JPH0566176B2 - - Google Patents

Info

Publication number
JPH0566176B2
JPH0566176B2 JP61198972A JP19897286A JPH0566176B2 JP H0566176 B2 JPH0566176 B2 JP H0566176B2 JP 61198972 A JP61198972 A JP 61198972A JP 19897286 A JP19897286 A JP 19897286A JP H0566176 B2 JPH0566176 B2 JP H0566176B2
Authority
JP
Japan
Prior art keywords
water
perovskite catalyst
producing
perovskite
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61198972A
Other languages
Japanese (ja)
Other versions
JPS6354938A (en
Inventor
Hiromi Terada
Kenji Tabata
Ikuo Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Panasonic Holdings Corp
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP61198972A priority Critical patent/JPS6354938A/en
Publication of JPS6354938A publication Critical patent/JPS6354938A/en
Publication of JPH0566176B2 publication Critical patent/JPH0566176B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ペロブスカイト型触媒に関し、更に
詳しくは、優れた触媒活性を有するペロブスカイ
ト型触媒を容易に製造する方法に関する。 (従来の技術) 従来、アルカリ土類金属または希土類元素と遷
移金属との酸化物からなるペロブスカイト型触媒
は公知であり、優れた特性を有する各種触媒とし
て広く研究されている。 このようなペロブスカイト型触媒は粉末として
も使用されるが、多くは構造担体に担持させて使
用されている。構造担体に担持させる方法として
はペロブスカイト型触媒粉末をバインダー中に分
散せしめて構造担体上に担持させる方法が採用さ
れている。この方法では、粉末のバインダー中へ
の分散、構造担体への塗布等の工程が必要とされ
て、煩雑であるとともに、バインダーの使用によ
つてペロブスカイト型触媒の効面面積が必然的に
低下し、ペロブスカイト型触媒の本来の触媒活性
を十分に発揮できないという問題があつた。この
ような問題点を解決するために、構造担体、例え
ば、多孔質ハニカム担体上で直接ペロブスカイト
型触媒を形成する方法が研究されている。 (発明が解決しようとしている問題点) 上記構造担体上で直接ペロブスカイト型触媒を
形成する方法は、ペロブスカイト型触媒を形成す
るアルカリ土類金属または希土類元素と遷移金属
の夫々の水溶性塩の水溶液を構造担体中に含浸せ
しめ、次いで乾燥および焼成して構造担体上でペ
ロブスカイト型触媒を形成する方法であるため、
夫々の水溶性塩の熱分解によつてNOxガス(水
溶性塩が硝酸塩の場合)、SOxガス(水溶性塩が
硫酸塩の場合)等の有毒ガスが発生し、種々の問
題が発生している。 従つて、本発明の目的は、上記の如き有毒ガス
の発生のないペロブスカイト型触媒の製造方法を
提供することであり、このような目的は以下の本
発明により達成された。 (問題点を解決するための手段) すなわち、本発明は、一般式ABO3(Aはアル
カリ土類金属または希土類元素であり、BはCo、
Ni、Mn、Feからなる群から選ばれる遷移金属で
ある)で表わされるペロブスカイト型触媒を、構
造担体に担持させるペロブスカイト型触媒の製造
方法において、Aの水溶性塩とBの水溶性塩の水
溶液からコロイド状酸化物および/または水酸化
物を混合析出せしめ、次いで得られた析出物を構
造担体に含浸後焼成することを特徴とするペロブ
スカイト型触媒の製造方法である。 次に本発明を詳細に説明すると、本発明のペロ
ブスカイト型触媒の製造に使用する希土類元素と
は、ランタン、セリウム、プラセオジウム、ネオ
ジウム、プロメチウム、サマリウム、ユーロピウ
ム、ガドリウム等の希土類元素であり、またこれ
らの希土類元素の1部または全部に代えて、スト
ロンチウム、バリウム等のアルカリ土類金属も使
用できる。本発明においてはこれらのアルカリ土
類金属または希土類元素を2〜4価の水溶性塩と
して使用する。 これらの水溶性塩としては、塩化物、硝酸塩、
硫酸塩、酢酸塩等水溶性の化合物であればいかな
るものでもよく、またこれら化合物は、単独でも
混合物としても使用することができる。 本発明で使用する遷移金属とは、鉄、コバル
ト、ニツケルまたはマンガンであり、本発明にお
いては、これらの遷移金属を2価または3価の水
溶性塩として使用する。 これらの水溶性塩としては、塩化物、硝酸塩、
硫酸塩、酢酸塩等水溶性の化合物であればいずれ
でもよく、また、これらの化合物は、単独でも混
合物としても使用できる。 本発明においては、上記の如きアルカリ土類金
属または希土類元素の水溶性塩と遷移金属の水溶
性塩とを金属モル比が約1:1で使用するのが好
ましく、またアルカリ土類金属または希土類元素
の水溶性塩と遷移金属の水溶性塩との少なくとも
一方または一部が2価の金属として使用するのが
好ましい。 本発明においては上記の如きアルカリ土類金属
または遷移金属の水溶性塩および遷移金属の水溶
性塩の水溶液からコロイド状の酸化物および/ま
たは水酸化物を析出せしめる必要があるが、析出
せしめる方法としては、これらの混合塩水溶液を
陰イオン交換樹脂を用いてコロイド状の混合酸化
物および/または水酸化物ゾルを生成させる方法
および、上記混合水溶性塩溶液をアルカリ剤によ
つて中和してコロイド状の酸化物および/または
水酸化物を析出せしめる方法等が利用できるが、
前者の方法はコスト高であり、且つ濃厚ゾルの形
成が困難であるので、後者の方法がより好ましい
方法である。 上記のアルカリ土類金属または希土類元素の水
溶性塩と遷移金属の水溶性塩の水溶液から、これ
らをアルカリ剤で中和してその酸化物および/ま
たは水酸化物を混合析出する方法はいずれの方法
でもよく、例えば、 (1) アルカリ土類金属または遷移金属の水溶性塩
と遷移金属の水溶性塩とを水中に溶解した水溶
液を調製し、この中にアルカリ剤またはその水
溶液を添加して中和する方法。 (2) 上記水溶液を別々または混合してアルカリ剤
の水溶液中に注入する方法。 (3) アルカリ剤の水溶液中にアルカリ土類金属ま
たは希土類元素の水溶性塩と遷移金属の水溶性
塩を別々または同時に添加する方法。 (4) 上記(1)〜(3)において、アルカリ土類金属また
は希土類元素の水溶性塩と遷移金属の水溶性塩
またはそれらの水溶液をアルカリ剤の水溶液中
に順次添加する方法。 等が使用でき、これらに限定されず、要するにア
ルカリ土類金属または希土類元素の酸化物およ
び/または水酸化物と遷移金属の酸化物および/
または水酸化物とが均一に混合した状態で得られ
る方法であればいかなる方法でもよい。 このような混合析出方法において使用するアル
カリ剤としては、水酸化ナトリウム、水酸化カリ
ウム、炭酸ナトリウム、アンモニア水等いずれの
アルカリ剤でもよい。 アルカリ剤の使用量は、上記のアルカリ土類金
属または希土類元素と遷移金属との水溶性塩を中
和できる量であればよいが、過剰のアルカリ剤を
使用するのが好ましい。 また、これらの中和によつて生じるアルカリ土
類金属または希土類元素と遷移金属の酸化物およ
び/または水酸化物のスラリー濃度は、約2〜8
重量%程度が好適である。 本発明においては、このようにして得られたス
ラリー中の2価の金属イオンをスラリー中で3価
の金属イオンに酸化することが好ましい。 使用する酸化剤としては、過酸化水素、酸素、
塩素酸ナトリウム等いずれの酸化剤でもよいが、
好ましいものは、酸化によつて不純物を生じない
酸化剤、例えば、過酸化水素や酸素ガスが好まし
い。 酸化剤の使用量は、2価の金属が3価の金属イ
