JPH0566199B2 - - Google Patents

Info

Publication number
JPH0566199B2
JPH0566199B2 JP60102669A JP10266985A JPH0566199B2 JP H0566199 B2 JPH0566199 B2 JP H0566199B2 JP 60102669 A JP60102669 A JP 60102669A JP 10266985 A JP10266985 A JP 10266985A JP H0566199 B2 JPH0566199 B2 JP H0566199B2
Authority
JP
Japan
Prior art keywords
wastewater
phenol
bacteria
group
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60102669A
Other languages
Japanese (ja)
Other versions
JPS61263697A (en
Inventor
Mamoru Uchimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoki Electric Industrial Co Ltd
Original Assignee
Aoki Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14333636&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0566199(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aoki Electric Industrial Co Ltd filed Critical Aoki Electric Industrial Co Ltd
Priority to JP60102669A priority Critical patent/JPS61263697A/en
Publication of JPS61263697A publication Critical patent/JPS61263697A/en
Publication of JPH0566199B2 publication Critical patent/JPH0566199B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、最近に至つてフエノール又は/及
びフエノール露出基のある化合物を含む微生物代
謝産物の廃水処理分野等における有用性が発明者
らにより着目されだしたことに鑑みてなされたも
ので、その内容とするところは、有機性物質を含
む廃水に土壌性好気性細菌並びに土壌性通性嫌気
性細菌の活動により生成されたフエノール又は/
及びフエノール露出基のある化合物を含む代謝産
物を接触・混合することにより、廃水中の有機物
と前記代謝産物とが反応し、化学的又は/及び生
物学的汚泥を形成し、次いで未反応有機物と上記
の化学的又は/及び生物学的汚泥とが共存するこ
とによつて、塊状産物を形成し、同時に代謝産物
中に含まれる抗菌性物質の作用により、廃水中に
含まれる大腸菌、腐敗菌等の有害菌の働きを抑制
すると共に前記塊状産物の腐敗等品質劣化を防止
することを特徴とする有機性物質を含む廃水の処
理方法に関する。 (従来の技術) 周知のように、各種廃水の処理方法としては、
各種の生物処理法がすでに実施されている。そし
て、これら従来法は、いずれも廃水中に含まれる
有機性物質の低分子化並びにガス化を目的とした
ものであり、好気性生物処理法と嫌気性生物処理
法に大別される。好気性生物処理法においては、
廃水中の溶存酸素濃度を通常1.0ppm以上に保つ
ことにより好気性細菌を活性化し、該細菌群の作
用により有機物を酸化分解させるものであり、活
性汚泥法が最も代表的である。嫌気性生物処理に
おいても、同様に、嫌気性細菌の作用による有機
物の低分子化並びに分解を目的としており、消化
法、メタン醗酵法、等がこれに属している。その
他好気性並びに嫌気性生物処理法を併用したもの
として、脱窒を目的とした処理法があるが、これ
も有機物の分解並びにガス化を目的としたもので
ある。 しかしながら、このような従来の生物処理法
は、廃水中に含まれる有機物の低分子化並びにガ
ス化を目的としているところから、好気性生物処
理法においては、曝気に要する時間、設備、運転
経費が多く必要となると共に運転管理者が複雑に
なるなどの問題点があり、嫌気性生物処理法にお
いては、悪臭の発生、滞留時間の長期化などの問
題点を有している。これら問題点の一解決方法と
して酵素添加による処理も考えられているが、満
足のいく成果をおさめていない。 (従来技術に共通した問題点) 有機性物質を含む廃水の処理に関する従来技術
は、そのいずれもが土壌性通性嫌気性細菌群、又
は土壌性通性嫌気性細菌と好気性細菌とが共存す
る細菌群、を利用しているにもかかわらず、前項
において述べた諸種の問題点を共通してはらむ理
由は、一般土壌細菌群のうちの好気性細菌並びに
通性嫌気性細菌が、外部環境の違いによつて代謝
回路に2重性を有することに気付いていなかつた
からである。 (問題点を解決するための手段) この発明は上記問題点を解決するためになされ
たものであつて、廃水のBOD濃度いかんにかか
わらず、極めて効率よくしかも短時間に処理する
ことにより運転経費の軽減化、装置の小型化、運
転管理の単純化、更には発生汚泥の品質の安定化
及び向上を図ることを目的とし、その具体的技術
手段とするところは、有機性物質を含む廃水を反
応工程、濃縮工程へと順次送ると共に濃縮工程で
分離された汚泥状反応物質を含む混合溶液の一部
を培養システムを経由して再び反応工程へ返送さ
せる有機性物質を含む廃水の処理方法であつて、
前記培養システムが、調整工程並びに培養工程と
からなり、かつ該培養システムを含む廃水循環系
に含まれる細菌群が、土壌性偏性嫌気性細菌群
と、フエノール又は/及びフエノール露出基のあ
る化合物を含む代謝産物を産出するように順馴さ
れた土壌性通性嫌気性細菌群又は該順馴された土
壌性通性嫌気性細菌と土壌性好気性細菌とよりな
る細菌群とが共存する細菌群であり、さらに前記
培養システムにおいては、細菌群の活動によるフ
エノール又は/及びフエノール露出基のある化合
物を含む代謝産物を可能な限り増量させることに
より、反応工程へフエノール又は/及びフエノー
ル露出基のある化合物を含む代謝産物を供給し、
該反応工程においては、培養システムから送入さ
れるフエノール又は/及びフエノール露出基のあ
る化合物を含む代謝産物と原廃水とを混合するこ
とによつて、化学的又は/及び生物学的汚泥を形
成し、次いで未反応有機物と前記化学的又は/及
び生物学的汚泥が共存することによつて塊状産物
を形成し、前記濃縮工程においては、反応工程か
ら送られてくる汚泥状並びに塊状反応物質を含む
混合液を濃縮分離すると同時に濃縮液の一部を前
記培養システムへ返送する廃水処理系を形成した
ところにある。 (当該技術に関連した新しい理論の概要) この発明は、フエノール又は/及びフエノール
露出基のある化合物を含む微生成物代謝産物、並
びに該代謝産物を産出するよう順馴された土壌性
通性嫌気性細菌及び好気性細菌、を活用する点に
おいて、従来技術と全く異なると共に、従来技術
のかかえた諸問題の解決をはかるものであるか
ら、技術説明に先だつて基本となる理論について
の概要を記すこととする。 (イ) 代謝回路の2重性 一般土壌細菌群のうちの好気性細菌並びに通性
嫌気性細菌は、代謝回路に2重性を具備してい
る。その1は遊離酸素の存在下において機能する
代謝回路であり、その2は遊離酸素の不存在下に
おいて機能する代謝回路である。物質面よりみれ
ば、前者により生成される代謝産物にはフエノー
ル化合物が含まれないのに反して、後者により生
成される代謝産物にはフエノール又は/及びフエ
ノール露出基のある化合物が含有される。後者の
代謝回路は、フエノール又は/及びフエノール露
出基のある化合物を含む代謝産物ないしは該代謝
産物を含有する物質(腐植物等)の存在下におい
てか、または該細菌群(好気性細菌並びに通性嫌
気性細菌)が遊離酸素の不存在下において土壌性
偏性通性細菌群と活発に共棲することによつて、
機能するものである。なお、遊離酸素の不存在下
における好気性細菌並びに通性嫌気性細菌への酸
素供給は、分子内酸素がドナーを介してなされる
ものである。 土壌性通性嫌気性細菌並びに好気性細菌が、フ
エノール又は/及びフエノール露出基のある化合
物を生成するよう順馴された後においては、遊離
酸素の存在下においても、一定期間、それもかな
りの長期にわたつてフエノール又は/及びフエノ
ール露出基のある化合物を含む代謝産物の産出を
継続して行うものである。 従来技術においては、該代謝回路の2重性に着
目せず、従つて又、該代謝回路の2重性を制御す
る手法も存しなかつたので、前記した諸種の問題
を生じるのである。 (ロ) 代謝機能の制御 前項において述べたように、土壌性通性嫌気性
細菌並びに好気性細菌は、代謝回路に2重性を有
している。そのどちらが発現するかは、本来的に
は当該細菌の生棲環境によつて決まるのである
が、人為的環境においては、遊離酸素の存在の有
無に関係なく一般に非フエノール系代謝活動が発
現する。かりにフエノール系代謝回路の機能して
いる当該細菌であつても、人為的環境に置かれる
ことによつて、通常は、フエノール系代謝作用に
代つて非フエノール系代謝活動が発現するよう変
性するのである。 遊離酸素の存在の有無に関係なく、人為的環境
において該細菌群によるフエノール系代謝機能が
発現し、継続するためには、一定の条件下におい
て該細菌群が<フエノール又は/及びフエノール
露出基のある化合物を含む代謝産物>の存在下に
置かれつづけることが不可欠である。そのために
は系外から<フエノール又は/及びフエノール露
出基のある化合物を含む代謝産物ないしは該代謝
産物を含有する物質(例えば腐植物等)>の添加
をなすか、又は自然界に存在するフエノール系代
謝機能が異常に強化された該細菌群を種菌として
活用することが必須とする。なおここでいう種菌
には、土壌性偏性嫌気性細菌群が、フエノール又
は/及びフエノール露出基のある化合物を含む代
謝産物を産出する土壌性通性嫌気性細菌群又は該
土壌性通性嫌気性細菌と好気性細菌よりなる細菌
群と活溌に共棲しており、かつ該代謝産物の抗菌
作用により、土壌細菌群以外の細菌群、特に大腸
菌、腐敗菌、等の有害菌の不活性化ないしは滅菌
された状態の細菌群を意味する。 前記した種菌として利用可能な細菌群は、畜産
廃水等の排水路等において、生成汚泥が排水路等
に設けられたくぼみ等に沈積しており、汚泥沈積
面の上をゆつくりとした流れがたえず継続して起
り、かつ数年以上の長期にわたつて上記条件が継
続しつづけている地点において、比較的容易に採
取されうる。このような場所において、汚泥がフ
エノール又は/及びフエノール露出基のある化合
物を含有していれば、汚泥沈積面と廃水との境目
から汚泥まじりの廃水を採取することにより、種
菌として利用可能な細菌群が入手できる。なお、
フエノール又は/及びフエノール露出基のある化
合物の存在は、通常、フエノール臭の発生により
感覚的にも確認されうるものである。 (ハ) 基本反応 有機物(有機水溶液並びに含水性有機混合物)
は、フエノール又は/及びフエノール露出基のあ
る化合物を含む微生物代謝産物を添加されること
により、急速に結合、粒子化、凝集、縮合、重合
し、巨大分子化、塊状産物化する。(基本反応1) 上記反応に際し、活性化された珪酸分を多量に
含む物質が添加されれば、腐植化のための重縮合
反応を惹起する。(基本反応2) 上記した<フエノール露出基のある化合物>と
は、フエノール露出基をもつた有機物一般を指す
が、特にフエノール露出基を有する酸素が有効で
ある。又、<活性化された珪酸分を多量に含む物
質>とは、安山岩質ないしは流紋岩質の組成を有
し、かつ火山ガラス等の活性度の高い不安定な物
質をいう。 以下においては、基本反応1に関連した記載の
みをなすが、当該廃水処理系内のいずれかに活性
化した珪酸分を多量に含む物質が内装又は添加さ
れるか、又は原廃水に該物質が含まれる場合、例
えば製紙廃水における粘土鉱物、養豚廃水におけ
る合成飼料に含まれる鉱物性増量剤、等において
は、反応は全て基本反応2として生起する。 基本反応1と基本反応2の違いは、反応生成物
におけるキレート構造が、基本反応2により生成
される物質において、より顕著にみられる場合が
多く、従つて無機イオン性物質の有機廃水からの
除去をも目的とする場合においては、活性化した
珪酸分を多量に含む物質を反応系に組み込むのが
得策である。なおこのことは、基本反応1による
反応生成物にキレート構造が発達しないという意
味ではなく、キレート構造の発達がより技術的な
困難を伴なうという意味しかすぎない。 (ニ) 巨大分子化と酸素反応 当該反応は酸素分解とは全く異なつた反応であ
る。このことは、酸素分解においては反応の進展
に伴い生成物の分子量が低下するが、当該反応に
おいては有機物の分子量が定常的に増大すること
からも明らかである。当該巨大分子化と酸素反応
との関係は第1図に示したとおりであり、微生物
代謝産物が常に酸素を含む関係から、当該巨大分
子化は非分解型の酸素反応と同時に進行すること
となる。その結果、例えば悪臭物質に関していえ
ば、基本反応1又は基本反応2の進展による分子
量の増大、並びに同時に進行する非分解型酸素反
応による安定物質への移行、によつて当該システ
ムからの悪臭の発生はない。 (ホ) 反応生成物とキレート構造 該順馴された通性嫌気性細菌並びに好気性細菌
の培養過程におけるPH変動を模式的に示すと、第
2図のとおりである。土壌細菌群により生成され
る代謝産物は有機酸を含有する関係から酸性溶液
であるにもかかわらず、該細菌群による培養液が
図に示したようなPH変動を示す理由は、培養液中
の無機イオン性物質の拠動と一体化して解析する
ことによつてのみ理解されうるものである。 フエノール又は/及びフエノール露出基のある
化合物を含む代謝産物の生成条件下における培養
汚泥は、キレート構造を有しており、キレート内
面は+、−基の集合体となつている。したがつて、
該代謝産物の存在下においては、生成汚泥の+、
−基におけるイオン性物質の置換並びにキレート
構造の成長.変形によつて、又同時に有機酸塩の
生成によつて、培養液のPH変動並びに無機イオン
性物質の液中からの除去がなされるのである。 (ヘ) 抗菌性の機構 およそ微生物は、自己以外の(黴)生物に対す
る抗菌性を有する。抗菌性の発現は代謝産物を介
してなされるものであり、従つて、ある個体から
分泌された代謝産物は当該個体以外の(黴)生物
に対して、ある種属から分泌された代謝産物は当
該種属以外の(黴)生物に対して、又多種の微生
物より構成される群体から分泌された代謝産物は
当該群体を構成する種属以外の(黴)生物に対し
て、抗菌性を有することとなる。フエノール又
は/及びフエノール露出基のある化合物を含む微
生物代謝産物は、一般土壌細菌群総体としての代
謝産物であるところから、該代謝産物は、一般土
壌細菌群以外の(黴)生物に対しての顕著な抗菌
性を有するものである。 (作用) 当該廃水処理系においては、廃水中の有機物が
好気性細菌並びに通性嫌気性細菌により生成され
たフエノール又は/及びフエノール露出基のある
化合物を含む代謝産物と物理化学的に反応するこ
とにより巨大分子化並びに汚泥化するのであり、
従つて反応工程における滞留時間は短く、又曝気
の有無は反応の進展とは本質的に何ら関係がな
い。 又、この廃水処理系で作用する細菌群として
は、土壌性偏性嫌気性細菌群と、フエノール又
は/及びフエノール露出基のある化合物を含む代
謝産物を産出するよう順馴された土壌性通性嫌気
性細菌群、又は該順馴された土壌性通性嫌気性細
菌と土壌性好気性細菌よりなる細菌群、とが共存
する細菌群のいずかであつてもよい。 なお、発明における土壌性好気性細菌群として
は、例えばズーグレア属細菌を用いることができ
る。また土壌性通性嫌気性細菌としては、例えば
バチルス属細菌を用いることができる。 当該廃水処理系における培養システムのうち、
絶対的嫌気条件に保持される調整工程において
は、前記土壌性偏性嫌気性細菌が顕在化し、かつ
前記土壌性通性嫌気性細菌と土壌性好気性細菌が
分子内酸素の供給を受けながら活溌に共棲してい
る。この共棲関係が持続されることにより、前記
土壌性通性嫌気性細菌と土壌性好気性細菌のフエ
ノール系代謝機能が更に強化されることとなる。
なお、土壌性偏性嫌気性細菌と共棲しうる通性嫌
