JPH0566404B2 - - Google Patents

Info

Publication number
JPH0566404B2
JPH0566404B2 JP117786A JP117786A JPH0566404B2 JP H0566404 B2 JPH0566404 B2 JP H0566404B2 JP 117786 A JP117786 A JP 117786A JP 117786 A JP117786 A JP 117786A JP H0566404 B2 JPH0566404 B2 JP H0566404B2
Authority
JP
Japan
Prior art keywords
epoxy resin
component
polysulfide
resin composition
polyphosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP117786A
Other languages
Japanese (ja)
Other versions
JPS62158714A (en
Inventor
Nobuyuki Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Shikizai Kogyo Co Ltd
Original Assignee
Dainippon Shikizai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Shikizai Kogyo Co Ltd filed Critical Dainippon Shikizai Kogyo Co Ltd
Priority to JP117786A priority Critical patent/JPS62158714A/en
Publication of JPS62158714A publication Critical patent/JPS62158714A/en
Publication of JPH0566404B2 publication Critical patent/JPH0566404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は2液混合型のエポキシ樹脂組成物およ
びこれを用いる防食施工方法に関し、詳しくは水
中または湿潤条件下、とくに各種海洋構造物の水
中部、干満帯および飛沫帯のような水流や水圧の
あるような条件下でも、塗料、接着剤、シーリン
グ材などとして有効に使用できる接着性、柔軟
性、防食性に優れた2液混合型の水中施工作業可
能なエポキシ樹脂組成物に関するものである。 <従来の技術> 近年、海洋資源、海洋エネルギー、海洋空間の
開発利用が活発化し、港湾施設、護岸設備、海上
橋、洋上プラツトホーム等の海洋構造物が多数建
設されている。一般に海洋構造物は、陸上構造物
に比較して著しく厳しい腐食環境下にあり、しか
も通常の保守管理を実施しにくいため、長期間の
防食性能を保証しうる防食システムが必要であ
る。 一方、エポキシ樹脂は接着性、耐水性、耐薬品
性、機械的特性、電気的特性などが優れているた
め、各種の塗料、接着剤、シーリング材、ライニ
ング材などとして広く使用されてきた。特に土木
建築分野においては、水の存在下が湿潤条件下が
一般的な作業条件となるため、このような条件下
でも使用できる材料が望まれ、水中硬化性のエポ
キシ樹脂組成物が種々開発されてきた。しかしな
がら、このような水中硬化性エポキシ樹脂組成物
は、一般に親水性の水中硬化性硬化剤を使用して
いるため、硬化剤が水中に溶出するという環境汚
染の問題がある。また、このような水中硬化性エ
ポキシ樹脂組成物は、静水中や単なる湿潤条下で
は、比較的作業性、接着性もよく使用可能ある
が、海洋構造物における水中部、水位の変動、潮
の干満のある、干満部や海水飛沫にさらされる飛
沫帯のような水流や水圧があるような場所では満
足な作業を行うことができず、作業中または硬化
中に、水力によつて剥離したり、流出したりある
いは部分的に溶けてばらばらになつてしまうとい
う欠点があつた。 さらに、たとえ施工が良好に行なわれた場合で
も、硬化膜が硬いため、波浪や浮遊物、船舶など
の衝突等による衝撃により引きおこされる構造物
の歪み、変形などに追随できず、ごく短期間のう
ちに傷よき、剥離、発錆などのトラブルが発生す
るという問題がある。このため、樹脂組成物に柔
軟性を付与する試みが種々なされてきた。例え
ば、各種の可塑性や可撓性付与剤の添加、柔軟性
を有するプラスチツクまたはゴム類の混入、水酸
基、カルボン酸基、イソシアネート基のような反
応性に富む官能基を有するモノマーやプレポリマ
ー類とエポキシ樹脂を反応させて得られる変性エ
ポキシ樹脂を単独または未変性のエポキシ樹脂と
混合して使用する方法等が提唱されている。しか
し、これらの方法では、十分な柔軟性が得られな
い。あるいは経時変化によつて徐々に柔軟性が失
われてくるなどの問題があつた。また、変性によ
る柔軟性付与では、エポキシ樹脂の粘度が著しく
高くなり、作業性が不良となつたり、耐水性が低
下するなどの問題もある。 さらに、上記のような突発的な事故のほかに
も、長期にわたる海水自体および、海水中に放流
される工場廃水、生活廃水等の汚染物質(酸、ア
ルカリ、塩類など)による腐食、劣化などの問題
もあり、樹脂組成物の防食性能が高いことが要求
されている。 <本発明が解決しようとする問題点> 上記したところから明らかなように、今日、特
に要望されているのは、海洋構造物に対する施工
性、特に海洋中での施工性がよく、かつ機械的強
度が大きく、しかも防食性に富む塗膜を与えるエ
ポキシ樹脂組成物である。 本発明者は、末端にチオール基を有するポリサ
ルフアイドで変性したエポキシ樹脂と、ポリアミ
ンとからなる2液混合型のエポキシ樹脂組成物
に、ポリリン酸塩とエポキシ樹脂組成物の対象物
に対する初期接着性を高めるための特殊な混和剤
と配合したものが、所期の目的を達成することを
見出し、本発明を完成した。 すなわち本発明は、分子末端にチオール基を有
する長鎖脂肪族ポリサルフアイド化合物とエポキ
シ樹脂とを反応させて得られるポリサルフアイド
変性エポキシ樹脂を主成分としたエポキシ樹脂成
分(A)と、第1級および/または第2級アミノ基を
1分子あたり平均1.5個以上を有する水難溶性の
液状ポリアミン化合物を主成分とした硬化剤成分
(B)とからなり、かつ成分(A)および成分(B)の少くと
も一方、ダイマー酸(C−1)、1分子中に少な
くとも2個のカルボン酸基を有する液状ゴム(C
−2)、ポリオキシアルキレンアルキルアリール
エーテルと脂肪族カルボン酸のアミン塩との混合
物(C−3)から選ばれた少くとも1種の混和剤
成分(C)およびポリリン酸塩(D)を含有させたことを
特徴とする2液混合型のエポキシ樹脂組成物、お
よびこれを水中で対象物に適用する海洋構造物の
防食施工方法である。 本発明について更に詳細に説明するに、本発明
に係る組成物の成分の一つであるポリサルフアイ
ド変性エポキシ樹脂の原料である分子末端にチオ
ール基を有する長鎖脂肪族ポリサルフアイド化合
物としては、例えば下記の如きものが用いられ
る。 (1) ホルムアルデヒド−ジクロルメチラール、ホ
ルムアルデヒド−β−ジクロルジエチルアセタ
ール、ホルムアルデヒド−クロルメチル−β−
クロルエチルアセタール、アセトアルデヒド−
ジクロル−メチラール、アセトアルデヒド−β
−ジクロルジエチルアセタールのような二塩素
化アセタール類と四硫化ナトリウムのような多
硫化ナトリウム化合物の反応によつて得られる
ポリサルフアイド化合物 (2) 1,2−ジクロルエタン、1,2−ジクロル
プロパン、1,3−ジクロルプロパンのような
二塩素化パラフイン類と四硫化ナトリウムのよ
うな多硫化ナトリウム化合物の反応によつて得
られるポリサルフアイド化合物 (3) 1,1′−ジクロルジメチルエーテル、2,
2′−ジクロルジエチルエーテル、1−クロルメ
チル−2−クロルエチルエーテルのような二塩
素化エーテル類と四硫化ナトリウムのような多
硫化ナトリウム化合物の反応によつて得られる
ポリサルフアイド化合物 (4) ブタジエン、イソプレンのようなジオレフイ
ン類とエチレンジチオグリコール、プロピレン
ジチオグリコールのようなジメルカプタン化合
物の反応によつて得られるポリサルフアイド化
合物 (5) ジメルカプタン化合物の酸化によつて得られ
るポリサルフアイド化合物 (6) このようにして得られるポリサルフアイド化
合物の混合物あるいは共反応によつて得られる
ポリサルフアイド化合物 ポリサルフアイド化合物の分子量は300〜
20000、特に400〜10000の範囲にあることが好ま
しい。 ポリサルフアイド変性エポキシ樹脂のもう一方
の原料であるエポキシ樹脂として、通常は1分子