オンに酸化されるのに必要な量であればよいが、
酸化および析出物の微細化を完全にするためにあ
る程度過剰な割合で使用するのが好ましい。 このような酸化は、前記のスラリーをそのまま
使用してもよいし、また、予め前記スラリーか
ら、不要なカチオンやアニオン、例えばナトリウ
ムイオンやカリウムイオン等のカチオンあるいは
塩素イオンや各種の陰イオンを除去した後行つて
もよい。 そのまま使用して酸化を行つた場合には酸化終
了後に上記の如き各種の不要なイオンをスラリー
の濾過、水洗等によつてできる限り除去する。 この様にして得たペロブスカイト型触媒の前駆
体であるスラリーを適当量の水と共に再解こうし
コロイド状とする。またより一層の分散安定性を
増すため分散剤として、リン酸、ポリリン酸、リ
ン酸塩、ポリリン酸塩類等を0.2〜2重量%の範
囲で添加し、分散安定性の高いスラリーとするこ
とができる。使用する分散剤としてはオルトリン
酸ナトリウム、メタリン酸ナトリウム等のリン酸
塩またはナトリウム等の陽イオンを除いたリン酸
等のモノリン酸系、ピロリン酸ナトリウム、ヘキ
サメタリン酸ナトリウム等のポリリン酸塩または
ナトリウム等の陽イオンを除いたポリリン酸等が
使用可能であり、勿論単独または混合物でもかま
わない。 本発明では、このようにして得られた酸化物お
よび/または水酸化物のスラリーを触媒用の構造
担体に含浸させる。構造担体は多孔質であればい
ずれの形状でもよく、例えば、従来構造担体とし
て広く使用されている多孔質ハニカム担体が好ま
しい。このような構造担体への前記スラリーの含
浸量は、構造担体の気孔率によつて変化し、一概
には規定できないが、一般的には、多孔質部分
100重量部あたり固形分として1〜10重量部であ
る。含浸は所定の含浸量になるまで複数回行つて
もよい。 このように含浸した構造担体を通常の雰囲気、
好ましくは非還元性の雰囲気下で、約600〜1000
℃の温度、好ましくは800℃程度の温度で約5分
〜1時間焼成することによつて本発明の目的であ
るペロブスカイト型触媒を得ることができる。 (作用・効果) 以上の如き本発明によれば、何らのバインダー
を使用することなく、また何らの有毒ガスの発生
もなく非常に触媒活性の大なるペロブスカイト型
触媒を特別高価な装置を使用することなく容易に
提供することができる。 次に実施例を挙げて本発明を具体的に説明す
る。尚、文中、%とあるのは特に断りのない限り
重量基準である。 実施例 1 酸化ランタンLa2O332.6gを60%硝酸水溶液43
c.c.に完全に溶解し、この水溶液中に硝酸コバルト
CO(NO32・6H2O58.2gを溶解し、水を加えて
全量を300c.c.とする。 一方、水酸化ナトリウム38gを水200c.c.に溶解
した溶液および過酸化水素15%水溶液100c.c.を用
意し、予め500c.c.の水を入れた撹拌機付の容器中
に上記3溶液を同時に注入する。この間スラリー
液のPHは9付近に、そして温度を30℃に維持す
る。 析出反応および酸化反応終了後、過剰の水酸化
ナトリウム水溶液を添加し、PHを10としその後80
℃で1時間加熱熟成する。 得られた黒かつ色の生成物を濾過および水洗
し、不要なカチオンやアニオン等の不純物を除去
した後、適当量の水を加えてホモミキサーで解こ
うし、全量を400c.c.のスラーとし、分散剤として
ヘキサメタリン酸ソーダ0.8gを添加する。 上記コロイド状スラリーに、セル数400セル/
inch2、直径20mm、高さ10mmのコーラジライトハ
ニカムを含浸し、余分のスラリーを除去した後乾
燥し、850℃で30分間焼成した。担持量はハニカ
ムの5.4%であつた。このようにして得られた多
孔質ハニカム担体の触媒活性は、プロパン3ml/
min.、空気300ml/min.の混合ガスを通常の固定
床流通式反応装置を利用して燃焼させて評価し
た。その結果を第1図に示した(SV=
7200H-1)。 実施例 2 酸化ランタンの代わりに、三徳金属(株)製混合希
土元素レツクス70または日産希土元素(株)製混合希
土元素29.0gを使用する以外は実施例1と同様に
してコロイド状スラリーを得た。尚、表1に本実
施例で使用した2種類の混合希土元素の組成を
夫々示した。また実施例1と同様のハニカムに担
持し、800℃で30分間焼成した。担持量はハニカ
ムの5.4%であつた。実施例1と同様に触媒活性
の評価をし、三徳金属(株)製混合希土元素を用いた
時の結果を第1図に示した。
(Industrial Application Field) The present invention relates to a perovskite catalyst, and more particularly to a method for easily producing a perovskite catalyst having excellent catalytic activity. (Prior Art) Perovskite catalysts made of oxides of alkaline earth metals or rare earth elements and transition metals have been known and have been widely studied as various catalysts having excellent properties. Although such perovskite catalysts are used as powders, they are often supported on structural carriers. As a method for supporting the catalyst on the structural support, a method has been adopted in which perovskite catalyst powder is dispersed in a binder and then supported on the structural support. This method requires steps such as dispersing the powder in a binder and coating it on a structural support, which is complicated, and the use of a binder inevitably reduces the effective area of the perovskite catalyst. However, there was a problem that the original catalytic activity of the perovskite catalyst could not be fully demonstrated. In order to solve these problems, research has been carried out on a method of directly forming a perovskite catalyst on a structured carrier, such as a porous honeycomb carrier. (Problems to be Solved by the Invention) The method for forming a perovskite catalyst directly on the above-mentioned structural support is to form an aqueous solution of a water-soluble salt of each of an alkaline earth metal or a rare earth element and a transition metal to form a perovskite catalyst. This is a method in which a perovskite-type catalyst is formed on a structured carrier by impregnating it into a structured carrier, followed by drying and calcination.
