JPH0566113B2 - - Google Patents

Info

Publication number
JPH0566113B2
JPH0566113B2 JP61022504A JP2250486A JPH0566113B2 JP H0566113 B2 JPH0566113 B2 JP H0566113B2 JP 61022504 A JP61022504 A JP 61022504A JP 2250486 A JP2250486 A JP 2250486A JP H0566113 B2 JPH0566113 B2 JP H0566113B2
Authority
JP
Japan
Prior art keywords
medium
acid
yield
culture
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61022504A
Other languages
Japanese (ja)
Other versions
JPS62181791A (en
Inventor
Yasuhiko Yoshihara
Yoshio Kawahara
Yasutsugu Yamada
Shigeo Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP61022504A priority Critical patent/JPS62181791A/en
Priority to AU67569/87A priority patent/AU590659B2/en
Priority to FR8702795A priority patent/FR2611743B1/en
Publication of JPS62181791A publication Critical patent/JPS62181791A/en
Publication of JPH0566113B2 publication Critical patent/JPH0566113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は調味料、飼料添加剤、医薬等に広く利
用されているL−グルタミン酸、L−リジン、L
−グルタミン、L−アルギニン、L−フエニルア
ラニン、L−スレオニン、L−イソロイシン、L
−ヒスチジン、L−バリン、L−セリン、L−オ
ルニチン、L−シトルリン、L−チロシン、L−
トリプトフアンおよびL−ロイシンなどのL−ア
ミノ酸及び5′−イノシン酸の製造法に関するもの
である。 (従来の技術) 従来よりプレビバクテリウム属、コリネバクテ
リウム属、バチルス属又はエセリヒア属等に属す
る微生物により、L−グルタミン酸、L−リジ
ン、L−グルタミン、L−アルギニン、L−フエ
ニルアラニン、L−スレオニン、L−イソロイシ
ン、L−ヒスチジン、L−プロリン、L−バリ
ン、L−セリン、L−オルニチン、L−シトルリ
ン、L−チロシン、L−トリプトフアンおよびL
−ロイシンなどのL−アミノ酸及び5′−イノシン
酸は発酵法により工業的に生産されている。 (発明が解決しようとする問題点) 本発明が解決しようとする問題点は発酵法によ
りL−アミノ酸又は5′−イノシンを工業的にさら
に安価に製造する方法を開発することにある。 (問題点を解決するための手段) 本発明者等は上記にかかげたようなL−アミノ
酸又は5′−イノシン酸発酵の収量向上について鋭
意研究を重ねた結果、N−メチルグリシン(以下
NGと略す、)、N,N−ジメチルグリシン(以下
DMGと略す、)、N,N,N−トリメチルグリシ
ン(以下TMGと略す、)及び〔2−ハイドロキ
シエチル〕トリメチルアンモニウム(以下
HETMAと略す、)より成る群より選ばれる物質
の1種以上を培地中に一定量添加して発酵するこ
とにより目的とするL−アミノ酸又は核酸の収量
が著しく向上することを見出した。本発明は工業
的に従来以上に安価なL−アミノ酸又は5′−イノ
シン酸を生産する方法を開発すべく、上記発見に
基づいて完成されたものである。即ち本発明はL
−アミノ酸生産能又は5′−イノシン酸生産能を有
する微生物をNG、DMG、TMG及びHETMAよ
り成る群より選ばれる1種類以上の物質を含有す
る培地に培養し、L−アミノ酸又は5′−イノシン
酸を培地中に生成せしめ、これを採取することを
特徴とする発酵法によるL−アミノ酸又は5′−イ
ノシン酸の製造法に関する。 L−アミノ酸発酵又は5′−イノシン酸発酵に於
てこれらMG、DMG、TMG、HETMAを糖質
その他の主炭素源を含む培地に添加して広範囲に
わたるL−アミノ酸発酵又は5′−イノシン酸発酵
の収量を向上せしめた知見はない。わずかにシユ
ードモナス属もしくはエシエリヒア属を用いてL
−ベタインからのL−セリン発酵(特開昭49−
134890)及びシユードモナス属を用いてコリンを
主炭素源としたL−アミノ酸発酵(特開昭52−
154594)が知られている。 しかしながらベタインからのL−セリン発酵で
はベタインがセリンの前駆体として特定されたも
のであり、かつこのことから広くL−アミノ酸発
酵の収量増加を容易に類推させるものではない。
またコリンを主炭素源とするL−アミノ酸発酵に
おいてもコリンを唯一の主炭素源としたものであ
りL−アミノ酸の収量も微量である。 一方、ビート糖の製造工程で副生されるステツ
フエン廃液を一定量培地に添加する事によりL−
アミノ酸又は5′−イノシン酸の発酵収率が著るし
く向上する事が知られている(特開昭59−
216593)が、ステツフエン廃液を添加した培地に
於てもMG、DMG、TMG、HETMAを更に添
加し、L−アミノ酸又は5′−イノシン酸の発酵収
量を著るしく向上せしめた知見はない。本発明は
各種主原料を用いたL−アミノ酸発酵又は5′−イ
ノシン酸に於て大巾な収量増加が可能となる新規
な発見にもとづいておりかつ工業的にも極めて有
用性が高い。 本発明でいうL−アミノ酸とはL−グルタミン
酸、L−リジン、L−グルタミン、L−アルギニ
ン、L−フエニルアラニン、L−スレオニン、L
−イソロイシン、L−ヒスチジン、L−プロリ
ン、L−バリン、L−セリン、L−オルニチン、
L−シトルリン、L−チロシン、L−トリプトフ
アンおよびL−ロイシンなどのL−アミノ酸であ
り、ここに例示したL−アミノ酸以外でも発酵法
により生産されるL−アミノ酸であれば本発明の
方法は使用可能である。 本発明で用いるL−アミノ酸生産菌は上記のL
−アミノ酸を生産する微生物であればどのような
微生物を用いてもよい。 具体的には
(Industrial Application Field) The present invention relates to L-glutamic acid, L-lysine, and L-glutamic acid, which are widely used in seasonings, feed additives, medicines, etc.
-Glutamine, L-arginine, L-phenylalanine, L-threonine, L-isoleucine, L
- Histidine, L-valine, L-serine, L-ornithine, L-citrulline, L-tyrosine, L-
The present invention relates to a method for producing L-amino acids such as tryptophan and L-leucine, and 5'-inosinic acid. (Prior art) L-glutamic acid, L-lysine, L-glutamine, L-arginine, L-phenylalanine, L-threonine, L-isoleucine, L-histidine, L-proline, L-valine, L-serine, L-ornithine, L-citrulline, L-tyrosine, L-tryptophan and L
- L-amino acids such as leucine and 5'-inosinic acid are industrially produced by fermentation methods. (Problems to be Solved by the Invention) The problems to be solved by the present invention are to develop a method for industrially producing L-amino acids or 5'-inosine at a lower cost by fermentation. (Means for Solving the Problems) As a result of extensive research into improving the yield of L-amino acid or 5'-inosinic acid fermentation as mentioned above, the present inventors found that N-methylglycine (hereinafter referred to as
), N,N-dimethylglycine (abbreviated as NG), N,N-dimethylglycine (hereinafter referred to as
(abbreviated as DMG), N,N,N-trimethylglycine (hereinafter abbreviated as TMG) and [2-hydroxyethyl]trimethylammonium (hereinafter abbreviated as TMG)
It has been found that the yield of the target L-amino acid or nucleic acid can be significantly improved by adding a certain amount of one or more substances selected from the group consisting of (abbreviated as HETMA) to a medium and fermenting the medium. The present invention was completed based on the above discovery in order to develop a method for industrially producing L-amino acids or 5'-inosinic acid that is cheaper than conventional methods. That is, the present invention
- Cultivate a microorganism capable of producing amino acids or 5'-inosinic acid in a medium containing one or more substances selected from the group consisting of NG, DMG, TMG, and HETMA, and The present invention relates to a method for producing L-amino acid or 5'-inosinic acid by a fermentation method, which is characterized by producing acid in a medium and collecting the acid. In L-amino acid fermentation or 5'-inosinic acid fermentation, these MG, DMG, TMG, and HETMA are added to a medium containing carbohydrates and other main carbon sources to perform a wide range of L-amino acid fermentation or 5'-inosinic acid fermentation. There is no knowledge that the yield has been improved. L with a small amount of Pseudomonas or Escherichia
- L-serine fermentation from betaine (Japanese Patent Application Laid-Open No. 1983-
134890) and L-amino acid fermentation using choline as the main carbon source using Pseudomonas sp.
154594) is known. However, in L-serine fermentation from betaine, betaine has been identified as a serine precursor, and from this fact it is not easy to infer a general increase in yield in L-amino acid fermentation.
Furthermore, even in L-amino acid fermentation using choline as the main carbon source, choline is the only main carbon source, and the yield of L-amino acids is small. On the other hand, L-
It is known that the fermentation yield of amino acids or 5'-inosinic acid can be significantly improved (Japanese Patent Application Laid-open No. 1986-1999).
216593), but there is no finding that the fermentation yield of L-amino acids or 5'-inosinic acid was significantly improved by further adding MG, DMG, TMG, or HETMA to a culture medium supplemented with stetsufene waste solution. The present invention is based on a novel discovery that makes it possible to greatly increase the yield of L-amino acid fermentation or 5'-inosinic acid using various main raw materials, and is extremely useful industrially. L-amino acids as used in the present invention include L-glutamic acid, L-lysine, L-glutamine, L-arginine, L-phenylalanine, L-threonine, and
-isoleucine, L-histidine, L-proline, L-valine, L-serine, L-ornithine,
L-amino acids such as L-citrulline, L-tyrosine, L-tryptophan, and L-leucine, and the method of the present invention can be used if L-amino acids other than those exemplified here are produced by fermentation. It is possible. The L-amino acid producing bacteria used in the present invention are the above-mentioned L-amino acid producing bacteria.
- Any microorganism may be used as long as it produces amino acids. in particular