気性細菌並びに好気性細菌は、前記した土壌性細
菌のみに限られず、又土壌性通性嫌気性細菌並び
に土壌性好気性細菌であつても、フエノール系代
謝機能の顕在化しない土壌性通性嫌気性細菌並び
に土壌性好気性細菌が共棲する場合は、産出され
る代謝産物による土壌細菌群以外の細菌群に対す
る抗菌作用が微弱であり、その結果、前記土壌性
偏性嫌気性細菌と共棲する通性嫌気性細菌並びに
好気性細菌が、土壌細菌群以外の細菌群に移行す
る。従つて、当該廃水処理系作動時に投入する種
菌は、土壌性偏性嫌気性細菌群が、フエノール又
は/及びフエノール露出基のある化合物を含む代
謝産物を産出するよう順馴された前記土壌性通性
嫌気性細菌群又は該土壌性通性嫌気性細菌と土壌
性好気性細菌よりなる細菌群と、共棲しており、
かつ大腸菌、腐敗菌、等の土壌細菌群以外の有害
菌が不活性化ないしは死滅した細菌群でなくては
ならない。 当該廃水処理系における前記調整工程以外の工
程においては、遊離酸素との接触が起りうる相対
的好気的条件下におかれるため、土壌性偏性嫌気
性細菌群は潜在化・不活性化し、フエノール又
は/及びフエノール露出基のある化合物を含む代
謝産物を産出する土壌性通性嫌気性細菌群、又は
該土壌性通性嫌気性細菌と土壌性好気性細菌より
なる細菌群、のみが活性化する。その結果、前記
細菌群の活動によるフエノール又は/及びフエノ
ール露出基のある化合物を含む代謝産物が産出さ
れ該代謝産物が廃水中の有機物と物理化学的に反
応し、巨大分子化並びに汚泥化を惹起すると同時
に、土壌細菌群以外の細菌群に抗菌作用を及ぼす
のである。 なお、前記順馴された土壌性通性嫌気性細菌
群、土壌性好気性細菌及び土壌性通性嫌気性細菌
よりなる細菌群のいずれもが当該廃水処理系にお
いて有効である理由は、該通性嫌気性細菌並びに
好気性細菌のいずれもが酸素の存在下において有
効に機能する代謝回路を有し、従つてその作用に
おいて相類似する酸化段階の高い化合物を含む代
謝産物を生成するからである。すなわち、該順馴
された通性嫌気性細菌及び好気性細菌により生成
された代謝産物は共にフエノール又は/及びフエ
ノール露出基のある化合物、有機酸、多糖類、ア
ミノ酸、を含み、それら化学物質が廃水中の有機
物と相類似した反応を惹起するのである。 しかしながら、一般に細菌の好気性が高まるに
つれ当該細菌の増殖速度は高まり、同時に増殖に
要する物質消費も増大する。その結果、好気性の
強い細菌においては代謝産物の菌体内蓄積が進行
しにくく、従つて当該廃水処理系においてある程
度以上好気性の強い細菌を活用することは、効果
的でない。実験結果によれば、廃水中の溶存酸素
濃度(DO)で0.7ppm程度が効果−非効果の境目
であり、従つて、0.7ppm程度以下のDO範囲で活
性化する細菌群が効果的となる。 以上の事柄をより具体的かつ模式化して示した
のが第3図である。第3図下段においては、好気
性細菌、通性嫌気性細菌、偏性嫌気性細菌の各生
息範囲をDO値との関係において示した。実線部
分は最適生存範囲、破線部分は生存可能範囲を示
している。中段においてはDO値と細菌群の平均
増殖速度との関係、すなわちDO値の上昇に伴い
細菌群の平均増殖速度が増大する様子を示してい
る。上段においては、DO値と細菌群の増殖によ
り消費される代謝産物量との関係(B)、並びにDO
値と細菌群の活動により生成される代謝産物量と
の関係(A)を示した。図中(A−B)DOxは、DO
値がxにおける有効代謝産物量、すなわち当該
DO値における生成代謝産物量から細菌群の増殖
によつて自己消費される代謝産物量を差し引いた
代謝産物量を示している。この図からは、又、
(A−B)DOxがDO値の増大に伴い減少し、DO
値が0.7ppm程度においてほぼ零に達することも
示されている。従つて、この図から当該廃水処理
系で有効に作用する細菌が、通性嫌気性細菌並び
にDO0.7ppm以下で活性化する一部の好気性細菌
とした理由が判明する。 およそ細菌群は、その外部環境が当該細菌群の
生育・増殖に適した条件に保たれた場合において
は、活発に増殖すると共に代謝活動が盛んに行わ
れ、その結果代謝産物の菌体内蓄積が進行する。
この菌体内に蓄積された代謝産物量が第3図に示
した(A−B)DOxである。このように活発に増
殖し、かつ代謝産物の菌体内蓄積が進行した細菌
群が、当該細菌群の生育・増殖に不適な環境下に
おかれると、環境調整機能ないしは自己保存機能
を発揮し、その結果、細菌群は増殖活動を停止す
ると同時に、菌体内に蓄積された代謝産物(A−
B)DOxの菌体外への排出を行う。なお前記外部
環境の変化は急激なものでなくてはならず、DO
値による変化の開きは0.1ppm以上、望ましくは
0.2〜0.3ppm程度が必要となる。 一般に細菌群が一定時間以上その生育に不適な
環境に置かれた後、最適生育環境を与えられた場
合には、当該細菌群を活性化するためおよそ30
分、代謝産物の菌体内蓄積に30分、程度の時間が
必要となる。従つて細菌群の増殖を伴う当該廃水
処理系の培養システムの構成要素である培養工程
のDO条件は、上記した細菌の一般特性を組み込
んだものとしなくてはならない。 (実施例) この発明について第4図を参照しつつ説明す
る。 この発明は、培養システム1で細菌群の活動に
より生成されたフエノール又は/及びフエノール
露出基のある化合物を含む代謝産物の混合溶液と
有機性物質を含む原廃水とを反応工程2に混合投
入し、そこで短時間に化学的に反応させ、廃水中
に含まれる汚濁成分のかなりの部分を固液分離可
能な状態にした後、濃縮工程3で処理水と汚泥状
物質を多量に含んだ混合液とに分離すると共に該
混合液の一部を培養システム1へ送り、細菌群の
活動による代謝産物を可能な限り増量させると共
に前記代謝産物の菌体外排出をうながし、混合液
中の代謝産物濃度を高めたうえで再び反応工程2
へ返送する廃水処理系で有機性物質を含む廃水を
物理化学反応により処理するものである。 原廃水は、人畜し尿廃水、水産加工廃水、農産
加工廃水、その他の有機性物質を含む廃水であれ
ば、その種類、濃度を問わずにすべてこの発明方
法で処理することができる。 原廃水は、まず反応工程2へ連続若しくは不連
続的に定量ずつ供給される。該反応工程2におい
ては、培養システム1から該培養システム1で生
成されたフエノール又は/及びフエノール露出基
のある化合物を含む代謝産物の混合溶液と原廃水
とが同時に供給され、これら性状に異なつた2液
が混合並びに緩速撹拌されて、2液間の反応が進
行する。反応工程2において惹起する反応は、培
養システム1から送入される混合溶液に含まれる
細菌群による代謝産物と、廃水中に含まれる可溶
性並びに不溶性有機成分との間で起こるものであ
り、両者が反応することにより、まず化学的又
は/及び生物学的汚泥が形成され、次いで未反応
有機物と前記化学的又は/及び生物学的汚泥が共
存することによつて塊状産物を形成するのである
から、反応そのものの進展には曝気の必要はな
く、又滞溜時間も短時間でよい。上記反応は代謝
産物中のフエノール又は/及びフエノール露出基
のある化合物が、廃水中の可溶性並びに不溶性有
機物に作用し、重縮合を含む巨大分子化並びに汚
泥化を惹起するものであり、代謝産物中の有機
酸、多糖類、アミノ酸は有機物の重縮合を含む巨
大分子化並びに汚泥化に際しbridgeを形成するこ
とにより反応をより急速かつ安定して進行させる
ものである。又当該反応は物理化学反応であると
ころから、液温によつて反応速度は異なるが、通
常数時間以内でかなりの程度まで反応は進展す
る。また、必要以上の長時間の滞溜は、細菌群の
自己消化を惹起し、活発化している細菌群の不活
性化を必要以上に進展させ、潜在化している細菌
群の活性化を起こすことなどの弊害が生じるの
で、これらが生じない程度の短時間である必要が
ある。なお、前記代謝産物がアルカリ性において
凝集する等の理由により、効率上からみて原廃水
のPHを5.0以上7.5以下に調整する必要がある。 濃縮工程3においては、反応工程2から送られ
てくる汚泥状並びに塊状反応物質を含む混合液を
処理水と濃縮液とに分離すると同時に、濃縮液の
一部を前記培養システム1へ返送する。該濃縮工
程3では濃縮液の一部を培養システム1へ返送す
る関係から、凝集剤の使用は好ましくない。又、
該濃縮工程3で使用する濃縮装置としては、ドラ
ム型真空濃縮機など強制分離型式のほか、汚泥状
物質の性状によつては沈降分離槽の利用も可能と
なる。なお、汚泥状物質、ひいては菌体の破壊を
伴う遠心分離機等は、該濃縮工程3で用いるべき
でない。 培養システム1においては、濃縮工程3から送
入される汚泥状物質を含む混合液中の細菌群のフ
エノール系代謝機能を強化させると同時に、前記
代謝産物を産出する細菌群の増殖を進展させ、フ
エノール又は/及びフエノール露出基のある化合
物を含む代謝産物の菌体内蓄積並びに菌体外への
排出を促し、ひいては混合液中の代謝産物濃度を
高めなくてはならない。そのため、濃縮工程3か
らの混合液はMLSS5000ppで以上であることが
効率上からみて望ましい。なお、当該培養システ
ム1における滞溜時間は3〜4日が最適であり、
又48時間以下の滞溜では、系のバランスが長期的
には維持できず、反応工程における効率の低下、
汚泥状物質の分離性能の低下、処理水の水質悪
化、ひいては培養工程1への未反応有機物の持込
量の増大による培養条件のなお一層の悪化、をも
たらす。 当該培養システム1は調整工程1−A並びに培
養工程1−Bより構成されており、濃縮工程3か
らの汚泥状並びに塊状反応物質を含む混合液は、
まず調整工程1−Aへ送入され、次いで培養工程
1−Bへと送られる。調整工程1−Aは密閉容器
よりなり、該密閉容器内に滞溜する前記混合液は
空気との接触が遮断されている。当該調整工程1
−Aにおいては、流入混合液中に含まれる土壌性
通性嫌気性細菌群、又は土壌性通性嫌気性細菌と
土壌性好気性細菌よりなる細菌群、のフエノール
系代謝機能が、土壌性偏性嫌気性細菌群と共棲す
ることにより著しく強化され、次いで該混合液が
培養工程1−Bに送入され滞溜することにより、
前記フエノール系代謝機能の強化された細菌群の
活性化が一段と促進されるのである。 培養システム1の運転開始に当つては、遊離酸
素の不存在下において偏性嫌気性細菌群と共棲
し、かつフエノール系代謝機能の顕在化している
土壌細菌群を含み、かつ大腸菌、腐敗菌、等の土
壌細菌群以外の有害菌の不活性化ないしは死滅し
た状態にある汚泥混合液を種菌として調整工程1
−Aの容量に対し10%以上の割合で投入する必要
がある。なお、フエノール又は/及びフエノール
露出基のある化合物を含む代謝産物を含有する物
質、例えば腐植物を当該培養システム1に添加す
る場合においては、種菌の投入は不必要となる。
ここでいう腐植物とは、腐植と腐植前駆物質の混
合物であり、又腐植前駆物質とは有機物の腐植に
変化する過程物質の総称である。 なお、前記諸工程の運転条件を第1表にまとめ
て記すこととする。
(Field of Industrial Application) This invention was developed in light of the fact that the inventors have recently begun to notice the usefulness of microbial metabolites containing phenol and/or compounds with exposed phenol groups in the field of wastewater treatment, etc. The content is that phenols and/or substances produced by the activities of soil aerobic bacteria and soil facultative anaerobic bacteria are added to wastewater containing organic substances.
By contacting and mixing metabolites containing compounds with exposed phenol groups, the organic matter in the wastewater reacts with the metabolites to form chemical and/or biological sludge, and then the unreacted organic matter and the metabolites react. By coexisting with the above chemical and/or biological sludge, a lump product is formed, and at the same time, due to the action of antibacterial substances contained in the metabolites, Escherichia coli and putrefactive bacteria contained in the wastewater are etc. The present invention relates to a method for treating wastewater containing organic substances, which is characterized by suppressing the action of harmful bacteria and preventing quality deterioration such as putrefaction of the bulk products. (Prior art) As is well known, various wastewater treatment methods include:
Various biological treatment methods are already in use. All of these conventional methods are aimed at reducing the molecular weight and gasifying organic substances contained in wastewater, and are broadly classified into aerobic biological treatment methods and anaerobic biological treatment methods. In the aerobic biological treatment method,