The thermal decomposition of each water-soluble salt generates toxic gases such as NOx gas (if the water-soluble salt is nitrate) and SOx gas (if the water-soluble salt is sulfate), causing various problems. There is. Therefore, an object of the present invention is to provide a method for producing a perovskite catalyst that does not generate toxic gases as described above, and this object has been achieved by the present invention described below. (Means for Solving the Problems) That is, the present invention has the general formula ABO 3 (A is an alkaline earth metal or a rare earth element, B is Co,
A method for producing a perovskite catalyst, in which a perovskite catalyst represented by a transition metal selected from the group consisting of Ni, Mn, and Fe is supported on a structural support, in which an aqueous solution of a water-soluble salt of A and a water-soluble salt of B is provided. This is a method for producing a perovskite type catalyst, which is characterized in that colloidal oxides and/or hydroxides are mixed and precipitated from a colloidal oxide and/or hydroxide, and then the resulting precipitate is impregnated into a structural support and then fired. Next, to explain the present invention in detail, the rare earth elements used in the production of the perovskite catalyst of the present invention are rare earth elements such as lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, and gadolinium. Alkaline earth metals such as strontium and barium can also be used in place of part or all of the rare earth elements. In the present invention, these alkaline earth metals or rare earth elements are used as di- to tetravalent water-soluble salts. These water-soluble salts include chlorides, nitrates,
Any water-soluble compound such as sulfate or acetate may be used, and these compounds can be used alone or as a mixture. The transition metals used in the present invention are iron, cobalt, nickel, or manganese, and in the present invention, these transition metals are used as divalent or trivalent water-soluble salts. These water-soluble salts include chlorides, nitrates,
Any water-soluble compound such as sulfate or acetate may be used, and these compounds can be used alone or as a mixture. In the present invention, it is preferable to use a water-soluble salt of an alkaline earth metal or rare earth element as described above and a water-soluble salt of a transition metal in a metal molar ratio of about 1:1. It is preferred that at least one or a portion of the water-soluble salts of the elements and the water-soluble salts of the transition metals be used as divalent metals. In the present invention, it is necessary to precipitate colloidal oxides and/or hydroxides from aqueous solutions of water-soluble salts of alkaline earth metals or transition metals and water-soluble salts of transition metals as described above. There is a method in which a colloidal mixed oxide and/or hydroxide sol is produced from these mixed salt aqueous solutions using an anion exchange resin, and a method in which the above mixed aqueous salt solutions are neutralized with an alkali agent. Methods such as precipitating colloidal oxides and/or hydroxides can be used, but