【表】 フラバム
[Table] Flavum

【表】 グルタミクム
[Table] Glutamicum

【表】 グリシノフイラム
[Table] Glycinophyllum

【表】 グルタミクム
[Table] Glutamicum

【表】 などが使用される。 本発明で使用するL−アミノ酸又は5′−イノシ
ン酸生産基本培地としては、従来より知られてい
るL−アミノ酸生産菌に適したL−アミノ酸生産
培地及び5′−イノシン酸発酵に適した生産培地が
使用可能である。 さらに詳しくは、主炭素源にはグルコース、シ
ユークロース、フラクトース、マルトースや甘
蕉、糖蜜、甘蕉廃糖蜜、てん菜糖蜜、てん際廃糖
蜜、粗糖、澱粉糖化液、セルロース糖化液、パル
プ糖化液、乳糖などの糖質類、酢酸、プロピエン
酸、安息香酸などの脂肪酸類、ピルビン酸、クエ
ン酸、コハク酸、フマール酸、リング酸などの有
機酸類、エチルアルコール、ブチルアルコールな
どのアルコール類等を単独に又は混合して使用で
きる。更には目的のL−アミノ酸の生合成系路の
前駆物質等を用いることもできる。 窒素源としては硫酸アンモニウム、塩化アンモ
ニウム、硝酸アンモニウム、酢酸アンモニウムの
ようなアンモニウム塩、尿素、液体アンモニア、
アンモニア水、更には有機窒素化合であるアミノ
酸混合物、コーンスチープリカー、カザミノ酸、
酵母エキス、大豆加水分解物、ペプトン、肉エキ
ス等を使用することができる。無機塩としてはリ
ン酸塩、マグネシウム塩、カルシウム塩、カリ
塩、ナトリウム塩、鉄塩、マンガン塩、亜鉛塩、
銅塩その他の微量金属を必要に応じて使用する。
又、必要に応じ、ビオチン、サイアミン等のビタ
ミン類を使用する。 本発明における培養条件は通常のアミノ酸発酵
における条件と同じであり、目的とするL−アミ
ノ酸や使用する菌株間で多少異なる培養温度は20
−40℃が良く、とくに28〜37℃が好適である。PH
は培養中、中性付近にコントロールする方が良好
な結果を得る。通気、撹拌、振とう培養などの好
気適条件で培養する培養期間は通常1−7日間で
あるが、さらに連続培養等により期間を延長する
ことができる。各アミノ酸発酵液からの各々のア
ミノ酸の単離方法はイオン交換樹脂処理法、その
他の既知の方法により回収される。 本発明に使用するMG(CH3NHCH2COOH)、
DMG((CH32NCH2COOH)、TMG
((CH33N+CH2COO-又は(OH)-
(CH33N+CH2COOH)、HETMA((OH)-
(CH33N+CH2CH2OH)、及びこれらの塩類は、
試薬としてはもちろん工業生産物として安価大量
に入手可能である。MGはザルコシンとして知ら
れ天然にはハナゴケなどに存在し、合成ではメチ
ルアミンとクロル酢酸との縮合反応やストレツカ
ーのアミノ酸合成法などによつて得られる。
DMGはクロル酢酸にジメチルアミンを作用させ
て得られる。TMGはグリシンベタインとして知
られ、サトウダイコン、綿実等に多く含有し、ク
ロル酢酸とトリメチルアミンの反応などによつて
合成される。HETMAはコリンとして知られ大
根の葉等に多く含まれ、トリメチルアミンをエチ
レンオキサイドの濃厚水溶液と反応させることに
よつて合成される。又、これらの種々な塩類は商
品化されており、例えばMGについてはナトリウ
ム塩、DMG及びTMGについては塩酸塩、
HETMAについては塩化塩、酒石酸水素塩、ク
エン酸二水素塩、グルコン酸塩等が工業的に生産
されており容易に入手できる。 本発明で用いるMG、DMG、TMG又は
HETMAはそれらの塩類であつても良いしこれ
らを含む天然物で代替してもよい。 本発明でのMG、DMG、TMG、HETMAの
使用方法はこれらを単独にあるいは二種以上組合
せて発酵培地中に0.01から5%の濃度、好ましく
は0.05から2.0%の濃度になるように含有せしめ
れば良い。これらの発酵培地中への添加方法はあ
らかじめ発酵培地に加えて培養を開始しても良い
し、培養中に1回あるいは数回にわけてあるいは
連続的に途中添加しても良い。又種母培養に加え
ておいて主発酵へ持込ませても良い。 実施例 1 グルコース3g/dlKH2PO40.1g/dl
MgSO4・7H2O0.05g/dlFeSO4・7H2O1mg/dl
MnSO4・4H2O1mg/dl尿素0.5g/dlビチオン
30μg/サイアミン塩酸塩100μg/大豆蛋白
加水分解液を全尿素として50mg/dlを含む種母培
地をPH7.5に調節し、その50mlを500ml容肩付フラ
スコに入れ加熱殺菌した。ブレビバクテリウム・
ラクトフエルメンタムATCC 13869を接種し31.5
℃に保ちつつ16時間振盪培養した。 一方グルタミン酸生産培地としてケーンモラセ
ス(糖として)8.0g/dl、KH2PO40.2g/dl、
MgSO4・7H2O0.1g/dl、FeSO4・4H2O2.0mg/
dl、サイアミン・塩酸塩200μg/大豆蛋白加
水分解物(全窒素として)30mg/dl、ステツフエ
ン濃縮廃液(総窒素濃度2.0g/dl)総窒素濃度
として200mg/dl、更にTMGを0.01〜5g/dl含
む培地を調製し、PH7.8に調節後1.0容の小型発
酵槽に夫々285mlずつ分注し、115℃、10分間加
熱、滅菌した。 夫々の培地に予め培養して得られた種培養液15
mlずつを接種し31.5℃で通気撹拌培養を開始し
た。培養期間中、培養液のPHをアンモニアガスに
てPH7.8に保つと共に予め殺菌したケーンモラセ
スを添加して培養液中の糖をシユークロース換算
で2〜4g/dlに調製しつつ培養した。又培養途
中適当な時期にポリオキシエチレンソルビタンモ
ノパルミテートを添加し培養を行い、糖の消費速
度が実質的に低下した時点で糖の供給を停止し、
28〜40時間で培養を終了した。夫々の培養液中の
L−グルタミン酸の蓄積量を常法に測定し、対糖
収率を求めた。その結果を第1表に示す。
[Table] etc. are used. The L-amino acid or 5'-inosinic acid production basic medium used in the present invention includes an L-amino acid production medium suitable for conventionally known L-amino acid producing bacteria and a production medium suitable for 5'-inosinic acid fermentation. Medium is available. In more detail, the main carbon sources include glucose, sucrose, fructose, maltose, sweet potato, molasses, sugar beet molasses, sugar beet molasses, raw sugar, starch saccharification liquid, cellulose saccharification liquid, pulp saccharification liquid, and lactose. Carbohydrates such as, fatty acids such as acetic acid, propenoic acid, benzoic acid, organic acids such as pyruvic acid, citric acid, succinic acid, fumaric acid, phosphoric acid, alcohols such as ethyl alcohol, butyl alcohol, etc. Or they can be used in combination. Furthermore, precursors of the biosynthetic pathway of the desired L-amino acid can also be used. Nitrogen sources include ammonium salts such as ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium acetate, urea, liquid ammonia,
Ammonia water, amino acid mixtures that are organic nitrogen compounds, corn steep liquor, casamino acids,
Yeast extract, soybean hydrolyzate, peptone, meat extract, etc. can be used. Inorganic salts include phosphates, magnesium salts, calcium salts, potassium salts, sodium salts, iron salts, manganese salts, zinc salts,
Use copper salts and other trace metals as necessary.
In addition, vitamins such as biotin and thiamine are used as necessary. The culture conditions in the present invention are the same as those in normal amino acid fermentation, and the culture temperature differs slightly depending on the target L-amino acid and the strain used.