The activated sludge method is the most typical method in which aerobic bacteria are activated by maintaining the dissolved oxygen concentration in wastewater at 1.0 ppm or higher, and organic matter is oxidized and decomposed by the action of the bacteria. Similarly, anaerobic biological treatment aims to reduce the molecular weight and decompose organic matter through the action of anaerobic bacteria, and includes digestion methods, methane fermentation methods, and the like. Another method that uses both aerobic and anaerobic biological treatment methods is a treatment method for the purpose of denitrification, which also aims at decomposing and gasifying organic matter. However, since these conventional biological treatment methods aim to reduce the molecular weight of organic matter contained in wastewater and gasify it, aerobic biological treatment requires a lot of time, equipment, and operating costs for aeration. There are problems such as the need for a large number of treatments and the complexity of the operation manager, and anaerobic biological treatment methods have problems such as generation of bad odors and prolonged residence time. Treatment by adding enzymes has been considered as a solution to these problems, but this has not produced satisfactory results. (Problems common to conventional technologies) Conventional technologies related to the treatment of wastewater containing organic substances all involve the coexistence of soil facultative anaerobic bacteria or soil facultative anaerobic bacteria and aerobic bacteria. The reason why aerobic bacteria and facultative anaerobic bacteria of the general soil bacterial group are affected by the external environment This is because they were not aware that there was a duality in the metabolic circuit due to differences in the (Means for Solving the Problems) This invention has been made to solve the above problems, and it is possible to treat wastewater extremely efficiently and in a short time, regardless of the BOD concentration, thereby reducing operating costs. The purpose is to reduce the amount of wastewater, downsize the equipment, simplify operation management, and further stabilize and improve the quality of the generated sludge. A method for treating wastewater containing organic substances that is sequentially sent to a reaction process and a concentration process, and a part of the mixed solution containing sludge-like reactants separated in the concentration process is returned to the reaction process via a culture system. It's hot,
The culture system comprises an adjustment step and a culture step, and the bacteria group included in the wastewater circulation system including the culture system is a group of soil-based obligate anaerobic bacteria and a phenol or/and a compound having a phenol exposed group. A group of soil facultative anaerobic bacteria adapted to produce metabolites containing , or bacteria in which a bacterial group consisting of the adapted soil facultative anaerobic bacteria and soil aerobic bacteria coexist. Furthermore, in the culture system, phenol or/and phenol-exposed groups are added to the reaction process by increasing as much as possible the amount of metabolites containing phenol or/and compounds with phenol-exposed groups due to the activity of bacterial groups. supplying metabolites containing certain compounds;
In the reaction step, chemical and/or biological sludge is formed by mixing raw wastewater with phenols and/or metabolites containing compounds with phenol-exposed groups fed from the culture system. Then, unreacted organic matter and the chemical or/and biological sludge coexist to form a lumpy product, and in the concentration step, the sludge-like and lumpy reactants sent from the reaction step are A wastewater treatment system has been formed which concentrates and separates the mixed liquid containing the liquid, and at the same time returns a part of the concentrated liquid to the culture system. SUMMARY OF NEW THEORY RELATED TO THE TECHNOLOGY This invention provides microbial metabolites containing phenols or/and compounds with exposed phenol groups, and soil-borne facultative anaerobic products adapted to produce the metabolites. Since this technology is completely different from conventional technology in that it utilizes sexual bacteria and aerobic bacteria, and aims to solve various problems faced by conventional technology, we will provide an overview of the basic theory before explaining the technology. That's it. (b) Dual nature of metabolic circuits Aerobic bacteria and facultative anaerobic bacteria of the general soil bacteria group have dual nature of metabolic circuits. The first is a metabolic circuit that functions in the presence of free oxygen, and the second is a metabolic circuit that functions in the absence of free oxygen. From a material standpoint, the metabolites produced by the former do not contain phenolic compounds, whereas the metabolites produced by the latter contain phenol or/and a compound with a phenol-exposed group. The latter metabolic cycle is carried out in the presence of phenols and/or metabolites containing compounds with phenol-exposed groups, or substances containing such metabolites (such as humic plants), or in the presence of the bacterial groups (aerobic and facultative). anaerobic bacteria) actively coexist with soil-based obligate facultative bacteria in the absence of free oxygen.
It's something that works. Note that oxygen is supplied to aerobic bacteria and facultative anaerobic bacteria in the absence of free oxygen by intramolecular oxygen via a donor. After soil facultative anaerobes and aerobic bacteria have been acclimated to produce phenols or/and compounds with phenol-exposed groups, they can survive for a period of time, even to a considerable extent, in the presence of free oxygen. Metabolites containing phenol and/or compounds with exposed phenol groups are continuously produced over a long period of time. The prior art does not focus on the duality of the metabolic circuit, and therefore does not have a method for controlling the duality of the metabolic circuit, resulting in the various problems described above. (b) Control of metabolic functions As stated in the previous section, soil-borne facultative anaerobic bacteria and aerobic bacteria have dual metabolic circuits. Which of these is expressed is originally determined by the living environment of the bacterium, but in artificial environments, non-phenol metabolic activities are generally expressed regardless of the presence or absence of free oxygen. Even if the bacterium has a functioning phenolic metabolic cycle, when placed in an artificial environment, it will normally be denatured to express non-phenolic metabolic activity instead of phenolic metabolic activity. be. Regardless of the presence or absence of free oxygen, in order for the bacterial group to express and continue its phenolic metabolic function in an artificial environment, the bacterial group must under certain conditions It is essential that a compound remains in the presence of a metabolite containing it. To achieve this, it is necessary to add <a metabolite containing a phenol or/and a compound with a phenol exposed group, or a substance containing the metabolite (e.g., humic plants, etc.)> from outside the system, or to add a phenol-based metabolic product that exists in nature. It is essential to utilize this group of bacteria whose functions have been abnormally enhanced as seed bacteria. The inoculum here refers to a soil facultative anaerobic bacterial group that produces a metabolite containing phenol or/and a compound with a phenol exposed group, or a soil facultative anaerobic bacterial group that produces a metabolite containing phenol or/and a compound with a phenol exposed group. It actively coexists with bacterial groups consisting of sexual bacteria and aerobic bacteria, and the antibacterial action of the metabolites can inactivate or inactivate bacterial groups other than soil bacteria, especially harmful bacteria such as Escherichia coli and spoilage bacteria. It means a group of bacteria in a sterile state. The above-mentioned bacterial groups that can be used as inoculum are generated in drainage channels for livestock wastewater, etc., where the generated sludge is deposited in depressions etc. in the drainage channels, etc., and the sludge flows slowly over the sludge deposited surface. It can be collected relatively easily at locations where it occurs constantly and where the above conditions continue for a long period of time, such as several years or more. In such places, if the sludge contains phenol or/and a compound with an exposed phenol group, bacteria that can be used as seed bacteria can be collected by collecting wastewater mixed with sludge from the boundary between the sludge deposition surface and the wastewater. group is available. In addition,