Since the former method is expensive and difficult to form a concentrated sol, the latter method is more preferred. Which method is used to mix and precipitate the oxides and/or hydroxides of water-soluble salts of alkaline earth metals or rare earth elements and water-soluble transition metals from an aqueous solution by neutralizing them with an alkaline agent? For example, (1) a water-soluble salt of an alkaline earth metal or a transition metal and a water-soluble salt of a transition metal are dissolved in water to prepare an aqueous solution, and an alkali agent or its aqueous solution is added thereto. How to neutralize. (2) A method in which the above aqueous solutions are injected into an aqueous solution of an alkaline agent, either separately or in a mixture. (3) A method in which a water-soluble salt of an alkaline earth metal or rare earth element and a water-soluble salt of a transition metal are added separately or simultaneously to an aqueous solution of an alkaline agent. (4) A method according to (1) to (3) above, in which a water-soluble salt of an alkaline earth metal or rare earth element, a water-soluble salt of a transition metal, or an aqueous solution thereof are sequentially added to an aqueous solution of an alkaline agent. In short, oxides and/or hydroxides of alkaline earth metals or rare earth elements and oxides and/or hydroxides of transition metals can be used.
Alternatively, any method may be used as long as it can be obtained in a uniformly mixed state with the hydroxide. The alkaline agent used in such a mixed precipitation method may be any alkaline agent such as sodium hydroxide, potassium hydroxide, sodium carbonate, or ammonia water. The amount of alkaline agent used may be any amount that can neutralize the water-soluble salt of the alkaline earth metal or rare earth element and transition metal, but it is preferable to use an excess amount of the alkaline agent. In addition, the slurry concentration of oxides and/or hydroxides of alkaline earth metals or rare earth elements and transition metals generated by these neutralizations is about 2 to 8
Approximately % by weight is suitable. In the present invention, it is preferable that divalent metal ions in the slurry thus obtained be oxidized to trivalent metal ions in the slurry. Oxidizing agents used include hydrogen peroxide, oxygen,
Any oxidizing agent such as sodium chlorate may be used, but
Preferred are oxidizing agents that do not produce impurities upon oxidation, such as hydrogen peroxide or oxygen gas. The amount of the oxidizing agent used may be the amount necessary for oxidizing the divalent metal to trivalent metal ions, but
It is preferable to use a certain amount of excess in order to complete oxidation and refinement of precipitates. Such oxidation may be carried out by using the slurry as it is, or by removing unnecessary cations and anions, such as cations such as sodium ions and potassium ions, chloride ions, and various anions from the slurry in advance. You can go after that. When the slurry is used as it is for oxidation, after the oxidation is completed, the various unnecessary ions mentioned above are removed as much as possible by filtering the slurry, washing with water, etc. The thus obtained slurry, which is a precursor of a perovskite catalyst, is redissolved with an appropriate amount of water to form a colloid. In addition, to further increase dispersion stability, it is possible to add phosphoric acid, polyphosphoric acid, phosphates, polyphosphates, etc. as a dispersant in the range of 0.2 to 2% by weight to create a slurry with high dispersion stability. can. Dispersants to be used include phosphates such as sodium orthophosphate and sodium metaphosphate, monophosphoric acids such as phosphoric acid excluding cations such as sodium, polyphosphates or sodium such as sodium pyrophosphate and sodium hexametaphosphate, etc. It is possible to use polyphosphoric acid from which cations have been removed, and of course they may be used alone or as a mixture. In the present invention, the slurry of the oxide and/or hydroxide thus obtained is impregnated into a structural support for the catalyst. The structural carrier may have any shape as long as it is porous; for example, a porous honeycomb carrier, which has been widely used as a conventional structural carrier, is preferred. The amount of the slurry impregnated into such a structural support varies depending on the porosity of the structural support and cannot be unconditionally defined, but in general, it is