A temperature of -40°C is preferred, and a temperature of 28 to 37°C is particularly suitable. PH
Better results can be obtained by controlling around neutrality during culture. The culture period for culturing under aerobic conditions such as aeration, stirring, and shaking culture is usually 1 to 7 days, but the period can be further extended by continuous culture or the like. Each amino acid is isolated from the fermentation broth by ion exchange resin treatment or other known methods. MG (CH 3 NHCH 2 COOH) used in the present invention,
DMG ((CH 3 ) 2 NCH 2 COOH), TMG
((CH 3 ) 3 N + CH 2 COO - or (OH) -
( CH3 ) 3N + CH2COOH ), HETMA((OH) -
(CH 3 ) 3 N + CH 2 CH 2 OH) and their salts are
It is available at low cost and in large quantities, not only as a reagent but also as an industrial product. MG is known as sarcosine, and is naturally present in flowers such as Hanago moss.It can be synthesized by a condensation reaction between methylamine and chloroacetic acid, or by Stretzker's amino acid synthesis method.
DMG is obtained by reacting chloroacetic acid with dimethylamine. TMG is known as glycine betaine, is abundant in sugar beets, cotton seeds, etc., and is synthesized by the reaction of chloroacetic acid and trimethylamine. HETMA is known as choline and is abundant in radish leaves, etc., and is synthesized by reacting trimethylamine with a concentrated aqueous solution of ethylene oxide. In addition, these various salts are commercialized; for example, sodium salt for MG, hydrochloride for DMG and TMG,
Regarding HETMA, chloride salt, hydrogen tartrate, dihydrogen citrate, gluconate, etc. are industrially produced and easily available. MG, DMG, TMG or
HETMA may be their salts or may be replaced with natural products containing them. The method of using MG, DMG, TMG, and HETMA in the present invention is to include them alone or in combination of two or more in a fermentation medium at a concentration of 0.01 to 5%, preferably 0.05 to 2.0%. That's fine. These may be added to the fermentation medium in advance to start the culture, or may be added once, several times, or continuously during the culture. Alternatively, it may be added to the seed culture and brought into the main fermentation. Example 1 Glucose 3g/dlKH 2 PO 4 0.1g/dl
MgSO 4・7H 2 O0.05g/dlFeSO 4・7H 2 O1mg/dl
MnSO 4・4H 2 O1mg/dl urea 0.5g/dl bition
A seed medium containing 30 μg/100 μg of thiamine hydrochloride/50 mg/dl of soybean protein hydrolyzate as total urea was adjusted to pH 7.5, and 50 ml of the mixture was placed in a 500 ml shoulder flask and sterilized by heating. Brevibacterium
Lactofermentum ATCC 13869 inoculation 31.5
The cells were cultured with shaking for 16 hours while being maintained at ℃. On the other hand, as a glutamate production medium, cane molasses (as sugar) 8.0g/dl, KH 2 PO 4 0.2g/dl,
MgSO 4・7H 2 O0.1g/dl, FeSO 4・4H 2 O2.0mg/
dl, thiamine hydrochloride 200μg/soybean protein hydrolyzate (as total nitrogen) 30mg/dl, Stetsufuen concentrated waste liquid (total nitrogen concentration 2.0g/dl) total nitrogen concentration 200mg/dl, and TMG 0.01 to 5g/dl After adjusting the pH to 7.8, 285 ml of each medium was dispensed into small 1.0 volume fermenters, and the medium was heated at 115°C for 10 minutes to sterilize it. Seed culture solution 15 obtained by culturing in each medium in advance
ml each was inoculated and culture with aeration and stirring was started at 31.5°C. During the culture period, the pH of the culture solution was maintained at PH7.8 using ammonia gas, and pre-sterilized cane molasses was added to adjust the sugar content in the culture solution to 2 to 4 g/dl in terms of sucrose. In addition, polyoxyethylene sorbitan monopalmitate was added at an appropriate time during the culture, and the sugar supply was stopped when the sugar consumption rate had substantially decreased.
Culture was terminated after 28 to 40 hours. The amount of L-glutamic acid accumulated in each culture solution was measured using a conventional method, and the yield relative to sugar was determined. The results are shown in Table 1.