あたり1.7個以上のエポキシ基を有するポリエポ
キシドが用いられる。例えば、ビスフエノールA
やビスフエノールFなどのビスフエノール類とエ
ピクロルヒドリンから得られるエポキシ樹脂、水
添ビスフエノールAなどの水添ビスフエノール類
とエピクロルヒドリンから得られるエポキシ樹脂
などが好ましい例として挙げられる。その他の有
用なポリエポキシドとしては、(1)ノボラツク樹脂
やそれと類似のポリフエノール類のポリグリシジ
ルエーテル、(2)エチレングリコール、プロピレン
グリコール、ジエチレングリコール、グリセリン
などの多価アルコールのポリグリシジルエーテ
ル、(3)フタル酸や水添フタル酸のようなジカルボ
ン酸のグリシジルエステル、(4)グリシジルアクリ
レート、グリシジルメタアクリレートのようなエ
ポキシ基を有する(メタ)アクリル酸誘導体類の
共重合体、(5)ポリブタジエン等ジオレフイン重合
体のエポキシ化物などが挙げられる。これらのエ
ポキシ樹脂は2種以上混合して使用してもよい。
これらのエポキシ樹脂の中でも、特に粘度が1000
ポイズ以下の室温で液状のものが好ましいが、室
温で固型状のものであつても、反応性ないしは非
反応性の稀釈剤に溶解して室温において流動状態
で取扱えるものならば何らさしつかえない。 分子末端にチオール基を有する長鎖脂肪族ポリ
サルフアイド化合物によるエポキシ樹脂の変性反
応は、無触媒または触媒添加のもとに、両者の混
合物を常温〜180℃の温度、好ましくは50〜150℃
に加温して撹拌することにより容易に達成され
る。触媒としては、3級アミン、4級アミン塩、
イミダゾール化合物、リン酸または亜リン酸エス
テル、アルカリ金属、炭酸アルカリ、ルイス酸等
の化合物が使用される。 変性反応に際してのポリサルフアイド化合物と
エポキシ樹脂の混合比率は、チオール基/エポキ
シ基の比が0.05〜0.95、好ましくは0.1〜0.8の範
囲であることが望ましい。0.95を超えると反応物
は固化またはゲル化してしまい、エポキシ基の数
が著しく少ないポリサルフアイド変性エポキシ樹
脂となる。このような変性物をエポキシ成分とす
る樹脂組成物は、水中で施工した場合に十分な硬
化が困難である。また混合比率が0.05未満では、
必要な柔軟性を得ることができない。最終的なチ
オール成分量がこの範囲内であれば、ポリサルフ
アイド変性エポキシ樹脂に未変性エポキシ樹脂を
混合使用することもきる。さらに所望ならばウレ
タン変性エポキシ樹脂やシリコン変性エポキシ樹
脂等を混合使用することもできる。 本発明でいう第1級および/または第2級アミ
ノ基を1分子あたり平均1.5個以上有する水難溶
性の液状ポリアミン化合物(B)とは、水に対する溶
解度が常温で3g以下(水100c.c.あたり)のもの
で使えば水分子と置換性のあるフエニレンジアミ
ン、m−トリレンジアミン等の芳香族ポリアミ
ン、ハイカーATBN(商品名、宇部興産社製品)
で代表されるような両末端ジアミンである各種液
状ゴムなどのエポキシ樹脂用硬化剤類があげられ
る。また、上記に例示したポリアミン化合物及び
水易溶性のエチレンジアミン、ジエチレントリア
ミン、トリエチレンテトラミン、テトラエチレン
ペンタミン、テトラメチレンジアミン、ヘキサメ
チレンジアミン、ジブチルアミノプロピルアミ
ン、ビス−(ヘキサメチレン)トリアミン等のポ
リアルキレンポリアミン、m−キシレンジアミン
のように芳香環を有する脂肪族ポリアミンとブチ
ルグリシジルエーテル、フエニルグリシジルエー
テルのようなモノエポキシ化合物ビスフエノール
型エポキシ樹脂のようなジ〜ポリエポキシ化合物
との反応によつて生成されるアミンアダクトも有
用な水難溶性ポリアミン化合物である。 なお、上述のポリアミン化合物中にはモノアミ
ン化合物が一部含まれていてもよい。例えば芳香
族ジアミンをアクリル酸、メタクリル酸、リノー
ル酸、リシノール酸等の不飽和モノカルボン酸で
一部アミド化したものも用いられる。さらに常温
硬化用硬化剤として公知の脂肪族ポリアミンや脂
環式ポリアミン、さらには3級アミンに代表され
る各種硬化促進剤も、水難溶性を損わない範囲で
併用することができる。硬化剤成分(B)は、1級ま
たは2級アミノ基を有するアミン化合物が、1分
子当り平均して1.5個以上のこれらのアミノ基を
有していればよい。 水難溶性ポリアミン化合物または水難溶性ポリ
アミン化合物と上述のような他のエポキシ樹脂用
硬化剤等とからなる硬化剤成分(B)は、ポリサルフ
アイド変性エポキシ樹脂を主成分としたエポキシ
樹脂成分(A)のエポキシ基1当量あたり、アミン化
合物のアミノ基を活性水素が通常0.5〜2.5当量、
好ましくは0.8〜1.5当量となる範囲で使用する。
使用量が0.5当量未満では、組成物が十分硬化せ
ず、所期の目的を達成できない。また、2.5当量
をこえると一応硬化した状態にはなるが、硬化物
はきわめてもろく、機械的物性が著しく低いもの
となり、かつ吸水性も大きくなり不都合を生じ
る。 本発明に係る組成物の混和剤成分であるダイマ
ー酸(C−1)、一分子中に少なくとも2個のカ
ルボン酸基を有する液状ゴム(C−2)またはポ
リオキシアルキレンアルキルアリールエーテルと
樹脂カルボン酸のアミン塩との混合物(C−3)
は、海洋構造物素地に対する初期接着性を高め
て、波浪の剥離力に対する抵抗性を高める目的で
配合するものである。ダイマー酸(C−1)はリ
ノール酸またはリノレイン酸をデイールスアルダ
ー反応により二量化して得られる炭素数36の化合
物であり、リノール酸、リノレイン酸含有量の高
いトール油脂肪酸などの不飽和脂肪酸の重合させ
た、炭素数36のダイマー酸を主成分として含む重
合脂肪酸も使用できる。一分子中に2個以上のカ
ルボン酸基を有する液状ゴム(C−2)として
は、ブタジエン、イソプレン、クロロプレン等の
ジエン化合物のホモポリマー、またはスチレン、
アクリロニトリル等のジエン化合物と共重合可能
なモノマーを共重合したコポリマーの分子内また
は分子末端にカルボン酸基を2個以上有するもの
で常温で液状であれば、どのようなものでも使用
できるが、CTB(カルボン酸末端ポリブタジエ
ン)、CTBN(カルボン酸末端ブタジエン−アク
リロニトリルコポリマー)と称されるものが好ま
しく使用される。ポリオキシアルキレンアルキル
アリールエーテルと脂肪族カルボン酸のアミン塩
との混合物(C−3−としては、 一般式 (式中Rは炭素数1〜12のアルキル基を表わ
し、m、nは0または1以上の整数数でm、nは
同時に0ではない) で表わされるポリオキシアルキレンアルキルアリ
ールエーテルと、 一般式 (式中、R1、R2は水素原子または炭素数1〜
12のアルキル基、R3は炭素数1〜24のアルキル
基を表わし、Xは炭素数1〜20の飽和モノカルボ
ン酸を表わす。) で表わされる脂肪族カルボン酸のアミン塩との混
合物が用いられる。このものは例えば機械・金属
洗浄剤、防錆油添加剤として市販されている。代
表的な市販品としては、吉村油化学(株)製のクリン
ク(商品名)があげられる。ポリオキシアルキレ
ンアルキルアリールエーテルとカルボン酸のアミ
ン塩との混合比率はモル比で通常1:9〜9:1
の範囲であり、1:1程度が好ましい。また分子
量は通常200〜1000の範囲である。 これらの混和剤成分は、単独で用いてもよく、
また混合して用いてもよい。その使用量は、エポ
キシ樹脂成分(A)と硬化剤成分(B)との合計量あたり
重量で、0.5〜20%の範囲、好ましくは1〜10%
の範囲である。使用量が0.5%未満では海洋構造
物に対する初期接着力が低すぎて、波浪の剥離力
に対する抵抗性が十分発揮されない。また使用量
が20%を越えると、初期接着力は出るが、エポキ
シ樹脂組成物の硬化性が低くなり、硬化物の物性
も劣つたものとなり、本来の目的である海洋構造
物の防食効果が十分に発揮できない。 ポリリン酸塩(D)としてはリン酸塩を加熱脱水し
て生成されるトリポリリン酸塩、トリポリリン酸
一水素塩、トリポリリン酸二水素塩等の脱水リン
酸塩があげられ、好ましくはアルミニウム塩また
は亜鉛塩が用いられる。所望ならばこれらを併用
してもよい。ポリリン酸塩は防錆顔料としてエポ
キシ樹脂組成物に含有させたもので、従来から使
用されている鉛系、鉄系、クロム系等のものが比
べて、無毒性であり、防食性に優れるという特徴
があり、かつ施工時に水に溶けにくく、また、も
し溶け出した場合にも、環境を汚染することがな
い。 ポリリン酸塩の使用量は、エポキシ樹脂成分(A)
と硬化剤成分(B)の合計量あたり重量で0.5〜20%
の範囲、好ましくは1〜10%の範囲で使用するこ
とが望しい。使用量が0.5%未満では防錆性能が
十分発現しない。また20%より多く使用した場合
には、防錆力はきわめて高くなるが、硬化後のエ
ポキシ樹脂組成物の物性が低下するため好ましく
ない。 本発明のエポキシ樹脂組成物は前記のA〜D成