The solid content is 1 to 10 parts by weight per 100 parts by weight. Impregnation may be performed multiple times until a predetermined amount of impregnation is achieved. The structure carrier impregnated in this way is exposed to normal atmosphere,
about 600-1000, preferably under a non-reducing atmosphere
The perovskite type catalyst, which is the object of the present invention, can be obtained by firing at a temperature of about 800°C, preferably about 800°C, for about 5 minutes to 1 hour. (Function/Effect) According to the present invention as described above, a perovskite type catalyst with extremely high catalytic activity is used without using any binder and without generating any toxic gas using particularly expensive equipment. It can be easily provided without. Next, the present invention will be specifically explained with reference to Examples. In the text, percentages are based on weight unless otherwise specified. Example 1 32.6 g of lanthanum oxide La 2 O 3 was added to 60% nitric acid aqueous solution 43
Cobalt nitrate in this aqueous solution is completely dissolved in cc.
Dissolve 58.2 g of CO ( NO 3 ) 2.6H 2 O and add water to make a total volume of 300 c.c. On the other hand, prepare a solution of 38 g of sodium hydroxide dissolved in 200 c.c. of water and 100 c.c. of a 15% aqueous solution of hydrogen peroxide, and place the above three in a container equipped with a stirrer and previously filled with 500 c.c. Inject the solutions simultaneously. During this time, the pH of the slurry liquid is maintained at around 9 and the temperature is maintained at 30°C. After the precipitation reaction and oxidation reaction were completed, excess sodium hydroxide aqueous solution was added to adjust the pH to 10, and then to 80.
Heat and ripen at ℃ for 1 hour. The obtained black and colored product is filtered and washed with water to remove impurities such as unnecessary cations and anions, then an appropriate amount of water is added and dissolved in a homomixer, and the entire amount is mixed into a slurry of 400 c.c. Then, 0.8 g of sodium hexametaphosphate was added as a dispersant. In the above colloidal slurry, 400 cells/
A coradilite honeycomb with a diameter of 20 mm and a height of 10 mm was impregnated, dried after removing excess slurry, and fired at 850°C for 30 minutes . The supported amount was 5.4% of the honeycomb. The catalytic activity of the porous honeycomb carrier thus obtained was 3 ml of propane/
min., and air at 300 ml/min., by burning a mixed gas using a conventional fixed bed flow reactor. The results are shown in Figure 1 (SV=
7200H -1 ). Example 2 A colloidal product was prepared in the same manner as in Example 1 except that instead of lanthanum oxide, mixed rare earth element REX 70 manufactured by Santoku Metal Co., Ltd. or mixed rare earth element 29.0 g manufactured by Nissan Rare Earth Element Co., Ltd. was used. Got slurry. Table 1 shows the compositions of the two types of mixed rare earth elements used in this example. Further, it was supported on the same honeycomb as in Example 1 and fired at 800°C for 30 minutes. The supported amount was 5.4% of the honeycomb. The catalytic activity was evaluated in the same manner as in Example 1, and the results when mixed rare earth elements manufactured by Santoku Metals Co., Ltd. were used are shown in FIG.