【表】 実施例 2 グルコース5g/dl、(NH42SO40.2g/dl、
尿素0.2g/dl、KH2PO40.15g/dl、MgSO4
7H2O0.04g/dl、FeSO4・7H2O1mg/dl、サイ
アミンHCl100μg/、ビオチン3μg/、大豆
蛋白酸分解液を総窒素量として30mg/dlを含む種
母培地をPH7.0に調節しその50mlを500ml容肩付フ
ラスコに入れ加熱殺菌した。これにグルタミン発
酵菌ブレビバクテリウム・フラバムFERM BP
−662を接種し、31.5℃に保ちつつ12時間振盪し
た。 一方、グルコース13g/dl、KH2PO40.25g/
dl、MgSO4・7H2O40mg/dl、(NH42SO41.5
g/dl、Na2SO41.5g/dl、FeSO4・7H2O0.1
mg/dl、ビオチン3.5μg/、サイアミン・塩酸
塩350μg/、ビート製糖工場のステツフエン
法工程で副生される濃縮ステツフエン廃液を総窒
素濃度として500mg/dlにHETMAを0.01〜5
g/dl添加し、PH6.5に調整した培地285mlを1
容ジヤーフアーメンターに入れ殺菌した。これに
上記種母培養液をそれぞれ15mlずつ接種した。培
養は31.5℃にてNH3ガスにてPH6.5ないし6.0に保
持しつつ通気撹拌下に残グルコースが0.5g/dl
になる迄行つた。 L−グルタミンの対糖重量収率は第2表に示す
通りである。 第2表 HETMA添加量 L−グルタミン収率 0g/dl 41.0% 0.01 41.5 0.05 42.0 0.25 42.5 0.5 43.0 1.0 44.0 2.0 43.0 3.0 41.5 5.0 40.0 HETMA0.01〜3g/dl添加した区で対照より
収率が向上していた。HETMA1.0g/dl添加し
た区の培養液1を得、これより遠心分離にて菌
体を除き、上清を強酸性イオン交換樹脂「ダイヤ
イオン」SK−1B(NH4 +型)に通過させた。樹脂
を水洗後2N−NH4OHにて溶出し、次いで溶出
液を濃縮し、これよりL−グルタミンの粗結晶
35.9gを得た。 実施例 3 グルコース13g/dl、(NH42SO46g/dl、
KH2PO40.1g/dl、MgSO4・7H2O0.04g/dl、
FeSO4・7H2O1mg/dl、MnSO4・4H2O1mg/dl、
サイアミン・塩酸塩100μg/、ビオチン50μ
g/、ビート製糖工場のステツフエン法工程で
副生される濃縮ステツフエン廃液を総窒素濃度と
して500mg/dlにHETMA0.01〜3.0g/dl添加
し、これに炭酸カルシウム5g/dl(別殺菌)を
含む培地をPH7.0に調節し、その20mlを500ml容肩
付フラスコに入れ加熱殺菌した。 これにブレビバクテリウム・フラバムNRRLB
−12235を一白金耳接種し、31.5℃に保ちつつ4
日間振盪した。L−アルギニンの対糖重量収率は
第3表に示す通りである。 第3表 HETMA添加量 L−アルギニン収率 0g/dl 30.5% 0.01 31.0 0.05 31.3 0.25 32.0 0.5 33.0 1.0 32.0 2.0 31.0 3.0 29.5 HETMA0.5g/dl添加区の培養液1を得、
これより遠心分離により菌体他を除き、上清を弱
酸性イオン交換樹脂「アンバーライト」C−50
(NH4 +型)に通過させた。樹脂を水洗後2N−
NH4OHにてL−アルギニンを溶出し、次いで溶
出液を濃縮し、これよりL−アルギニンの粗結晶
30.5gを得た。 実施例 4 グルコースを炭素源として含有する第4表に示
す組成の培地にDMG0.01〜3g/dl添加してL
−イソロイシン生産用培地を調節し、PHを7.2に
調節後、500ml容の振盪フラスコに夫々20ml宛分
注し115℃にて10分間加熱、滅菌した。
[Table] Example 2 Glucose 5g/dl, (NH 4 ) 2 SO 4 0.2g/dl,
Urea 0.2g/dl, KH 2 PO 4 0.15g/dl, MgSO 4
A seed medium containing 0.04 g/dl of 7H 2 O, 1 mg/dl of FeSO 4 7H 2 O, 100 μg/thiamine HCl, 3 μg/dl of biotin, and a total nitrogen content of 30 mg/dl of soybean protein acid decomposition solution was adjusted to pH 7.0. 50 ml of the mixture was placed in a 500 ml shoulder flask and sterilized by heating. This includes the glutamine-fermenting bacterium Brevibacterium flavum FERM BP.
-662 was inoculated and shaken for 12 hours while keeping at 31.5°C. On the other hand, glucose 13g/dl, KH 2 PO 4 0.25g/
dl, MgSO 4・7H 2 O40mg/dl, (NH 4 ) 2 SO 4 1.5
g/dl, Na 2 SO 4 1.5g/dl, FeSO 4・7H 2 O0.1
mg/dl, biotin 3.5 μg/, thiamine/hydrochloride 350 μg/, HETMA 0.01 to 5 to make the total nitrogen concentration of the concentrated stetsufen waste liquid by-produced in the stetsufen process of the beet sugar factory to 500 mg/dl.
1 g/dl added and 285 ml of medium adjusted to pH 6.5.
It was sterilized by placing it in a container. Each of these was inoculated with 15 ml of the above seed mother culture solution. Cultivation was carried out at 31.5°C while maintaining the pH at 6.5 to 6.0 with NH 3 gas and stirring until the residual glucose was 0.5 g/dl.
I went until I became The yield of L-glutamine based on sugar weight is shown in Table 2. Table 2 HETMA addition amount L-glutamine yield 0g/dl 41.0% 0.01 41.5 0.05 42.0 0.25 42.5 0.5 43.0 1.0 44.0 2.0 43.0 3.0 41.5 5.0 40.0 The yield was higher than the control in the plots with HETMA0.01~3g/dl added. improved was. Culture solution 1 was obtained from the group containing 1.0 g/dl of HETMA, and the bacterial cells were removed by centrifugation, and the supernatant was passed through a strongly acidic ion exchange resin "Diaion" SK-1B (NH 4 + type). Ta. After washing the resin with water, it was eluted with 2N-NH 4 OH, and the eluate was then concentrated to obtain crude crystals of L-glutamine.
35.9g was obtained. Example 3 Glucose 13g/dl, (NH 4 ) 2 SO 4 6g/dl,
KH 2 PO 4 0.1g/dl, MgSO 4・7H 2 O0.04g/dl,
FeSO 4・7H 2 O1mg/dl, MnSO 4・4H 2 O1mg/dl,
Thiamine/hydrochloride 100μg/, biotin 50μ
HETMA0.01-3.0g/dl was added to the concentrated stetsufen waste liquid produced as a by-product in the stetsufen process at a beet sugar factory with a total nitrogen concentration of 500mg/dl, and calcium carbonate 5g/dl (separately sterilized) was added. The containing medium was adjusted to pH 7.0, and 20 ml of it was placed in a 500 ml shoulder flask and sterilized by heating. This includes Brevibacterium flavum NRRLB.
-12235 was inoculated with one platinum loop, and the temperature was kept at 31.5℃.
Shake for days. The yield of L-arginine based on sugar weight is shown in Table 3. Table 3 HETMA addition amount L-arginine yield 0 g/dl 30.5% 0.01 31.0 0.05 31.3 0.25 32.0 0.5 33.0 1.0 32.0 2.0 31.0 3.0 29.5 Culture solution 1 of HETMA 0.5 g/dl addition group was obtained.
From this, bacterial cells and other substances are removed by centrifugation, and the supernatant is collected using a weakly acidic ion exchange resin "Amberlite" C-50.
(NH 4 + form). 2N− after washing the resin with water
L-arginine was eluted with NH 4 OH, the eluate was concentrated, and crude crystals of L-arginine were obtained.
30.5g was obtained. Example 4 0.01 to 3 g/dl of DMG was added to a medium containing glucose as a carbon source and having the composition shown in Table 4.
- After adjusting the isoleucine production medium and adjusting the pH to 7.2, 20 ml each was dispensed into 500 ml shaking flasks and heated at 115° C. for 10 minutes to sterilize.