The presence of phenol or/and a compound having a phenol-exposed group can usually be visually confirmed by the generation of a phenol odor. (c) Basic reactions Organic substances (organic aqueous solutions and hydrous organic mixtures)
When a microbial metabolite containing phenol or/and a compound with a phenol-exposed group is added, it rapidly binds, becomes particles, aggregates, condenses, and polymerizes to form macromolecules and bulk products. (Basic Reaction 1) During the above reaction, if a substance containing a large amount of activated silicic acid is added, a polycondensation reaction for humification will occur. (Basic reaction 2) The above-mentioned <compound having a phenol exposed group> refers to organic substances in general having a phenol exposed group, but oxygen having a phenol exposed group is particularly effective. Moreover, <substance containing a large amount of activated silicic acid> refers to an unstable substance having an andesitic or rhyolitic composition and having a high degree of activity, such as volcanic glass. In the following, only descriptions related to Basic Reaction 1 will be made, but if a substance containing a large amount of activated silicic acid is installed or added to any part of the wastewater treatment system, or if the substance is present in the raw wastewater. When it is contained, for example, in clay minerals in paper manufacturing wastewater, mineral fillers contained in synthetic feed in swine wastewater, etc., all reactions occur as basic reaction 2. The difference between Basic Reaction 1 and Basic Reaction 2 is that the chelate structure in the reaction product is often more pronounced in the substance produced by Basic Reaction 2, and therefore the removal of inorganic ionic substances from organic wastewater. When the purpose is also to use, it is advisable to incorporate a substance containing a large amount of activated silicic acid into the reaction system. Note that this does not mean that a chelate structure does not develop in the reaction product of Basic Reaction 1, but only that the development of a chelate structure is accompanied by more technical difficulties. (d) Macromolecularization and oxygen reaction This reaction is completely different from oxygen decomposition. This is clear from the fact that in oxygen decomposition, the molecular weight of the product decreases as the reaction progresses, but the molecular weight of the organic substance steadily increases in the reaction. The relationship between the formation of macromolecules and the oxygen reaction is as shown in Figure 1, and since microbial metabolites always contain oxygen, the formation of macromolecules proceeds simultaneously with the non-degradable oxygen reaction. . As a result, for example, in the case of malodorous substances, the generation of malodors from the system is due to an increase in molecular weight due to the progress of basic reaction 1 or basic reaction 2, and a transition to a stable substance due to the non-decomposable oxygen reaction that proceeds simultaneously. There isn't. (e) Reaction product and chelate structure The PH fluctuations during the culture process of the acclimatized facultative anaerobic bacteria and aerobic bacteria are shown schematically in FIG. 2. Although the metabolites produced by soil bacteria are acidic solutions because they contain organic acids, the reason why the culture solution produced by soil bacteria exhibits the PH fluctuations shown in the figure is due to the pH fluctuations in the culture solution. It can only be understood by analyzing it in conjunction with the dynamics of inorganic ionic substances. Cultured sludge under conditions for producing metabolites containing phenol and/or compounds with exposed phenol groups has a chelate structure, and the inner surface of the chelate is an aggregate of + and - groups. Therefore,
In the presence of the metabolite, + of the produced sludge,
Substitution of ionic substances in -groups and growth of chelate structures. Due to the deformation and at the same time the production of organic acid salts, the pH of the culture solution changes and inorganic ionic substances are removed from the solution. (f) Mechanism of antibacterial properties Generally, microorganisms have antibacterial properties against organisms other than themselves (molds). Antibacterial properties are expressed through metabolites, and therefore, metabolites secreted by a certain individual are harmful to organisms other than that individual (molds), whereas metabolites secreted by a certain species are harmful to organisms other than the individual (molds). Metabolites secreted from a colony composed of various microorganisms have antibacterial properties against (fungal) organisms other than the species and genus that constitute the colony. It happens. Microbial metabolites containing phenol and/or compounds with phenol-exposed groups are metabolites of the general soil bacterial group as a whole, so these metabolites have no effect on organisms other than the general soil bacterial group (molds). It has remarkable antibacterial properties. (Function) In the wastewater treatment system, organic matter in the wastewater reacts physicochemically with phenols and/or metabolites containing compounds with phenol-exposed groups produced by aerobic bacteria and facultative anaerobic bacteria. This causes it to turn into macromolecules and sludge.
Therefore, the residence time in the reaction process is short, and the presence or absence of aeration has essentially no relation to the progress of the reaction. In addition, the bacterial groups that act in this wastewater treatment system include soil-based obligate anaerobic bacteria and soil-based facultative bacteria that have been adapted to produce metabolites containing phenols and/or compounds with exposed phenol groups. The bacterial group may be either an anaerobic bacterial group or a bacterial group in which the acclimatized soil facultative anaerobic bacteria and soil aerobic bacteria coexist. In addition, as the soil aerobic bacteria group in the invention, for example, Zooglaea bacteria can be used. Furthermore, as the soil-borne facultative anaerobic bacteria, for example, Bacillus bacteria can be used. Among the culture systems in the wastewater treatment system,