【表】 実施例 3 硝酸コバルトCo(NO32・6H2O58.2gに代え
て、硝酸マンガンMn(NO32・4H2O50.2gを使
用する以外は、実施例1と同様にしてLaMnO3
前駆体のコロイド状ラリーを得た。また実施例1
と同様のハニカムに担持し、800℃で30分間焼成
した。担持量はハニカム4.5%であつた。実施例
1と同様に触媒活性の評価をし、その結果を第1
図に示した。 実施例 4 硝酸コバルトCo(NO32・6H2O58.2gに代え
て、硝酸ニツケルNi(NO32・6H2O58.2gを使用
する以外は、実施例1と同様にしてLaNiO3の前
駆体のコロイド状スラリーを得た。また実施例1
と同様のハニカムに担持し、1000℃で30分間焼成
した。担持量はハニカム4.4%であつた。実施例
1と同様に触媒活性の評価をし、その結果を第1
図に示した。 実施例 5 水酸化ナトリウム38gの代りに、28%アンモニ
ア水100gを使用する以外は、実施例3と同様に
してLaMnO3の前駆体のコロイド状スラリーを得
た。その後も同様にして触媒活性の評価をし、そ
の結果を第1図に示した。 比較例 1 実施例1と同様にして黒かつ色の生成物を得
た。後、濾過、水洗し不要なカチオン、アニオン
等の不純物を除去し、100℃にて十分乾燥する。 この乾燥物を850℃で60分間焼成しLaCoO3
ロブスカイト型微粉末を得た。 この粉末2gを日産化学(株)製アルミナゾル
#200の2gおよび水2gに充分分散した後更に
水6gで希釈し、実施例1と同様なハニカムに6
%担持し、触媒活性を測定し、その結果を第1図
に示した。 比較例 2 実施例3と同様にして、黒かつ色の生成物を得
た後、濾過、水洗し、不要なカチオン、アニオン
等の不純物を除去し、100℃にて充分乾燥する。 この乾燥物を800℃、60分間焼成しLaMnO3
ペロブスカイト微粉末を得た。 この粉末を比較例1と同様にしてハニカムに担
持し、触媒活性を測定し、その結果を第1図に示
した。
[Table] Example 3 Same as Example 1 except that 50.2 g of manganese nitrate Mn (NO 3 ) 2・4H 2 O was used instead of 58.2 g of cobalt nitrate Co (NO 3 ) 2・6H 2 O. A colloidal slurry of LaMnO 3 precursor was obtained. Also, Example 1
It was supported on the same honeycomb as above and fired at 800°C for 30 minutes. The amount of honeycomb supported was 4.5%. The catalytic activity was evaluated in the same manner as in Example 1, and the results were used in the first
Shown in the figure. Example 4 LaNiO 3 was prepared in the same manner as in Example 1 except that 58.2 g of nickel nitrate Ni (NO 3 ) 2.6H 2 O was used instead of 58.2 g of cobalt nitrate Co (NO 3 ) 2.6H 2 O. A colloidal slurry of the precursor was obtained. Also, Example 1
It was supported on the same honeycomb as above and fired at 1000°C for 30 minutes. The amount of honeycomb supported was 4.4%. The catalytic activity was evaluated in the same manner as in Example 1, and the results were used in the first
Shown in the figure. Example 5 A colloidal slurry of a LaMnO 3 precursor was obtained in the same manner as in Example 3, except that 100 g of 28% aqueous ammonia was used instead of 38 g of sodium hydroxide. Thereafter, the catalytic activity was evaluated in the same manner, and the results are shown in FIG. Comparative Example 1 A black and colored product was obtained in the same manner as in Example 1. After that, it is filtered and washed with water to remove unnecessary cations, anions, and other impurities, and thoroughly dried at 100°C. This dried product was calcined at 850°C for 60 minutes to obtain a LaCoO 3 perovskite type fine powder. 2 g of this powder was sufficiently dispersed in 2 g of alumina sol #200 manufactured by Nissan Chemical Co., Ltd. and 2 g of water, and then further diluted with 6 g of water.
% supported and the catalytic activity was measured, and the results are shown in FIG. Comparative Example 2 After obtaining a black and colored product in the same manner as in Example 3, it is filtered, washed with water to remove unnecessary impurities such as cations and anions, and thoroughly dried at 100°C. This dried product was calcined at 800°C for 60 minutes to obtain a fine perovskite powder with LaMnO 3 . This powder was supported on a honeycomb in the same manner as in Comparative Example 1, and the catalytic activity was measured. The results are shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例および比較例で得られた触媒の
活性を示す。 1:実施例1、2;実施例2、3;実施例3、
4;実施例4、5;実施例5、6;比較例1、
7;比較例2。
FIG. 1 shows the activity of the catalysts obtained in Examples and Comparative Examples. 1: Examples 1, 2; Examples 2, 3; Example 3,
4; Examples 4, 5; Examples 5, 6; Comparative example 1,
7; Comparative example 2.