【表】 夫々の培地に、予め培養して得られたブレビバ
クテリウム・フラバムFERM BP−759を接種
し、31.5℃にてグルコースが消失するまで振盪培
養した。 L−イソロイシンの対糖重量収率を第5表に示
した。 第5表 HDMG添加量 L−イソロイシン収率 0g/dl 12.0% 0.01 12.5 0.05 12.7 0.25 13.0 0.5 13.3 1.0 13.5 2.0 13.0 3.0 11.5 実施例 5 グルコースを炭素源として含有する第6表に示
す培地にTMGを0.01〜3g/dl添加してL−バ
リン生産用培地を調製し、PHを7.0に調節後、500
ml容の振盪フラスコに夫々20ml宛分注し115℃に
て10分間加熱、滅菌した。
[Table] Each medium was inoculated with Brevibacterium flavum FERM BP-759 obtained by culturing in advance, and cultured with shaking at 31.5°C until glucose disappeared. Table 5 shows the yield of L-isoleucine based on sugar weight. Table 5 HDMG addition amount L-isoleucine yield 0 g/dl 12.0% 0.01 12.5 0.05 12.7 0.25 13.0 0.5 13.3 1.0 13.5 2.0 13.0 3.0 11.5 Example 5 0.01 TMG was added to the medium shown in Table 6 containing glucose as a carbon source. A medium for L-valine production was prepared by adding ~3 g/dl, and after adjusting the pH to 7.0,
The mixture was dispensed into 20 ml shake flasks and sterilized by heating at 115°C for 10 minutes.