In the adjustment step in which the soil obligate anaerobic bacteria are maintained under absolute anaerobic conditions, the soil obligate anaerobic bacteria become apparent, and the soil facultative anaerobic bacteria and soil aerobic bacteria become active while being supplied with intramolecular oxygen. They live together. By sustaining this symbiotic relationship, the phenolic metabolic functions of the soil facultative anaerobic bacteria and the soil aerobic bacteria are further strengthened.
Note that facultative anaerobic bacteria and aerobic bacteria that can coexist with soil-based obligate anaerobic bacteria are not limited to the soil-based bacteria described above, but also include soil-based facultative anaerobic bacteria and soil-based aerobic bacteria. However, when soil facultative anaerobic bacteria and soil aerobic bacteria that do not exhibit phenolic metabolic functions coexist, the antibacterial effect of the metabolites produced against bacterial groups other than soil bacterial groups is weak. As a result, facultative anaerobic bacteria and aerobic bacteria that coexist with the soil-based obligate anaerobic bacteria migrate to bacterial groups other than the soil bacterial group. Therefore, the inoculum introduced during operation of the wastewater treatment system is the soil-based obligate anaerobic bacteria that has been adapted to produce metabolites containing phenol and/or compounds with exposed phenol groups. Cohabiting with a group of sexually anaerobic bacteria or a group of bacteria consisting of the soil facultative anaerobic bacteria and soil aerobic bacteria,
In addition, harmful bacteria other than soil bacteria such as Escherichia coli and putrid bacteria must be inactivated or killed. In processes other than the above-mentioned adjustment process in the wastewater treatment system, the soil obligate anaerobic bacteria group becomes latent and inactivated because it is placed under relatively aerobic conditions where contact with free oxygen may occur. Only a group of soil facultative anaerobic bacteria that produces a metabolite containing phenol or/and a compound with an exposed phenol group, or a group of bacteria consisting of the soil facultative anaerobic bacteria and soil aerobic bacteria, is activated. do. As a result, metabolites containing phenol and/or compounds with exposed phenol groups are produced due to the activity of the bacterial group, and these metabolites physicochemically react with organic matter in the wastewater, causing macromolecularization and sludge formation. At the same time, it exerts an antibacterial effect on bacterial groups other than soil bacteria. The reason why all of the above-mentioned acclimatized bacterial groups consisting of soil facultative anaerobic bacteria, soil aerobic bacteria, and soil facultative anaerobic bacteria are effective in the wastewater treatment system is that This is because both anaerobic and aerobic bacteria have metabolic circuits that function effectively in the presence of oxygen, and therefore produce metabolites containing compounds with high oxidation levels that are similar in their actions. . That is, the metabolites produced by the acclimatized facultative anaerobic bacteria and aerobic bacteria both contain phenols and/or compounds with phenol-exposed groups, organic acids, polysaccharides, and amino acids; It causes a reaction similar to that of organic matter in wastewater. However, in general, as the aerobic nature of bacteria increases, the growth rate of the bacteria increases, and at the same time, the consumption of materials required for growth also increases. As a result, in highly aerobic bacteria, accumulation of metabolites within the bacteria is difficult to proceed, and therefore it is not effective to utilize highly aerobic bacteria beyond a certain level in the wastewater treatment system. According to experimental results, a dissolved oxygen concentration (DO) in wastewater of about 0.7 ppm is the borderline between effective and ineffective, and therefore, bacterial groups that become active in a DO range of about 0.7 ppm or less are effective. . Figure 3 shows the above matters more concretely and schematically. In the lower part of Figure 3, the habitat ranges of aerobic bacteria, facultative anaerobic bacteria, and obligate anaerobic bacteria are shown in relation to DO values. The solid line part shows the optimal survival range, and the broken line part shows the survivable range. The middle row shows the relationship between the DO value and the average growth rate of the bacterial group, that is, the average growth rate of the bacterial group increases as the DO value increases. In the upper row, the relationship between the DO value and the amount of metabolites consumed by bacterial growth (B), and the DO
The relationship between the value and the amount of metabolites produced by the activity of the bacterial group (A) is shown. In the figure (A-B) DO x is DO
The amount of effective metabolite at value x, i.e.
The amount of metabolites obtained by subtracting the amount of metabolites self-consumed by the proliferation of bacterial groups from the amount of metabolites produced at the DO value is shown. From this figure, also,
(A-B) DO x decreases as DO value increases, DO
It has also been shown that the value reaches almost zero at around 0.7 ppm. Therefore, from this figure, it becomes clear why the bacteria that act effectively in the wastewater treatment system are facultative anaerobic bacteria and some aerobic bacteria that are activated at DO of 0.7 ppm or less. Generally speaking, if the external environment is maintained under conditions suitable for the growth and proliferation of the bacterial group, bacterial groups will actively proliferate and have active metabolic activities, resulting in the accumulation of metabolites within the bacteria. proceed.
The amount of metabolites accumulated within the bacterial cells is DO x shown in FIG. 3 (A-B). When a group of bacteria that is actively proliferating and has progressed to accumulate metabolites inside the bacteria is placed in an environment unsuitable for the growth and proliferation of the group of bacteria, it exerts an environmental regulation function or a self-preservation function. As a result, the bacterial group stops proliferating, and at the same time the metabolic products (A-
B) Excretes DO x from the bacterial body. Note that the change in the external environment must be rapid, and DO
The difference in change depending on the value is 0.1 ppm or more, preferably
Approximately 0.2 to 0.3 ppm is required. In general, if a group of bacteria is placed in an environment unsuitable for growth for a certain period of time and then given an optimal growth environment, it will be activated for about 30 minutes.
It takes about 30 minutes for metabolites to accumulate within the bacterial cells. Therefore, the DO conditions of the culture process, which is a component of the culture system of the wastewater treatment system that involves the proliferation of bacterial groups, must incorporate the general characteristics of bacteria described above. (Example) This invention will be explained with reference to FIG. 4. In the present invention, a mixed solution of a metabolite containing phenol and/or a compound with an exposed phenol group produced by the activity of bacterial groups in the culture system 1 and raw wastewater containing organic substances are mixed and input into the reaction step 2. There, a chemical reaction is carried out in a short period of time to convert a considerable portion of the pollutant components contained in the wastewater into a solid-liquid separable state.Then, in the concentration step 3, a mixed liquid containing a large amount of treated water and sludge-like substances is produced. At the same time, a part of the mixed solution is sent to the culture system 1 to increase the amount of metabolites produced by the activities of the bacterial group as much as possible, and to promote the excretion of the metabolites from the cells, thereby reducing the concentration of metabolites in the mixed solution. After increasing the