Claims (1)

【特許請求の範囲】 1 一般式ABO3(Aはアルカリ土類金属または
希土類元素であり、BはCo、Ni、Mn、Feから
なる群から選ばれる遷移金属である)で表わされ
るペロブスカイト型触媒を構造担体に担持させる
ペロブスカイト型触媒の製造方法において、Aの
水溶性塩とBの水溶性塩の水溶液からコロイド状
酸化物および/または水酸化物を混合析出せし
め、次いで得られた析出物を構造担体に含浸後焼
成することを特徴とするペロブスカイト型触媒の
製造方法。 2 構造担体が、多孔質ハニカム担体である特許
請求の範囲第1項に記載のペロブスカイト型触媒
の製造方法。 3 酸化物および/または水酸化物を、析出と同
時または析出後に液相中で酸化処理した後に構造
担体に含浸する特許請求の範囲第1項に記載のペ
ロブスカイト型触媒の製造方法。 4 酸化物および/または水酸化物のスラリーに
分散剤としてリン酸塩またはポリリン酸塩を添加
する特許請求の範囲第1項に記載のペロブスカイ
ト型触媒の製造方法。
[Claims] 1. A perovskite catalyst represented by the general formula ABO 3 (A is an alkaline earth metal or rare earth element, and B is a transition metal selected from the group consisting of Co, Ni, Mn, and Fe). In a method for producing a perovskite catalyst in which A and B are supported on a structural support, colloidal oxides and/or hydroxides are mixed and precipitated from an aqueous solution of a water-soluble salt of A and a water-soluble salt of B, and then the resulting precipitate is mixed and precipitated. A method for producing a perovskite catalyst, which comprises impregnating a structural carrier and then firing the catalyst. 2. The method for producing a perovskite catalyst according to claim 1, wherein the structural carrier is a porous honeycomb carrier. 3. The method for producing a perovskite catalyst according to claim 1, wherein the oxide and/or hydroxide is oxidized in a liquid phase at the same time as the precipitation or after the precipitation and then impregnated into the structural support. 4. The method for producing a perovskite catalyst according to claim 1, wherein a phosphate or polyphosphate is added as a dispersant to the slurry of the oxide and/or hydroxide.
JP61198972A 1986-08-27 1986-08-27 Production of perovskite type catalyst Granted JPS6354938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198972A JPS6354938A (en) 1986-08-27 1986-08-27 Production of perovskite type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198972A JPS6354938A (en) 1986-08-27 1986-08-27 Production of perovskite type catalyst