分を主要成分としているが、これらの成分以外に
も所望により反応性稀釈剤および非反応性稀釈剤
の名称で知られる種々の有機化合物、シリカ、ア
ルミナ、タルク、炭酸カルシウム、アスベスト、
酸化チタン、カーボンブラツク、ガラスビーズ、
ガラス短繊維、金属粉等の充填剤、補強剤、体質
顔料、着色染顔料、揺変剤、沈澱防止剤、タレ防
止剤、シランカツプリング剤、チタネートカツプ
リング剤、ジルコニウムカツプリング剤、キレー
ト剤、消泡剤、色分れ防止剤、熱可塑性樹脂、熱
硬化性樹脂、ゴムなどを配合することが可能であ
る。 本発明に係るエポキシ樹脂組成物は、エポキシ
樹脂成分(A)と硬化剤成分(B)とよりなる2液混合型
である。混和剤成分(C)およびポリリン酸塩(D)は、
適宜いずれか一方の成分ないしは双方の成分に混
合しておくことができる。もちろん所望ならば各
成分を使用時に混合してもよい。 かくして得られる本発明に係るエポキシ樹脂組
成物は、刷毛またはローラー、コテ、アプリケー
ターにより水中で被塗物に塗装する方法、ゴムや
プラスチツク材料よりなり、被防食面の形状に即
応した形状またはシート状に成形された防食材に
塗布し、当該防食材を水中において被防食面に接
着する方法、各種不織布、フアブリツク類に含浸
せしめて被防食面に巻き付ける方法、被防食面を
FRPやゴム、プラスチツクでつつみ込み被防食
面との間隙に注入する方法、いわゆるウエツトハ
ンド方式でパツチングする方法等種々の方法で施
工可能であり、水流や水圧のある水中や湿潤条件
下でも塗料、接着剤、シーリング材・ライニング
材などの材料として有効に利用できる利点があ
る。もちろん、陸上構造物のような非湿潤条件下
でもきわめて良好な作業性、密着性を示す防食材
料とし利用可能である。 本発明に係るエポキシ樹脂組成物は、水中で使
用する場合には、環境を汚染しないように実質的
に有機溶剤で希釈することなしに用いられるが、
陸上で使用する場合には適当な溶剤で希釈して更
に取扱い性のすぐれたものとして用いることもき
る。 以下に実施例および比較的をあげて本発明をさ
らに具体的に説明するが、本発明はこれらの実施
例のみに限定されるものではない。 なお実施例中の「部」または「%」は特にこと
わらない限りは重量基準によるものである。 実施例 1 ビスフエノールAのジグリシジルエーテル型エ
ポキシ樹脂(エポキシ当量185、粘度13000cps/
25℃、大日本色材工業(株)製プリエポーPE−10)
54部、ブチルグリシジルエーテル6部、下記構造
式を有するチオール基末端ポリサルフアイド HS−CH2−CH2−O−CH2−O−CH2−CH2
(―S−S −CH2−CH2−O−CH2−O−CH2−CH2)―
5SH (平均分子量1000、粘度1100cps/25℃、SH含
有率6.5%、東レチオコール(株)製チオコールLP−
3)40部を反応釜に仕込み、90℃まで昇温し、撹
拌しながら2,4,6−トリ−(ジメチルアミノ
メチル)フエノール0.03部を添加した。反応温度
を90℃に保持し、撹拌しながら3時間反応を続け
た結果、粘度170ポイズ/25℃エポキシ当量452の
黄褐色透明液状のポリサルフアイド変性エポキシ
樹脂を得た。 ここで得られたポリサルフアイド変性エポキシ
樹脂に、第1表の主剤成分の欄に示す配合割合で
その他の成分を配合し、3本ロールミルで混練混
合して主剤を調整した。同様に第1表の硬化剤成
分の欄に示す配合により、3本ロールミルで硬化
剤を調整した。この主剤、硬化剤を所定の重量比
で十分混合し、海水中でサンデイングした鋼板上
に、海水中でアプリケーターにより150μの膜厚
で塗布し、海水中に浸漬したまま、23℃で7日間
硬化させた。試験方法は、 (1) 耐パンチング性 海水中で鋼板に塗布した直後に、海水の液面
近くをデイゾルバーで高速撹拌して、強い水流
と飛沫を発生させ、鋼板からの塗膜のはがれの
有無(すなわち、初期接着性の良否)を観察し
た。 (2) クロスハツチ耐発錆性 硬化後の塗膜にカミソリの刃で鋼板面にまで
達するX字状の切り込みを入れ、40℃に加温し
た新鮮な海水中に1ケ月浸漬し、錆の発生およ
びX字状切り込み部からの錆の進行状況の観察
した。 (3) 接着力 海水中で軟鋼板同士を接着して、そのまま2
℃、7日間硬化したのち、5mm/分の試験速で
接着力を試験した。 (4) 引張破断伸度、シヨアーD硬度 海水中で注型、硬化(23℃、7日間)したダ
ンベル型試験片を使用して試験した。試験速度
は5mm/分。 (5) その他の試験は塗料の一般的な試験方法に準
じた。 比較例 1〜3 実施例1において、ポリサルフアイド変性エポ
キシ樹脂を、未変性エポキシ樹脂またはウレタン
変性エポキシ樹脂に、替えたほかは実施例と同じ
にした配合、および、ポリオキシアルキレンアル
キルアリールエーテルと脂肪族カルボン酸のアミ
ン塩混合物を除いて、親水性ポリアミドアミンを
使用した配合を実施例と同様の方法作成し、試験
を行つた。試験結果を第1表に示す。
<Industrial Field of Application> The present invention relates to a two-component mixed epoxy resin composition and an anticorrosive construction method using the same, and more specifically, it can be applied underwater or under humid conditions, particularly in the underwater parts, tidal zones, and splash zones of various marine structures. A two-component mixed type epoxy resin that can be used in underwater construction with excellent adhesiveness, flexibility, and corrosion resistance, and can be effectively used as paints, adhesives, sealants, etc. even under water flow and water pressure conditions. The present invention relates to a composition. <Prior Art> In recent years, development and utilization of marine resources, marine energy, and marine space have become active, and many marine structures such as port facilities, seawall facilities, marine bridges, and offshore platforms have been constructed. In general, marine structures are exposed to significantly more severe corrosive environments than land-based structures, and moreover, it is difficult to carry out regular maintenance and management, so there is a need for a corrosion protection system that can guarantee long-term corrosion protection performance. On the other hand, epoxy resins have excellent adhesive properties, water resistance, chemical resistance, mechanical properties, electrical properties, etc., so they have been widely used as various paints, adhesives, sealants, lining materials, etc. Particularly in the field of civil engineering and construction, humid conditions in the presence of water are common working conditions, so materials that can be used even under such conditions are