This is a wastewater treatment system that processes wastewater containing organic substances through physicochemical reactions. The raw wastewater can be treated by the method of the present invention, regardless of its type or concentration, as long as it is human and livestock human waste wastewater, fishery processing wastewater, agricultural processing wastewater, or any other wastewater containing organic substances. The raw wastewater is first supplied to the reaction step 2 in fixed amounts either continuously or discontinuously. In the reaction step 2, a mixed solution of phenol or/and a metabolite containing a compound with a phenol-exposed group produced in the culture system 1 and raw wastewater are simultaneously supplied from the culture system 1, and raw wastewater is supplied from the culture system 1, which has different properties. The two liquids are mixed and slowly stirred, and the reaction between the two liquids proceeds. The reaction that occurs in the reaction step 2 occurs between the metabolites of the bacterial group contained in the mixed solution sent from the culture system 1 and the soluble and insoluble organic components contained in the wastewater. By reacting, chemical or/and biological sludge is first formed, and then a lump product is formed by the coexistence of unreacted organic matter and the chemical and/or biological sludge. Aeration is not necessary for the reaction itself to proceed, and the residence time may be short. In the above reaction, phenol or/and a compound with an exposed phenol group in the metabolite acts on soluble and insoluble organic matter in wastewater, causing formation of macromolecules including polycondensation and sludge formation. The organic acids, polysaccharides, and amino acids form bridges during the formation of macromolecules, including polycondensation, and sludge, thereby allowing the reaction to proceed more rapidly and stably. Since the reaction is a physicochemical reaction, the reaction rate varies depending on the liquid temperature, but the reaction usually progresses to a considerable extent within several hours. In addition, retention for a longer period of time than necessary may cause self-digestion of bacterial groups, inactivate active bacterial groups more than necessary, and cause latent bacterial groups to become activated. Since such adverse effects may occur, it is necessary that the duration is short enough to prevent these from occurring. In addition, for reasons such as the aggregation of the above-mentioned metabolites in alkalinity, it is necessary to adjust the pH of the raw wastewater to 5.0 or more and 7.5 or less from the viewpoint of efficiency. In the concentration step 3, the mixed liquid containing the sludge-like and bulk reactants sent from the reaction step 2 is separated into treated water and a concentrated liquid, and at the same time, a part of the concentrated liquid is returned to the culture system 1. In the concentration step 3, since a part of the concentrate is returned to the culture system 1, it is not preferable to use a flocculant. or,
As the concentration device used in the concentration step 3, in addition to a forced separation type such as a drum-type vacuum concentrator, it is also possible to use a sedimentation separation tank depending on the properties of the sludge-like substance. Note that a centrifugal separator or the like that would destroy sludge-like substances and even bacterial cells should not be used in the concentration step 3. In the culture system 1, the phenolic metabolic function of the bacterial group in the mixed liquid containing the sludge-like material sent from the concentration step 3 is strengthened, and at the same time, the growth of the bacterial group that produces the metabolite is promoted, It is necessary to promote the accumulation of metabolites containing phenol and/or compounds with phenol-exposed groups within the microbial cells and their excretion from the microbial cells, thereby increasing the concentration of the metabolites in the mixed solution. Therefore, from the viewpoint of efficiency, it is desirable that the mixed liquid from the concentration step 3 has a MLSS of 5000 pp or more. In addition, the residence time in the culture system 1 is optimally 3 to 4 days,
Furthermore, if the retention period is less than 48 hours, the balance of the system cannot be maintained in the long term, resulting in decreased efficiency in the reaction process,
This results in a decrease in the separation performance of sludge-like substances, a deterioration in the quality of the treated water, and further deterioration of the culture conditions due to an increase in the amount of unreacted organic matter brought into the culture step 1. The culture system 1 is composed of an adjustment step 1-A and a culture step 1-B, and the mixed liquid containing sludge-like and lumpy reactants from the concentration step 3 is
First, it is sent to the adjustment process 1-A, and then to the culture process 1-B. The adjustment step 1-A consists of a closed container, and the liquid mixture accumulated in the closed container is cut off from contact with air. The adjustment process 1
- In A, the phenolic metabolic function of the soil facultative anaerobic bacteria group or the bacterial group consisting of soil facultative anaerobic bacteria and soil aerobic bacteria contained in the inflow mixture is soil-biased. It is significantly strengthened by coexisting with a group of anaerobic bacteria, and then the mixed solution is sent to culture step 1-B and stagnates,
Activation of the bacterial group with enhanced phenolic metabolic function is further promoted. When starting the operation of the culture system 1, soil bacteria coexisting with obligate anaerobic bacteria in the absence of free oxygen and containing soil bacteria with a pronounced phenolic metabolic function, as well as Escherichia coli, putrefactive bacteria, Adjustment step 1 using the sludge mixture in which harmful bacteria other than the soil bacterial groups have been inactivated or killed, as seed bacteria.
- It is necessary to add at least 10% of the capacity of A. Note that when a substance containing a metabolite containing phenol and/or a compound with a phenol-exposed group, such as a humic plant, is added to the culture system 1, it is not necessary to introduce a starter.
The term humus here refers to a mixture of humus and humus precursors, and the term humus precursors is a general term for process substances that convert organic matter into humus. Note that the operating conditions for the various steps described above are summarized in Table 1.