【表】 夫々の培地に、予め培養して得られたブレビバ
クテリウム・ラクトフエルメンタムFERM BP
−1896を接種し、31.5℃にてグルコースが消費す
るまで振盪培養した。 L−バリンの対糖収率を第7表に示す。 第7表 TMG添加量 L−バリン収率 0g/dl 12.0% 0.01 12.5 0.05 13.0 0.25 13.5 0.5 14.0 1.0 13.5 2.0 12.5 3.0 11.5 実施例 6 第8表の組成の種母培地を500ml容の振盪フラ
スコに50ml宛分注し、110℃にて5分間加熱滅菌
した後ブレビバクテリウム・フラバム
ATCC21475を接種し31.5℃、20時間振盪培養を
行い、種培養液を得た。一方、第4表に示すL−
リジン生産用培地20mlを坂口フラスコに夫々分注
して殺菌した。これにあらかじめ乾熱殺菌した炭
酸カルシウム1.5gを夫々に添加し、次いで上記
種培養液をそれぞれ1ml宛接種して31.5℃にて往
復振とう培養した。培養24時間目にTMGを培地
当り0、0.01、0.05、0.25、1.0、2.0、5.0g/dl
になるように添加して培養を続けた。生成したL
−リジン蓄積量及び収率を第9表に示した。
[Table] Brevibacterium lactofermentum FERM BP obtained by culturing in each medium in advance
-1896 was inoculated and cultured with shaking at 31.5°C until glucose was consumed. Table 7 shows the yield of L-valine based on sugar. Table 7 TMG addition amount L-valine yield 0 g/dl 12.0% 0.01 12.5 0.05 13.0 0.25 13.5 0.5 14.0 1.0 13.5 2.0 12.5 3.0 11.5 Example 6 50 ml of the seed medium having the composition shown in Table 8 was placed in a 500 ml shaking flask. After dispensing and heat sterilizing at 110℃ for 5 minutes, remove Brevibacterium flavum.
ATCC21475 was inoculated and cultured with shaking at 31.5°C for 20 hours to obtain a seed culture. On the other hand, L- shown in Table 4
20 ml of the medium for lysine production was dispensed into Sakaguchi flasks and sterilized. 1.5 g of calcium carbonate, which had been dry-heat sterilized in advance, was added to each of these, and then 1 ml of the above seed culture solution was inoculated to each, and cultured at 31.5° C. with reciprocal shaking. 0, 0.01, 0.05, 0.25, 1.0, 2.0, 5.0 g/dl of TMG per medium at 24 hours of culture
The culture was continued. Generated L
- The amount of lysine accumulated and the yield are shown in Table 9.