desired, and various underwater-curable epoxy resin compositions have been developed. It's here. However, since such underwater curable epoxy resin compositions generally use a hydrophilic underwater curable curing agent, there is a problem of environmental pollution in that the curing agent dissolves into water. In addition, such underwater curable epoxy resin compositions have relatively good workability and adhesive properties in still water or under simply humid conditions, but they can be used in underwater parts of marine structures, fluctuations in water level, and tidal conditions. Satisfactory work cannot be carried out in places where there is water flow or water pressure, such as tidal areas or splash zones exposed to seawater spray, and the product may peel off due to hydraulic force during work or curing. However, it had the disadvantage that it could leak out or partially melt and fall apart. Furthermore, even if the construction is well-done, the hardened film is hard and cannot keep up with the distortion and deformation of the structure caused by impact from waves, floating objects, collisions with ships, etc., and for a very short period of time. Problems such as scratching, peeling, and rusting occur over time. For this reason, various attempts have been made to impart flexibility to resin compositions. For example, addition of various plasticity and flexibility imparting agents, mixing of flexible plastics or rubbers, monomers and prepolymers having highly reactive functional groups such as hydroxyl groups, carboxylic acid groups, and isocyanate groups. A method has been proposed in which a modified epoxy resin obtained by reacting an epoxy resin is used alone or in combination with an unmodified epoxy resin. However, these methods do not provide sufficient flexibility. Another problem is that flexibility gradually decreases over time. Furthermore, imparting flexibility through modification causes problems such as the viscosity of the epoxy resin becoming significantly high, resulting in poor workability and decreased water resistance. Furthermore, in addition to the sudden accidents mentioned above, corrosion and deterioration caused by seawater itself and pollutants (acids, alkalis, salts, etc.) in industrial wastewater, domestic wastewater, etc. that are discharged into seawater over a long period of time. There are also problems, and the resin composition is required to have high anticorrosion performance. <Problems to be Solved by the Present Invention> As is clear from the above, what is particularly desired today is a structure that has good workability for marine structures, especially workability in the ocean, and a mechanical construction. This is an epoxy resin composition that provides a coating film with high strength and corrosion resistance. The present inventor has developed a two-component mixed epoxy resin composition consisting of an epoxy resin modified with a polysulfide having a thiol group at the end and a polyamine, and the initial adhesion of the polyphosphate and the epoxy resin composition to the object. The present invention was completed by discovering that the desired objective could be achieved by blending with a special admixture for increasing the temperature. That is, the present invention provides an epoxy resin component (A) mainly composed of a polysulfide-modified epoxy resin obtained by reacting a long-chain aliphatic polysulfide compound having a thiol group at the molecular end with an epoxy resin, and a primary and/or Or a curing agent component whose main component is a poorly water-soluble liquid polyamine compound having an average of 1.5 or more secondary amino groups per molecule.
(B), and at least one of component (A) and component (B), dimer acid (C-1), liquid rubber (C-1) having at least two carboxylic acid groups in one molecule.