【表】【table】

【表】 なお第1図並びに第1表に示した予備反応工程
4においては、培養システム1並びに反応工程2
において惹起する前記細菌群の活性化並びに重縮
合を含む巨大分子化並びに汚泥化を、不完全な状
態ではあるが予備的に進展させるのであるから、
当該廃水処理系としての効率化のためには、設置
されることが望ましい。
[Table] In addition, in the preliminary reaction step 4 shown in FIG. 1 and Table 1, the culture system 1 and the reaction step 2 are
This is because the activation of the bacterial group, the formation of macromolecules including polycondensation, and the formation of sludge, which are caused in
In order to improve the efficiency of the wastewater treatment system, it is desirable to install one.

【表】 (発明の効果) 以上の説明から明らかなように、この発明方法
は、同一廃水処理系内において生棲するフエノー
ル又は/及びフエノール露出基のある化合物を含
む代謝産物を産出するよう順馴された細菌群が生
成する代謝産物と、廃水中の有機成分との物理化
学反応による急速な汚泥状物質の生成により、廃
水の浄化作用を著しく進展させるものである。こ
の急速な汚泥状物質の生成により廃水のBOD濃
度が激減されるために、BOD濃度の高い廃水で
あつても、従来法のように廃水を稀釈する必要は
なく、従つて処理水量は増加せず、装置の小型化
により運転管理が単純化される効果があると共
に、稀釈の不要に伴う給水施設の諸経費の節減が
図れる。又、原水のBOD濃度の低い場合におい
ても、一般には栄養分の添加をなす必要がなく、
滞溜時間の短縮を図れるところから、処理の効率
化がもたらされる。更に、該代謝産物の有する土
壌細菌以外の細菌群に対する抗菌作用により、処
理工程並びに分離汚泥中での大腸菌、腐敗菌等の
有害菌の生育が抑制され、汚泥の有効利用が促進
される。廃水中の無機イオン性物質は、当該廃水
処理系での生成汚泥がキレート構造を有する関係
から、効率よく除去されることとなる。又、廃水
中の臭成分も該代謝産物と反応することにより固
定され、処理工程における一切の悪臭の発生が防
止される。
[Table] (Effects of the Invention) As is clear from the above explanation, the method of the present invention is adapted to produce metabolites containing phenols and/or compounds with exposed phenol groups that live in the same wastewater treatment system. The rapid production of sludge-like substances through physicochemical reactions between metabolites produced by adapted bacterial groups and organic components in wastewater significantly improves the purification effect of wastewater. This rapid production of sludge-like substances drastically reduces the BOD concentration of wastewater, so even if the wastewater has a high BOD concentration, there is no need to dilute the wastewater as in conventional methods, and the amount of treated water does not increase. First, the miniaturization of the device has the effect of simplifying operation and management, and the overhead of water supply facilities can be reduced due to the unnecessary need for dilution. In addition, even when the BOD concentration of raw water is low, there is generally no need to add nutrients.
The reduction in residence time leads to improved processing efficiency. Furthermore, the antibacterial action of the metabolite against bacterial groups other than soil bacteria suppresses the growth of harmful bacteria such as Escherichia coli and putrefactive bacteria during the treatment process and in the separated sludge, promoting the effective use of the sludge. Inorganic ionic substances in wastewater are efficiently removed because the sludge produced in the wastewater treatment system has a chelate structure. In addition, odor components in the wastewater are also fixed by reacting with the metabolites, thereby preventing the generation of any bad odor during the treatment process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は巨大分子化と酸素反応との関係図、第
2図は汚泥培養におけるPH変動の模式図、第3図
は細菌群の生棲条件と生成代謝産物量との関係
図、第4図は本発明処理法の基本フローチヤー
ト、をそれぞれ示したものである。
Figure 1 is a diagram of the relationship between macromolecule formation and oxygen reactions, Figure 2 is a schematic diagram of PH fluctuations in sludge culture, Figure 3 is a diagram of the relationship between the living conditions of bacterial groups and the amount of metabolites produced, and Figure 4 is a diagram of the relationship between bacterial group living conditions and the amount of metabolites produced. The figures each show a basic flowchart of the treatment method of the present invention.

Claims (1)

