて、ネジ6の締め付けによって起こされる起歪体1の変形を 途中の第二環状薄肉部7で吸収することで、第一環状薄肉部4に前記変形が伝わ ることを抑制し、前記第一環状薄肉部4に起こる変形を非常に小さなものとする ことができる。When the screw 6 inserted into the through hole of each foot portion 8 is screwed onto the female screw 10 to fix the strain-flexing body 1 to the mounting surface 9, each screw 6 at the three positions is applied with the same force as much as possible. Must be tightened. However, even if the screws 6 are evenly tightened, the flatness of the mounting surface 9 causes the strain element 1 to be slightly deformed. If each screw 6 is tightened with such a force that the strain body 1 is not deformed at all, the strain body 1 is not firmly fixed to the mounting surface 9, which may cause a measurement error. Become one. Therefore, the deformation generated in the strain generating element 1 is absorbed by the second annular thin portion 7. That is, the second annular thin portion 7 is provided between the first annular thin portion 4 and the mounting portion of the screw 6 as shown in FIG. 2, and prevents the strain body 1 from being deformed by tightening the screw 6. The second annular thin portion 7 on the way absorbs the deformation to the first annular thin portion 4 so that the deformation of the first annular thin portion 4 can be made very small. it can.

【0014】 第一環状薄肉部4の変形が非常に小さいと、前記の起歪体1の取り付け後に行 う表示装置のゼロ調整がほとんど不要となる。たとえゼロ調整が必要な場合でも 、ごくわずかであるため、力の測定可能範囲が狭くなることも無い。When the deformation of the first annular thin portion 4 is very small, the zero adjustment of the display device after the attachment of the strain element 1 is almost unnecessary. Even if zero adjustment is required, the measurable range of force is not narrowed because it is negligible.

【0015】 また、第2の実施例として、図3に示すように第二環状薄肉部7を直線状の溝 として三角形のような形に起歪体に設けることも可能である。図4は、図3に示 す第2実施例の起歪体1を取り付け面9に取り付けた状態を示す側面図である。 この場合は、各ネジ6の間にも第二環状薄肉部7がある状態となるので、各ネ ジ6が起歪体1に及ぼす力が、互いに干渉し合わないので、より一層第一環状薄 肉部4に発生する変形を少なくすることができる。As a second embodiment, it is also possible to provide the second annular thin portion 7 as a linear groove on the strain element in a triangular shape as shown in FIG. FIG. 4 is a side view showing a state in which the flexure element 1 of the second embodiment shown in FIG. 3 is attached to the attachment surface 9. In this case, since the second annular thin portion 7 is also present between the screws 6, the forces exerted by the screws 6 on the strain-flexing body 1 do not interfere with each other, so that the first annular shape is further improved. It is possible to reduce the deformation that occurs in the thin portion 4.

【0016】 図5は、本考案の第3実施例である。この場合は、起歪体1の外周分を全て薄 肉とし、この部分に足部8を設けている。 この方法だと、起歪体1に第二環状薄肉部7を設けるのに、起歪体1の外周方 向より起歪体1を切削することによって第二環状薄肉部7を設けられるので、起 歪体1の製造が容易である。FIG. 5 shows a third embodiment of the present invention. In this case, the outer peripheral portion of the flexure element 1 is entirely thin, and the foot portion 8 is provided in this portion. According to this method, since the second annular thin portion 7 is provided on the strain body 1, the second annular thin portion 7 is provided by cutting the strain body 1 from the outer peripheral direction of the strain body 1. The flexure element 1 is easy to manufacture.

【0017】 図6、7は、本考案の第4実施例である。この場合は、起歪体1のネジ6が取 り付けられる部分とその周囲のみを第二薄肉部7として、各ネジ6によって起こ される変形を、前記各ネジ6の取り付け部分である第二薄肉部7で個々に吸収さ せるものである。6 and 7 show a fourth embodiment of the present invention. In this case, only the portion to which the screw 6 of the flexure element 1 is attached and its periphery are the second thin-walled portion 7, and the deformation caused by each screw 6 is the second attachment portion of each screw 6. The thin portion 7 absorbs each individually.