-2), contains at least one admixture component (C) selected from mixtures of polyoxyalkylene alkylaryl ether and amine salts of aliphatic carboxylic acids (C-3), and polyphosphate (D) The present invention discloses a two-component mixed epoxy resin composition characterized by the following characteristics: and a method for corrosion-proofing marine structures in which the composition is applied to an object underwater. To explain the present invention in more detail, examples of the long-chain aliphatic polysulfide compound having a thiol group at the molecular end, which is a raw material for the polysulfide-modified epoxy resin that is one of the components of the composition according to the present invention, include the following: Something like this is used. (1) Formaldehyde-dichloromethylal, formaldehyde-β-dichlorodiethyl acetal, formaldehyde-chloromethyl-β-
Chlorethyl acetal, acetaldehyde
Dichloro-methylal, acetaldehyde-β
- Polysulfide compounds obtained by the reaction of dichlorinated acetals such as dichlorodiethyl acetal and polysulfide sodium compounds such as sodium tetrasulfide (2) 1,2-dichloroethane, 1,2-dichloropropane, Polysulfide compounds obtained by the reaction of dichlorinated paraffins such as 1,3-dichloropropane and polysulfide sodium compounds such as sodium tetrasulfide (3) 1,1'-dichlorodimethyl ether, 2,
Polysulfide compounds obtained by the reaction of dichlorinated ethers such as 2'-dichlorodiethyl ether and 1-chloromethyl-2-chloroethyl ether with polysulfide sodium compounds such as sodium tetrasulfide (4) Butadiene, Polysulfide compounds obtained by the reaction of diolefins such as isoprene with dimercaptan compounds such as ethylene dithioglycol and propylene dithioglycol (5) Polysulfide compounds obtained by oxidation of dimercaptan compounds (6) A mixture of polysulfide compounds obtained by or a polysulfide compound obtained by co-reaction.The molecular weight of the polysulfide compound is 300 to 300.
20,000, particularly preferably in the range of 400 to 10,000. As the epoxy resin, which is the other raw material for the polysulfide-modified epoxy resin, polyepoxide having 1.7 or more epoxy groups per molecule is usually used. For example, bisphenol A
Preferred examples include epoxy resins obtained from bisphenols such as and bisphenol F and epichlorohydrin, and epoxy resins obtained from hydrogenated bisphenols such as hydrogenated bisphenol A and epichlorohydrin. Other useful polyepoxides include (1) polyglycidyl ethers of novolac resins and similar polyphenols, (2) polyglycidyl ethers of polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, and glycerin; (3) Glycidyl esters of dicarboxylic acids such as phthalic acid and hydrogenated phthalic acid; (4) copolymers of (meth)acrylic acid derivatives having epoxy groups such as glycidyl acrylate and glycidyl methacrylate; (5) diolefins such as polybutadiene. Examples include epoxidized polymers. Two or more of these epoxy resins may be used in combination.
Among these epoxy resins, especially those with a viscosity of 1000
It is preferable to use a liquid at room temperature below Poise, but there is no problem even if it is solid at room temperature as long as it can be dissolved in a reactive or non-reactive diluent and handled in a fluid state at room temperature. . The modification reaction of an epoxy resin with a long-chain aliphatic polysulfide compound having a thiol group at the molecular end is carried out by heating a mixture of the two at a temperature of room temperature to 180°C, preferably 50 to 150°C, without a catalyst or with the addition of a catalyst.
This can be easily achieved by heating and stirring. As a catalyst, tertiary amine, quaternary amine salt,
Compounds such as imidazole compounds, phosphoric acid or phosphite esters, alkali metals, alkali carbonates, Lewis acids, etc. are used. As for the mixing ratio of the polysulfide compound and the epoxy resin during the modification reaction, it is desirable that the ratio of thiol group/epoxy group is in the range of 0.05 to 0.95, preferably 0.1 to 0.8. If it exceeds 0.95, the reactant will solidify or gel, resulting in a polysulfide-modified epoxy resin with significantly fewer epoxy groups. Resin compositions containing such modified products as epoxy components are difficult to cure sufficiently when applied in water. Also, if the mixing ratio is less than 0.05,
You can't get the flexibility you need. As long as the final amount of thiol component is within this range, an unmodified epoxy resin can be used in combination with a polysulfide modified epoxy resin. Furthermore, if desired, urethane-modified epoxy resins, silicone-modified epoxy resins, etc. can be mixed and used. In the present invention, the poorly water-soluble liquid polyamine compound (B) having an average of 1.5 or more primary and/or secondary amino groups per molecule has a solubility in water of 3 g or less at room temperature (100 c.c. of water). If used, aromatic polyamines such as phenylene diamine and m-tolylene diamine, which have the ability to replace water molecules, Hiker ATBN (trade name, Ube Industries, Ltd. product)
Examples include curing agents for epoxy resins such as various liquid rubbers that have diamines at both ends, as typified by: In addition, the polyamine compounds listed above and easily water-soluble polyalkylenes such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, tetramethylenediamine, hexamethylenediamine, dibutylaminopropylamine, bis-(hexamethylene)triamine, etc. By reacting an aliphatic polyamine having an aromatic ring such as polyamine or m-xylene diamine with a di-polyepoxy compound such as a monoepoxy compound such as butyl glycidyl ether or phenyl glycidyl ether or a bisphenol type epoxy resin. The amine adduct produced is also a useful poorly water-soluble polyamine compound. In addition, a monoamine compound may be partially contained in the above-mentioned polyamine compound. For example, aromatic diamines partially amidated with unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, linoleic acid, and ricinoleic acid may also be used. Further, various curing accelerators such as aliphatic polyamines, alicyclic polyamines, and tertiary amines, which are known as curing agents for room temperature curing, can be used in combination as long as they do not impair the poor water solubility. The curing agent component (B) may be an amine compound having a primary or secondary amino group, as long as it has an average of 1.5 or more of these amino groups per molecule. The curing agent component (B), which is composed of a poorly water-soluble polyamine compound or a poorly water-soluble polyamine compound and other curing agents for epoxy resins as mentioned above, is an epoxy resin component of the epoxy resin component (A) whose main component is a polysulfide-modified epoxy resin. Usually 0.5 to 2.5 equivalents of active hydrogen are added to the amino group of the amine compound per equivalent of the group.
It is preferably used in a range of 0.8 to 1.5 equivalents.