Publications (2)

Publication Number Publication Date
JPS6354938A JPS6354938A (en) 1988-03-09
JPH0566176B2 true JPH0566176B2 (en) 1993-09-21

Family

ID=16399989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198972A Granted JPS6354938A (en) 1986-08-27 1986-08-27 Production of perovskite type catalyst

Country Status (1)

Country Link
JP (1) JPS6354938A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270943A (en) * 1988-04-21 1989-10-30 Matsushita Electric Ind Co Ltd Perovskite oxidation catalyst
WO1996029312A1 (en) * 1995-03-20 1996-09-26 Orion Electric Co., Ltd. Stilbazolium salt, and preparation and use thereof
AUPP607198A0 (en) * 1998-09-21 1998-10-15 University Of Queensland, The Process and catalysts for the methanation of oxides of carbon
FR2855073A1 (en) * 2003-05-20 2004-11-26 Rhodia Elect & Catalysis Preparation of a colloidal dispersion of a rare earth perovskite, useful in catalytic applications
JP4857831B2 (en) * 2006-03-14 2012-01-18 パナソニック株式会社 Manufacturing method of diesel particulate filter
JP5680973B2 (en) * 2011-01-05 2015-03-04 三井金属鉱業株式会社 Method for producing yttrium manganate YMnO3

Also Published As

Publication number Publication date
JPS6354938A (en) 1988-03-09

Similar Documents

Publication Publication Date Title
KR102045919B1 (en) NOx Reduction Catalysts Enabling Their Regenerations at Low Temperatures
AU634028B2 (en) Perovskite-type rare earth complex oxide combustion catalysts
JP2641108B2 (en) Method for producing cerium oxide fine powder
KR100416357B1 (en) Support Composition Based on a Cerium Oxide, a Zirconium Oxide and a Scandium or Rare Earth Oxide and Use for Treating Exhaust Gas
US20050245391A1 (en) Catalyst for exhaust gas purification
US12109551B2 (en) Rare-earth-manganese/cerium-zirconium-based composite compound, method for preparing same and use thereof
JPH1121171A (en) Oxygen storage material having high temperature stability and its production
JP2004041866A (en) Exhaust gas purifying catalyst
WO2004004896A1 (en) Catalyst for exhaust gas purification
JPH05105428A (en) Cerium oxide having oxygen absorbing and releasing ability and its production
JPH0566176B2 (en)
JP2008049288A (en) Compound oxide and its producing method, and catalyst, method and apparatus for removing nitrogen oxide
JP5761710B2 (en) Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition
FI119500B (en) Catalysts with extremely finely divided active components
JP7146890B2 (en) Rare earth metal vanadate catalyst for nitrogen oxide reduction
JPS63305938A (en) Catalyst for purifying exhaust gas
JPS5935026A (en) Preparation of calcined titanium oxide and catalyst
JP2002210369A (en) Catalyst for cleaning exhaust gas and its production method
JPH0825748B2 (en) Method for producing perovskite type fine powder
JP4254444B2 (en) Exhaust gas purification catalyst for internal combustion engine and method for producing the same
US3931391A (en) Process for oxidation of ammonia
JPH0425209B2 (en)
JPH07106911B2 (en) Perovskite type fine powder
JP2000237588A (en) Production of catalyst carrier for purifying waste gas
Chuah et al. Steady-state multiplicity in carbon monoxide oxidation over LaMnO3

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term