【0018】[0018]

【考案の効果】[Effect of the device]

以上説明したように本考案の三軸用半導体力覚センサーは、検出部の起歪体を 取り付け面に取り付けたことよって起こる起歪体の変形が、半導体歪ゲージに及 ぼす影響を非常に小さくできる。そのため、剛性の低い起歪体でも三軸用半導体 力覚センサーの検出部として使用できるので、小さな起歪体を用いた小型の三軸 用半導体力覚センサーを作ることができ、しかも起歪体を取り付け面へ取り付け 後に行うゼロ調整がほとんど不要となる。 As described above, in the three-axis semiconductor force sensor of the present invention, the deformation of the strain-generating body caused by mounting the strain-generating body of the detecting part on the mounting surface has a great influence on the semiconductor strain gauge. Can be made smaller. Therefore, even a strain sensor with low rigidity can be used as the detection part of a triaxial semiconductor force sensor, so a small triaxial semiconductor force sensor using a small strain element can be made. Almost no zero adjustment is required after mounting the to the mounting surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案にかかる三軸用半導体力覚センサーの起
歪体部分の一例を示す平面図である。
FIG. 1 is a plan view showing an example of a strain-generating body portion of a triaxial semiconductor force sensor according to the present invention.

【図2】図1に示す起歪体部分の取り付け状態を示す断
面図である。
FIG. 2 is a cross-sectional view showing an attached state of a flexure element portion shown in FIG.

【図3】本考案にかかる三軸用半導体力覚センサーの起
歪体部分の他の実施例を示す平面図である。
FIG. 3 is a plan view showing another embodiment of the strain-generating body portion of the triaxial semiconductor force sensor according to the present invention.

【図4】図3に示す起歪体部分の取り付け状態を示す側
面図である。
FIG. 4 is a side view showing a mounted state of a flexure element portion shown in FIG.

【図5】本考案にかかる三軸用半導体力覚センサーの起
歪体部分の第三実施例を示す部分拡大断面図である。
FIG. 5 is a partially enlarged cross-sectional view showing a third embodiment of the strain-generating body portion of the triaxial semiconductor force sensor according to the present invention.

【図6】本考案にかかる三軸用半導体力覚センサーの起
歪体部分の第四実施例を示す平面図である。
FIG. 6 is a plan view showing a fourth embodiment of a flexure element portion of a triaxial semiconductor force sensor according to the present invention.

【図7】図6に示す起歪体部分の取り付け状態を示す部
分拡大断面図である。
7 is a partial enlarged cross-sectional view showing a mounted state of the flexure element portion shown in FIG.

【図8】従来の三軸用半導体力覚センサーの起歪体部分
の平面図である。
FIG. 8 is a plan view of a strain-generating body portion of a conventional triaxial semiconductor force sensor.

【図9】図8に示す起歪体部分の取り付け状態を示す断
面図である。
9 is a cross-sectional view showing a mounted state of the flexure element portion shown in FIG.

【符号の説明】[Explanation of symbols]

1.起歪体 2.半導体歪ゲージ 4.第一環状薄肉部 5.入力軸 7.第二(環状)薄肉部 8.足部 1. Strain element 2. Semiconductor strain gauge 4. First annular thin portion 5. Input shaft 7. Second (annular) thin portion 8. Foot