If the amount used is less than 0.5 equivalent, the composition will not be sufficiently cured and the intended purpose will not be achieved. On the other hand, if the amount exceeds 2.5 equivalents, the cured product will be in a somewhat cured state, but the cured product will be extremely brittle, have extremely low mechanical properties, and have high water absorption, causing problems. Dimer acid (C-1), which is an admixture component of the composition according to the present invention, liquid rubber (C-2) having at least two carboxylic acid groups in one molecule, or polyoxyalkylene alkylaryl ether and resin carboxyl Mixture of acid with amine salt (C-3)
is blended for the purpose of increasing initial adhesion to the substrate of marine structures and increasing resistance to peeling force of waves. Dimer acid (C-1) is a compound with 36 carbon atoms obtained by dimerizing linoleic acid or linoleic acid by Diels-Alder reaction, and is a compound with 36 carbon atoms obtained by dimerizing linoleic acid or linoleic acid. It is also possible to use a polymerized fatty acid containing as a main component a dimer acid having 36 carbon atoms. The liquid rubber (C-2) having two or more carboxylic acid groups in one molecule is a homopolymer of diene compounds such as butadiene, isoprene, chloroprene, or styrene,
Any copolymer made by copolymerizing a monomer copolymerizable with a diene compound such as acrylonitrile and having two or more carboxylic acid groups in the molecule or at the end of the molecule and is liquid at room temperature can be used, but CTB (carboxylic acid-terminated polybutadiene) and CTBN (carboxylic acid-terminated butadiene-acrylonitrile copolymer) are preferably used. A mixture of polyoxyalkylene alkylaryl ether and amine salt of aliphatic carboxylic acid (C-3- is represented by the general formula (In the formula, R represents an alkyl group having 1 to 12 carbon atoms, m and n are 0 or integer numbers of 1 or more, and m and n are not 0 at the same time) and a polyoxyalkylene alkylaryl ether represented by the general formula (In the formula, R 1 and R 2 are hydrogen atoms or have 1 to 1 carbon atoms.
12 alkyl groups, R 3 represents an alkyl group having 1 to 24 carbon atoms, and X represents a saturated monocarboxylic acid having 1 to 20 carbon atoms. ) A mixture of an aliphatic carboxylic acid and an amine salt is used. This product is commercially available as, for example, a machine/metal cleaning agent or an antirust oil additive. A typical commercially available product is Clink (trade name) manufactured by Yoshimura Yukagaku Co., Ltd. The mixing ratio of polyoxyalkylene alkylaryl ether and carboxylic acid amine salt is usually 1:9 to 9:1 in molar ratio.
The ratio is preferably about 1:1. Moreover, the molecular weight is usually in the range of 200 to 1000. These admixture components may be used alone,
Alternatively, they may be used in combination. The amount used is in the range of 0.5 to 20%, preferably 1 to 10% by weight per total amount of epoxy resin component (A) and curing agent component (B).
is within the range of If the amount used is less than 0.5%, the initial adhesive strength to marine structures will be too low, and resistance to the peeling force of waves will not be sufficiently exhibited. If the amount used exceeds 20%, the initial adhesive strength will be obtained, but the curability of the epoxy resin composition will be low, and the physical properties of the cured product will be poor, and the original purpose of preventing corrosion of marine structures will not be achieved. I can't perform to my full potential. Examples of the polyphosphate (D) include dehydrated phosphates such as tripolyphosphate, monohydrogen tripolyphosphate, and dihydrogen tripolyphosphate produced by heating and dehydrating phosphate, and preferably aluminum salt or zinc salt. Salt is used. These may be used in combination if desired. Polyphosphate is contained in epoxy resin compositions as a rust-preventing pigment, and is said to be non-toxic and superior in corrosion resistance compared to conventionally used lead-, iron-, and chromium-based pigments. It is unique in that it is difficult to dissolve in water during construction, and even if it does dissolve, it will not pollute the environment. The amount of polyphosphate used is the epoxy resin component (A)
0.5-20% by weight per total amount of hardener component (B)
It is desirable to use it in a range of 1 to 10%, preferably in a range of 1 to 10%. If the amount used is less than 0.5%, sufficient rust prevention performance will not be achieved. If the amount is more than 20%, the anticorrosive power will be extremely high, but the physical properties of the epoxy resin composition after curing will deteriorate, which is not preferable. The epoxy resin composition of the present invention has the above-mentioned components A to D as main components, but in addition to these components, various organic compounds known as reactive diluents and non-reactive diluents, silica, etc. , alumina, talc, calcium carbonate, asbestos,
titanium oxide, carbon black, glass beads,
Fillers such as short glass fibers and metal powders, reinforcing agents, extender pigments, colored dyes and pigments, thixotropic agents, anti-settling agents, anti-sagging agents, silane coupling agents, titanate coupling agents, zirconium coupling agents, chelating agents , antifoaming agents, color separation inhibitors, thermoplastic resins, thermosetting resins, rubbers, etc. can be blended. The epoxy resin composition according to the present invention is a two-component mixture consisting of an epoxy resin component (A) and a curing agent component (B). The admixture component (C) and the polyphosphate (D) are
It can be mixed into either one component or both components as appropriate. Of course, the components may be mixed at the time of use if desired. The epoxy resin composition according to the present invention obtained in this way can be applied to an object in water using a brush, roller, trowel, or applicator, or made of rubber or plastic material, and can be formed into a shape or sheet that immediately corresponds to the shape of the surface to be protected. A method of applying the anticorrosive material to a corrosion-protective material molded into a material and adhering it to the surface to be protected in water, a method of impregnating various non-woven fabrics or fabrics and wrapping it around the surface to be
It can be applied using a variety of methods, such as wrapping it with FRP, rubber, or plastic and injecting it into the gap between the surface to be protected and the so-called wet hand method. It has the advantage that it can be effectively used as a material for agents, sealants, lining materials, etc. Of course, it can be used as an anticorrosion material that exhibits extremely good workability and adhesion even under non-wet conditions such as in land structures. When the epoxy resin composition according to the present invention is used in water, it is used substantially without diluting with an organic solvent so as not to pollute the environment.
When used on land, it can be diluted with an appropriate solvent to make it easier to handle. EXAMPLES The present invention will be explained in more detail with reference to Examples and Comparisons below, but the present invention is not limited to these Examples. Note that "parts" and "%" in the examples are based on weight unless otherwise specified. Example 1 Diglycidyl ether type epoxy resin of bisphenol A (epoxy equivalent: 185, viscosity: 13000 cps/
25℃, Dainippon Shikizai Kogyo Co., Ltd. Priepo PE-10)
54 parts, butyl glycidyl ether 6 parts, thiol group-terminated polysulfide having the following structural formula HS- CH2 - CH2 -O-CH2 - O- CH2 - CH2
(-S-S -CH 2 -CH 2 -O-CH 2 -O-CH 2 -CH 2 )-
5 SH (average molecular weight 1000, viscosity 1100 cps/25℃, SH content 6.5%, Thiokol LP- manufactured by Toray Thiokol Co., Ltd.)