【特許請求の範囲】 1 有機質物質を含む廃水を反応工程、濃縮工程
へと順次送ると共に濃縮工程で分離された汚泥状
反応物質を含む混合溶液の一部を培養システムを
経由して再び反応工程へ返送させる有機性物質を
含む廃水の処理方法であつて、前記培養システム
が、調整工程並びに培養工程とからなり、かつ該
培養システムを含む廃水循環系に含まれる細菌群
が、土壌性偏性嫌気性細菌群と、フエノール又
は/及びフエノール露出基のある化合物を含む代
謝産物を産出するように順馴された土壌性通性嫌
気性細菌群又は該順馴された土壌性通性嫌気性細
菌と土壌性好気性細菌とよりなる細菌群とが共存
する細菌群であり、さらに前記培養システムにお
いては、細菌群の活動によるフエノール又は/及
びフエノール露出基のある化合物を含む代謝産物
を可能な限り増量させることにより、反応工程へ
フエノール又は/及びフエノール露出基のある化
合物を含む代謝産物を供給し、該反応工程におい
ては、培養システムから送入されるフエノール又
は/及びフエノール露出基のある化合物を含む代
謝産物と原廃水とを混合することによつて、化学
的又は/及び生物学的汚泥を形成し、次いで未反
応有機物と前記化学的又は/及び生物学的汚泥が
共存することによつて塊状産物を形成し、前記濃
縮工程においては、反応工程から送られてくる汚
泥状並びに塊状反応物質を含む混合液を濃縮分離
すると同時に濃縮液の一部を前記培養システムへ
返送することを特徴とする有機性物質を含む廃水
の処理方法。 2 前記調整工程が密閉容器よりなり、該密閉容
器内に滞留する廃水が空気との接触を遮断された
状態にあることを特徴とする特許請求の範囲第1
項記載の有機性物質を含む廃水の処理方法。 3 前記調整工程及び培養工程における廃水の滞
留時間が24時間以上であることを特徴とする特許
請求の範囲第1項記載の有機性物質を含む廃水の
処理方法。 4 前記調整工程における廃水中の酸化還元電位
が−350mV以下であることを特徴とする特許請
求の範囲第1項記載の有機性物質を含む廃水の処
理方法。 5 前記調整工程における廃水中の水素イオン濃
度が7.0以上9.5以下であることを特徴とする特許
請求の範囲第1項記載の有機性物質を含む廃水の
処理方法。 6 前記培養工程における廃水中の酸化還元電位
が−150mV以上−350mV以下であることを特徴
とする特許請求の範囲第1項記載の有機性物質を
含む廃水の処理方法。 7 前記培養工程における廃水中の水素イオン濃
度が6.5以上9.5以下であることを特徴とする特許
請求の範囲第1項記載の有機性物質を含む廃水の
処理方法。 8 前記反応工程における廃水中の水素イオン濃
度が5.0以上7.5以下であることを特徴とする特許
請求の範囲第1項記載の有機性物質を含む廃水の
処理方法。
[Scope of Claims] 1. Wastewater containing organic substances is sequentially sent to a reaction process and a concentration process, and a part of the mixed solution containing sludge-like reactants separated in the concentration process is sent via a culture system to the reaction process again. A method for treating wastewater containing organic substances that is returned to A group of soil facultative anaerobic bacteria adapted to produce a group of anaerobic bacteria and a metabolite containing a phenol or/and a compound with an exposed phenol group, or the adapted soil facultative anaerobic bacteria. This is a bacterial group that coexists with a bacterial group consisting of soil aerobic bacteria and soil aerobic bacteria, and furthermore, in the culture system, metabolites containing phenol and/or compounds with phenol-exposed groups due to the activities of the bacterial group are removed as much as possible. By increasing the amount, a metabolite containing phenol or/and a compound with a phenol-exposed group is supplied to the reaction step, and in the reaction step, the phenol or/and the compound with a phenol-exposed group fed from the culture system is supplied to the reaction step. A chemical or/and biological sludge is formed by mixing the containing metabolites with the raw wastewater, and then the chemical and/or biological sludge coexists with unreacted organic matter. A lumpy product is formed, and in the concentration step, a mixed solution containing sludge-like and lumpy reactants sent from the reaction step is concentrated and separated, and at the same time, a part of the concentrated solution is returned to the culture system. A method for treating wastewater containing organic substances. 2. Claim 1, characterized in that the adjustment step comprises a closed container, and the wastewater retained in the closed container is cut off from contact with air.
Method for treating wastewater containing organic substances as described in Section 1. 3. The method for treating wastewater containing organic substances according to claim 1, wherein the residence time of the wastewater in the conditioning step and the culturing step is 24 hours or more. 4. The method for treating wastewater containing organic substances according to claim 1, wherein the redox potential of the wastewater in the adjustment step is -350 mV or less. 5. The method for treating wastewater containing organic substances according to claim 1, wherein the hydrogen ion concentration in the wastewater in the adjustment step is 7.0 or more and 9.5 or less. 6. The method for treating wastewater containing organic substances according to claim 1, wherein the redox potential of the wastewater in the culturing step is -150 mV or more and -350 mV or less. 7. The method for treating wastewater containing organic substances according to claim 1, wherein the hydrogen ion concentration in the wastewater in the culturing step is 6.5 or more and 9.5 or less. 8. The method for treating wastewater containing organic substances according to claim 1, wherein the hydrogen ion concentration in the wastewater in the reaction step is 5.0 or more and 7.5 or less.
JP60102669A 1985-05-16 1985-05-16 Treatment of waste water containing organic substance Granted JPS61263697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60102669A JPS61263697A (en) 1985-05-16 1985-05-16 Treatment of waste water containing organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60102669A JPS61263697A (en) 1985-05-16 1985-05-16 Treatment of waste water containing organic substance

Publications (2)

Publication Number Publication Date
JPS61263697A JPS61263697A (en) 1986-11-21
JPH0566199B2 true JPH0566199B2 (en) 1993-09-21

Family

ID=14333636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60102669A Granted JPS61263697A (en) 1985-05-16 1985-05-16 Treatment of waste water containing organic substance

Country Status (1)

Country Link
JP (1) JPS61263697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043961A1 (en) 2017-08-31 2019-03-07 G-8 International Trading 株式会社 Method for producing fulvic acid solution, and fulvic acid solution
JP2022058353A (en) * 2017-10-31 2022-04-12 G-8 International Trading 株式会社 Method for manufacturing mixed solution of fulvic acid and humic acid, and humic acid manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245899A (en) * 1988-03-25 1989-10-02 Toyo Bio Riakutaa Kk Preparation of artificial humic material
JP4392262B2 (en) * 2003-02-25 2009-12-24 株式会社神鋼環境ソリューション Organic wastewater treatment system and treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177193A (en) * 1983-02-15 1984-10-06 Mamoru Uchimizu Treatment of waste water containing organic substance by bioreaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177193A (en) * 1983-02-15 1984-10-06 Mamoru Uchimizu Treatment of waste water containing organic substance by bioreaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043961A1 (en) 2017-08-31 2019-03-07 G-8 International Trading 株式会社 Method for producing fulvic acid solution, and fulvic acid solution
KR20200044718A (en) 2017-08-31 2020-04-29 지-8 인터내셔널 트레이딩 가부시키가이샤 Manufacturing method of fulvic acid solution and fulvic acid solution
US11111187B2 (en) 2017-08-31 2021-09-07 G-8 International Trading Co., Ltd Production method for fulvic acid solution, and fulvic acid solution
KR20230012071A (en) 2017-08-31 2023-01-25 지-8 인터내셔널 트레이딩 가부시키가이샤 Method for Preparing Mixed Solution of Fulvic Acid and Humic Acid and Method for Preparing Humic Acid
JP2022058353A (en) * 2017-10-31 2022-04-12 G-8 International Trading 株式会社 Method for manufacturing mixed solution of fulvic acid and humic acid, and humic acid manufacturing method

Also Published As

Publication number Publication date
JPS61263697A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
US7731851B2 (en) Waste water treatment
MX2012007494A (en) Improved digestion of biosolids in wastewater.
KR102361968B1 (en) The wastewater treatment method using compound microorganisms
KR100785849B1 (en) Manufacture methods of fertilizer about organic waste in excrements of livestock
JP5736308B2 (en) Microbial activity improving agent, microbial activity improving method, and biological waste treatment method
JPH0566199B2 (en)
KR100391137B1 (en) Bacteria group of bacillus spp in the aerobic reacting device and method for treating nihgtsoil, stackbreeding waste water, leachate and industrial organic wastewater
JPH0214119B2 (en)
JP2006231228A (en) Treatment method of sweet potato shochu lees waste water
JP6852214B2 (en) Sewage treatment system
JP6741906B1 (en) Sewage treatment system
KR100311587B1 (en) Batch type apparatus for treating organic wastewater/sewage
KR20170045707A (en) A treatment method of concentrated waste water oder using soilmicrobes population
KR200172809Y1 (en) Bacteria group of bacillus spp in the aerobic reacting device for treating nihgtsoil, stackbreeding waste water, leachate and industrial organic wastewater
KR100254523B1 (en) Natural purification method and apparatus thereof
KR100393921B1 (en) Process for Sewage treatment by humix reaction
JPS6133297A (en) Treatment of waste water containing organic substance
JP5767773B2 (en) Organic wastewater treatment method and chemicals used in the treatment method
JPS61271095A (en) Process for treating waste water containing organic substance to convert to resources
JPS60235693A (en) Treatment of waste water containing organic substance
JPS6012194A (en) Treatment of waste water containing organic substance by biological reaction
JPH0679713B2 (en) Biological treatment method of organic wastewater
KR200172808Y1 (en) Bacteria group of bacillus spp in treating equipmentd for sewage and waste water
JPS59166293A (en) Treatment of waste water containing organic material by biological reaction
KR100391136B1 (en) Bacteria group of bacillus spp in treating equipment and method for sewage and waste water

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term