【表】【table】

【表】 TMG添加量0.25g/dl区の培養終了液を集め
遠心分離によつて、菌体及びカルシウム塩を除い
た上清液1を強酸性イオン交換樹脂(「アンバ
ーライト」IR−120CH型)に通過させ、L−リ
ジンを吸着させた。次いで、3%アンモニア水で
吸着したL−リジンを溶出し、溶出液を減圧濃縮
した。 濃縮液には塩酸を添加したのち冷却し、L−リ
ジンを、L−リジン塩酸塩第2水和物として析出
させ、結晶36.5gを得た。 実施例 7 グルコース3g/dl、(NH42SO40.2g/dl、
尿素0.2g/dl、KH2PO40.15g/dl、MgSO4
7H2O0.04g/dl、FeSO4・7H2O1mg/dl、サイ
アミン・HCl100μg/、ビオチン300μg/、
大豆蛋白酸加水分解液を全窒素として140mg/dl
を含む種母培地をPH7.0に調節し、その50mlを500
ml容肩付フラスコに入れ加熱殺菌した。ブレビバ
クテリウム・フラバムATCC21269およびエセリ
ヒア・コリFERMBP−1483(AJ 11334)を夫々
接種し、31.5℃に保ちつつ、12時間振盪培養し種
母培養液を得た。 一方、グルコース13g/dl、KH2PO40.25g/
dl、MgSO4・7H2O40mg/dl、(NH42SO42.0
g/dl、MnSO4・4H2O1mg/dl、FeSO4
7H2O1mg/dl、L−イソロイシン40mg/dl、ビ
オチン50μg/dl、サイアミン・HCl5μg/dl、
大豆蛋白酸加水分解液を全窒素として32mg/dl、
ステツフエン廃液(全窒素として)200mg/dlを
含むPH6.5に調製した培地とこれにTMG0.01〜5
g/dlを加えた培地夫夫20mlを500ml容肩付フラ
スコに分注し、110℃、10分間蒸気殺菌した。こ
れにあらかじめ乾熱滅菌した炭酸カルシウム2g
をそれぞれに添加し、さらに上記種母培養液1ml
宛加えて31.5℃にて培養した。培養液に得られた
L−スレオニンの対糖収率を第10表に示した。
[Table] Collect the cultured solution with TMG addition amount of 0.25 g/dl, remove the bacterial cells and calcium salts by centrifugation, and transfer the supernatant solution 1 to a strongly acidic ion exchange resin ("Amberlite" IR-120CH type). ) to adsorb L-lysine. Next, the adsorbed L-lysine was eluted with 3% aqueous ammonia, and the eluate was concentrated under reduced pressure. After adding hydrochloric acid to the concentrated solution, it was cooled, and L-lysine was precipitated as L-lysine hydrochloride second hydrate to obtain 36.5 g of crystals. Example 7 Glucose 3g/dl, (NH 4 ) 2 SO 4 0.2g/dl,
Urea 0.2g/dl, KH 2 PO 4 0.15g/dl, MgSO 4
7H2O0.04g /dl, FeSO47H2O1mg /dl, Thiamine・HCl100μg/, Biotin 300μg/,
140mg/dl of soybean protein acid hydrolyzate as total nitrogen
Adjust the seed culture medium containing PH7.0 to 500ml
The mixture was placed in a ml shoulder flask and sterilized by heating. Brevibacterium flavum ATCC21269 and Estherichia coli FERMBP-1483 (AJ 11334) were each inoculated, and cultured with shaking while maintained at 31.5°C for 12 hours to obtain a seed mother culture. On the other hand, glucose 13g/dl, KH 2 PO 4 0.25g/
dl, MgSO 4・7H 2 O40mg/dl, (NH 4 ) 2 SO 4 2.0
g/dl, MnSO 4・4H 2 O1mg/dl, FeSO 4
7H 2 O 1mg/dl, L-isoleucine 40mg/dl, biotin 50μg/dl, thiamine/HCl 5μg/dl,
32mg/dl of soybean protein acid hydrolyzate as total nitrogen,
A medium adjusted to pH 6.5 containing 200 mg/dl of Stetsufuen waste solution (as total nitrogen) and TMG 0.01 to 5
20 ml of the medium to which g/dl had been added was dispensed into a 500 ml flask with a shoulder and steam sterilized at 110°C for 10 minutes. Add to this 2 g of calcium carbonate, which has been dry heat sterilized in advance.
to each, and then add 1 ml of the above seed culture solution.
and cultured at 31.5°C. Table 10 shows the sugar yield of L-threonine obtained in the culture solution.