3) 40 parts were charged into a reaction vessel, the temperature was raised to 90°C, and 0.03 part of 2,4,6-tri-(dimethylaminomethyl)phenol was added while stirring. The reaction temperature was maintained at 90° C. and the reaction was continued for 3 hours with stirring to obtain a polysulfide-modified epoxy resin in the form of a yellow-brown transparent liquid with a viscosity of 170 poise/25° C. and an epoxy equivalent of 452. The polysulfide-modified epoxy resin obtained here was blended with other components in the proportions shown in the main component column of Table 1, and kneaded and mixed in a three-roll mill to prepare a main component. Similarly, a curing agent was prepared using a three-roll mill according to the formulation shown in the column of curing agent components in Table 1. The main agent and curing agent are thoroughly mixed in a predetermined weight ratio, applied to a steel plate that has been sanded in seawater to a film thickness of 150μ using an applicator, and cured for 7 days at 23°C while immersed in seawater. I let it happen. The test method is as follows: (1) Punching resistance Immediately after applying the coating to a steel plate in seawater, the seawater is stirred at high speed near the surface using a dissolver to generate strong water currents and splashes, and the presence or absence of peeling of the coating film from the steel plate is determined. (that is, the quality of initial adhesion) was observed. (2) Crosshatch rust resistance After hardening, an X-shaped cut is made in the coating film with a razor blade that reaches all the way to the steel plate surface, and the film is immersed in fresh seawater heated to 40°C for one month to prevent rust from forming. The progress of rust from the X-shaped notch was also observed. (3) Adhesive strength Glue mild steel plates together in seawater and
C. After curing for 7 days, adhesion was tested at a test speed of 5 mm/min. (4) Tensile elongation at break, Shore D hardness Tests were conducted using dumbbell-shaped specimens that were cast in seawater and cured (23°C, 7 days). The test speed was 5 mm/min. (5) Other tests were conducted in accordance with general test methods for paints. Comparative Examples 1 to 3 The same formulation as in Example 1 except that the polysulfide-modified epoxy resin was replaced with an unmodified epoxy resin or a urethane-modified epoxy resin, and polyoxyalkylene alkylaryl ether and aliphatic A formulation using hydrophilic polyamide amine was prepared and tested in the same manner as in the example except for the amine salt mixture of carboxylic acid. The test results are shown in Table 1.

【表】【table】

【表】 実施例2〜4、比較例4〜5 実施例1で合成したポリサルフアイド変性エポ
キシ樹脂を用いて、実施例1と同様の方法により
第2表の主剤成分の欄に示す配合の主剤と硬化剤
成分に示す配合の硬化剤を調整し、実施例1と同
様の試験を行つた。 実施例 5 実施例1〜3の組成物、および比較例3〜5の
組成物を用いて、港湾施設の老朽鋼矢板の再防食
施工試験を行つた。水中サンドブラストにより鋼
矢板に付着した海樓生物と錆を除去した面に、フ
レーム処理したポリオレフイン系樹脂シートに陸
上で組成物で塗布したシートを海中ではり付た結
果、比較例の組成物は硬化するまでにシートが剥
げ落ちた。実施例の組成物では良好な接着が達成
され、3ケ経過後も何ら問題なかつた。
[Table] Examples 2 to 4, Comparative Examples 4 to 5 Using the polysulfide-modified epoxy resin synthesized in Example 1, a base resin having the composition shown in the base component column of Table 2 was prepared in the same manner as in Example 1. A curing agent having the composition shown in the curing agent component was prepared, and the same test as in Example 1 was conducted. Example 5 Using the compositions of Examples 1 to 3 and the compositions of Comparative Examples 3 to 5, a re-corrosion prevention construction test was conducted on aged steel sheet piles of port facilities. A frame-treated polyolefin resin sheet coated with the composition on land was attached underwater to the surface of the steel sheet pile from which marine organisms and rust had been removed by underwater sandblasting, and as a result, the composition of the comparative example hardened. By then the sheet had peeled off. Good adhesion was achieved with the compositions of the examples, and no problems were observed even after 3 times.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 分子末端にチオール基を有する長鎖脂肪族ポ
リサルフアイド化合物とエポキシ樹脂とを反応さ
せて得られるポリサルフアイド変性エポキシ樹脂
を主成分としたエポキシ樹脂成分(A)と、第1級お
よび/または第2級アミノ基を1分子あたり平均
1.5個以上を有する水難溶性の液状ポリアミン化
合物を主成分とした硬化剤成分(B)とからなり、か
つ成分(A)および成分(B)の少くとも一方に、ダイマ
ー酸(C−1)、1分子中に少なくとも2個のカ
ルボン酸基を有する液状ゴム(C−2)、ポリオ
キシアルキレンアルキルアリールエーテルと脂肪
族カルボン酸のアミン塩との混合物(C−3)か
ら選ばれた少くとも1種の混和剤成分(C)およびポ
リリン酸塩(D)を含有させたことを特徴とする2液
混合型のエポキシ樹脂組成物。 (2) ポリリン酸塩(D)が、ポリリン酸のアルミニウ
ムおよび/または亜鉛塩であることを特徴とする
特許請求の範囲第1項記載のエポキシ樹脂組成
物。 3 ポリサルフアイド変性エポキシ樹脂が、分子
量400〜10000のポリサルフアイド化合物とエポキ
シ樹脂とを、チオール基/エポキシ基の比を0.1
〜0.8として反応させることにより得られたもの
であることを特徴とする特許請求の範囲第1項ま
たは第2項に記載のエポキシ樹脂組成物。 4 エポキシ樹脂成分(A)のエポキシ基と、硬化剤
成分のアミノ基の活性水素との比(活性水素/エ
ポキシ基)が0.8〜1.5であることを特徴とする特
許請求の範囲第1項ないし第3項のいずれか1項
に記載のエポキシ樹脂組成物。 5 エポキシ樹脂成分(A)と硬化剤成分(B)の合計量
に対し、混和剤成分(C)およびポリリン酸塩(D)をそ
れぞれ1〜10%含有することを特徴とする特許請
求の範囲第1項ないし第4項のいずれか1項に記
載のエポキシ樹脂組成物。 6 分子末端にチオール基を有する長鎖脂肪族ポ
リサルフアイド化合物とエポキシ樹脂とを反応さ
せて得られるポリサルフアイド変性エポキシ樹脂
を主成分としたエポキシ樹脂成分(A)、第1級およ
び/または第2級アミノ基を1分子あたり平均
1.5個以上を有する水難溶性の液状ポリアミン化
合物またはその誘導体を主成分とした硬化剤成分
(B)、ダイマー酸(C−1)、1分子中に少くとも
2個のカルボン酸基を有する液状ゴム(C−2)、
ポリオキシアルキレンアルキルアリールエーテル
と脂肪族カルボン酸のアミン塩との混合物(C−
3)から選ばれた少くとも1種の混和剤成分(C)、
およびポリリン酸塩(D)から成る2液混合型のエポ
キシ樹脂組成物を水中で対象物に適用することを
特徴とする防食施工方法。 7 対象物が鋼製の海洋構造物であることを特徴
とする特許請求の範囲第6項記載の防食施工方
法。 8 エポキシ樹脂組成物が有機溶剤を実質的に含
有しないものであることを特徴とする特許請求の
範囲第6項または第7項記載の防食施工方法。
[Scope of Claims] 1. An epoxy resin component (A) whose main component is a polysulfide-modified epoxy resin obtained by reacting a long-chain aliphatic polysulfide compound having a thiol group at the end of the molecule with an epoxy resin; and/or secondary amino groups per molecule
and a hardening agent component (B) mainly composed of a poorly water-soluble liquid polyamine compound having 1.5 or more polyamines, and at least one of component (A) and component (B) contains dimer acid (C-1), At least one selected from a liquid rubber having at least two carboxylic acid groups in one molecule (C-2), a mixture of polyoxyalkylene alkylaryl ether and an amine salt of an aliphatic carboxylic acid (C-3) A two-component mixed epoxy resin composition characterized by containing a seed admixture component (C) and a polyphosphate (D). (2) The epoxy resin composition according to claim 1, wherein the polyphosphate (D) is an aluminum and/or zinc salt of polyphosphoric acid. 3 The polysulfide-modified epoxy resin consists of a polysulfide compound with a molecular weight of 400 to 10,000 and an epoxy resin with a thiol group/epoxy group ratio of 0.1.