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】半導体歪ゲージを起歪体に接合し、該起歪
体に第一の薄肉部を介して設けられた入力軸に加えられ
る外力によって該起歪体に発生する変形を、前記半導体
歪ゲージによって検出することによって前記外力の大き
さと方向を測定する三軸用半導体力覚センサーにおい
て、前記起歪体には取り付け面に固定するため少なくと
も三本の足を設けると共に、該取り付け用の足と前記第
一の薄肉部との間に第二の薄肉部を設けてなり、該起歪
体を取り付け面に固定することによって発生する該起歪
体の変形による影響が前記半導体歪ゲージに伝わりにく
くしたことを特徴とする三軸用半導体力覚センサー。
Claim: What is claimed is: 1. A semiconductor strain gauge is joined to a strain-generating body, and the deformation generated in the strain-generating body by an external force applied to an input shaft provided on the strain-generating body via a first thin portion, In a three-axis semiconductor force sensor for measuring the magnitude and direction of the external force by detecting with a semiconductor strain gauge, the strain element is provided with at least three legs for fixing to a mounting surface, and Second thin-walled portion is provided between the foot of the semiconductor strain gauge and the first thin-walled portion, and the semiconductor strain gauge is affected by the deformation of the strain-generating body generated by fixing the strain-generating body to a mounting surface. A three-axis semiconductor force sensor that is hard to reach.
JP1992020262U 1992-02-20 1992-02-20 Triaxial semiconductor force sensor Expired - Lifetime JP2602590Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992020262U JP2602590Y2 (en) 1992-02-20 1992-02-20 Triaxial semiconductor force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992020262U JP2602590Y2 (en) 1992-02-20 1992-02-20 Triaxial semiconductor force sensor

Publications (2)

Publication Number Publication Date
JPH0566534U true JPH0566534U (en) 1993-09-03
JP2602590Y2 JP2602590Y2 (en) 2000-01-17

Family

ID=12022290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992020262U Expired - Lifetime JP2602590Y2 (en) 1992-02-20 1992-02-20 Triaxial semiconductor force sensor

Country Status (1)

Country Link
JP (1) JP2602590Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323995B2 (en) 2017-01-06 2019-06-18 Fanuc Corporation Rotation-shaft joint structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342971B2 (en) * 2016-11-14 2018-06-13 ファナック株式会社 Force detection device and robot
JP6553700B2 (en) 2017-11-24 2019-07-31 ファナック株式会社 Force detection device and robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475930A (en) * 1987-09-18 1989-03-22 Nexy Kenkyusho Kk Force/moment detector
JPH02103242U (en) * 1989-01-31 1990-08-16
JPH0389130A (en) * 1989-08-31 1991-04-15 Nitta Ind Corp Pressure/force detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475930A (en) * 1987-09-18 1989-03-22 Nexy Kenkyusho Kk Force/moment detector
JPH02103242U (en) * 1989-01-31 1990-08-16
JPH0389130A (en) * 1989-08-31 1991-04-15 Nitta Ind Corp Pressure/force detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323995B2 (en) 2017-01-06 2019-06-18 Fanuc Corporation Rotation-shaft joint structure

Also Published As

Publication number Publication date
JP2602590Y2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
US7757571B2 (en) Force Sensor
JP5497969B1 (en) Force sensor
JP5007083B2 (en) Force sensor chip
US20080295610A1 (en) Triaxial force sensor and triaxial force detection method
JP2011209104A (en) Chip for force sensor and chip for acceleration sensor
US5835977A (en) Force transducer with co-planar strain gauges
WO2019009368A1 (en) Strain gauge and multiple axis force sensor
JPH04130276A (en) Semiconductor acceleration sensor
JPH0566534U (en) Triaxial semiconductor force sensor
JP6767559B2 (en) Strain gauge and multi-axial force sensor
JP4230241B2 (en) Touch sensor, gripping robot
JPS6394690A (en) Device for detecting force
JPH03249530A (en) Distribution type tactile sensor
JPH02268237A (en) Force-moment sensor
JPH04204060A (en) Semiconductor acceleration detection device
JP2587646Y2 (en) 3D semiconductor force sensor
JP2636015B2 (en) Acceleration sensor
JPH04194634A (en) Detector for moment of force
JPH0645616A (en) Pressure-sensing sensor
JPH085475A (en) Load sensor
JPS60155936A (en) Sense-of-pressure sensor
JP2960510B2 (en) Flexure element structure of semiconductor 3-axis force sensor
JP2006058211A (en) Strain gauge type sensor
JPH09285991A (en) Tactile sensor
JPH05187940A (en) Device and method for detecting force