2. The epoxy resin composition according to claim 1 or 2, which is obtained by reacting at a concentration of 0.8 to 0.8. 4 Claims 1 to 4, characterized in that the ratio of the epoxy group of the epoxy resin component (A) to the active hydrogen of the amino group of the curing agent component (active hydrogen/epoxy group) is 0.8 to 1.5. The epoxy resin composition according to any one of Item 3. 5 Claims characterized in that the admixture component (C) and polyphosphate (D) are each contained in an amount of 1 to 10% based on the total amount of the epoxy resin component (A) and the curing agent component (B). The epoxy resin composition according to any one of Items 1 to 4. 6 Epoxy resin component (A) mainly composed of a polysulfide-modified epoxy resin obtained by reacting a long-chain aliphatic polysulfide compound having a thiol group at the molecular end with an epoxy resin, primary and/or secondary amino Average group per molecule
A curing agent component whose main component is a poorly water-soluble liquid polyamine compound or its derivative having 1.5 or more polyamines.
(B), dimer acid (C-1), liquid rubber having at least two carboxylic acid groups in one molecule (C-2),
Mixture of polyoxyalkylene alkylaryl ether and amine salt of aliphatic carboxylic acid (C-
3) at least one admixture component (C) selected from
An anticorrosive construction method characterized by applying a two-component mixed epoxy resin composition consisting of a polyphosphate (D) and a polyphosphate (D) to an object in water. 7. The anticorrosion construction method according to claim 6, wherein the object is a steel marine structure. 8. The anticorrosion construction method according to claim 6 or 7, wherein the epoxy resin composition does not substantially contain an organic solvent.
JP117786A 1986-01-07 1986-01-07 Epoxy resin composition and its application for corrosion prevention Granted JPS62158714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP117786A JPS62158714A (en) 1986-01-07 1986-01-07 Epoxy resin composition and its application for corrosion prevention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP117786A JPS62158714A (en) 1986-01-07 1986-01-07 Epoxy resin composition and its application for corrosion prevention

Publications (2)

Publication Number Publication Date
JPS62158714A JPS62158714A (en) 1987-07-14
JPH0566404B2 true JPH0566404B2 (en) 1993-09-21

Family

ID=11494158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP117786A Granted JPS62158714A (en) 1986-01-07 1986-01-07 Epoxy resin composition and its application for corrosion prevention

Country Status (1)

Country Link
JP (1) JPS62158714A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613689B2 (en) * 1987-01-29 1994-02-23 東レチオコール株式会社 Adhesive for concrete
JPH0721126B2 (en) * 1987-12-08 1995-03-08 東レチオコール株式会社 Alcohol resistant container
JPH02284982A (en) * 1989-04-27 1990-11-22 Toray Chiokoole Kk Adhesive composition
JPH06102765B2 (en) * 1990-03-26 1994-12-14 新日鐵化学株式会社 Solvent-free coating composition
JPH07103353B2 (en) * 1990-05-22 1995-11-08 石油公団 Repair coating method for offshore steel structure
JP2004315569A (en) * 2003-04-11 2004-11-11 Hitachi Chem Co Ltd Solventless type paste for surface coating
US9080004B2 (en) 2010-10-07 2015-07-14 Prc-Desoto International, Inc. Diethylene glycol monomethyl ether resistant coating
CN102775947B (en) * 2012-06-29 2014-07-09 湖北强华路桥面层新型材料铺装工程有限公司 Pavement abrasion-resistant layer based on epoxy resin and method for preparing same

Also Published As

Publication number Publication date
JPS62158714A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
JP5005675B2 (en) High solid type anticorrosion paint composition
JP4790208B2 (en) Epoxy resin composition, anticorrosion film formed from the composition, base material with anticorrosion film coated with the anticorrosion film, and anticorrosion method for the base material
JP6632969B2 (en) Additive to resin composition for improving impact strength and flexibility
CN101880505B (en) Thick film type antirust coating and preparation method thereof
US3427190A (en) Process for forming a corrosion resistant epoxy resin coating on a metal surface
KR102180889B1 (en) Coating composition, primer coating film, laminated antifouling coating film, method for manufacturing substrate with primer coating film attached thereto, and method for manufacturing substrate with laminated antifouling coating film attached thereto
WO2006016625A1 (en) High-solid anticorrosive coating composition, high-solid rapidly-curable anticorrosive coating composition, method of coating ship or the like, high-solid anticorrosive film and rapidly cured high-solid anticorrosive film obtained, and coated ship and underwater structure coated with these coating films
JP5913762B1 (en) Anticorrosion paint composition, paint film, ship and marine structure
JP5255192B2 (en) Epoxy resin composition capable of forming coating film having high elongation rate, anticorrosion coating composition, coating film thereof, base material coated with the coating film, and anticorrosion method for base material
JPWO2017146193A1 (en) Anticorrosion paint composition, anticorrosion coating, substrate with anticorrosion coating and method for producing the same
JPH0566404B2 (en)
CN1469911A (en) Water-based coating composition for can inner surfaces
JP2001279167A (en) Corrosion resistant coating composition, film formed therewith, substrate coated thereby, and method for corrosion resistance
US3159499A (en) Treating water-wetted surfaces with corrosion-resistant coating material
JP2505301B2 (en) Heavy anticorrosion coated steel
JP2555164B2 (en) Anticorrosion construction method
JPH0360330B2 (en)
KR100576800B1 (en) Tar-free anti-corrosive resin and coating composition having fast-curable property at low temperature
JPH0832850B2 (en) Anticorrosion construction method for underwater steel structure
JP3619975B2 (en) Polymerized fatty acid-modified epoxy resin, process for producing the same, and curable resin composition containing the resin
JPH01129054A (en) Epoxy resin composition for application to wet surface
WO2006100778A1 (en) Epoxy coating composition
JPH0534387B2 (en)
JP2009235403A (en) Epoxy resin-based coating material for corrosion prevention and method for preventing deterioration of water supply construction using the coating material
JPH021774A (en) Antifouling coating composition to be applied to wet surface