【表】 ブレビバクテリウム・フラバムのTMG添加
0.25g/dl区の培養液1を得、その培養液より
遠心分離によつて菌体及び炭酸カルシウムを除
き、その500mlを強酸性カチオン交換樹脂(「アン
バーライト」IR−120(H+型))のカラムに流し
た。3%アンモニア水で溶出し、アミノ酸画分を
集め脱塩及び脱色を行い、減圧濃縮した。アルコ
ールを添加し冷却下に保存した後、生成した結晶
を集めて乾燥した結果、純度98%以上のスレオニ
ン結晶が7.6g得られた。 実施例 8 第11表に示すL−ヒスチジン生産用培地に
MG0.01〜3g/dl添加し、PH7.2に調節後500ml
容振盪フラスコに夫々20mlずつ分注し、115℃に
て10分間加熱、滅菌した。
[Table] TMG addition to Brevibacterium flavum
Culture solution 1 of 0.25 g/dl was obtained, bacterial cells and calcium carbonate were removed from the culture solution by centrifugation, and 500 ml of the solution was treated with strongly acidic cation exchange resin ("Amberlight" IR-120 (H + type)). ) column. Elution was performed with 3% aqueous ammonia, and the amino acid fractions were collected, desalted and decolorized, and concentrated under reduced pressure. After adding alcohol and storing under cooling, the resulting crystals were collected and dried, resulting in 7.6 g of threonine crystals with a purity of 98% or higher. Example 8 In the L-histidine production medium shown in Table 11
500ml after adding MG0.01~3g/dl and adjusting the pH to 7.2
20 ml of each was dispensed into shaking flasks and sterilized by heating at 115°C for 10 minutes.

【表】 夫々の培地に、予めブイヨンスラント上で培養
して得られたブレビバクテリウム・フラバム
ATCC 21406を接種し、31.5℃にてグルコースが
消失するまで振盪した。 L−ヒスチジンの対糖収率を第12表に示した。 第12表 MG添加量 L−ヒスチジン収率 0 10.0 0.01 10.5 0.025 11.0 0.5 11.5 1.0 12.0 2.0 11.0 3.0 9.5 MG0.5g/dl添加区の培養液1から菌体及
び炭酸カルシウムを除き上清を強酸性イオン交換
樹脂(「アンバーライト」IR−120(H+型))に通
過させ、L−ヒスチジンを吸着させた。その後3
%アンモニア水で吸着したL−ヒスチジンを溶出
し、溶出液を減圧濃縮した。濃縮液を冷却し、放
置したところ、L−ヒスチジンの結晶が析出し
た。結晶を乾燥し、7.1gを得た。 実施例 9 シユークロースを炭素源として含有する第13表
に示す組成の培地にDMG0.01〜3.0g/dl添加
し、L−フエニルアラニン生産用培地を調製し、
PHを7.0に調節後、500ml容の振盪フラスコに夫々
20ml宛分注し115℃にて10分間加熱、滅菌した。
[Table] Brevibacterium flavum obtained by culturing on bouillon slant in advance on each medium.
ATCC 21406 was inoculated and shaken at 31.5°C until glucose disappeared. Table 12 shows the yield of L-histidine based on sugar. Table 12 MG addition amount L-histidine yield 0 10.0 0.01 10.5 0.025 11.0 0.5 11.5 1.0 12.0 2.0 11.0 3.0 9.5 Remove the bacterial cells and calcium carbonate from the culture solution 1 of the MG0.5g/dl addition group and remove the supernatant with strongly acidic ions. It was passed through an exchange resin ("Amberlite" IR-120 (H + type)) to adsorb L-histidine. then 3
% aqueous ammonia was used to elute the adsorbed L-histidine, and the eluate was concentrated under reduced pressure. When the concentrated liquid was cooled and left to stand, L-histidine crystals were precipitated. The crystals were dried to obtain 7.1 g. Example 9 A medium for L-phenylalanine production was prepared by adding DMG 0.01 to 3.0 g/dl to a medium containing seuculose as a carbon source and having the composition shown in Table 13,
After adjusting the pH to 7.0, add each to a 500ml shake flask.
It was dispensed into 20 ml volumes and heated at 115°C for 10 minutes to sterilize it.

【表】 夫々の培地に、予めブイヨンスラント上で培養
して得られたブレビバクテリウム・ラクトフエル
メンタムATCC 21420を接種し、31.5℃にてグル
コースが消失するまで振盪培養した。フエニルア
ラニンの対糖収率は第14表に示す通りであつた。 第14表DMG添加量 L−フエニルアラニン収率 0g/dl 9.0% 0.01 9.5 0.02 10.5 0.5 11.0 1.0 11.5 2.0 11.0 3.0 10.5 実施例 10 グルコースを炭素源として含有する第15表に示
す組成の培地にTMG0.01〜5g/dl添加してL
−トリプトフアン生産用培地を調製し、PH7.0に
調節後500ml容の振盪フラスコに夫々20mlずつ分
注し、115℃にて10分間加熱、滅菌した。
[Table] Each medium was inoculated with Brevibacterium lactofermentum ATCC 21420, which had been previously cultured on a bouillon slant, and cultured with shaking at 31.5°C until glucose disappeared. The yield of phenylalanine based on sugar was as shown in Table 14. Table 14 DMG addition amount L-phenylalanine yield 0 g/dl 9.0% 0.01 9.5 0.02 10.5 0.5 11.0 1.0 11.5 2.0 11.0 3.0 10.5 Example 10 Add TMG to a medium containing glucose as a carbon source and having the composition shown in Table 15. .01~5g/dl added L
- A tryptophan production medium was prepared, and after adjusting the pH to 7.0, 20 ml of each was dispensed into 500 ml shaking flasks and sterilized by heating at 115° C. for 10 minutes.

【表】 夫々の培地に、予め培養して得られたバチル
ス・ズブチリスFERM BP−208を接種し、30℃
にてグルコースが消失するまで振盪培養した。L
−トリプトフアンの対糖収率は第16表の通りであ
る。 第16表 TMG添加量 L−トリプトフアン収率 0g/dl 5.0% 0.01 6.0 0.02 6.5 0.5 7.0 1.0 7.5 2.0 6.5 3.0 6.0 5.0 5.5 実施例 11 グルコースを炭素源として含有する第17表に示
す組成の培地にDMG0.01〜3g/dl添加してL
−セリン生産用培地を調製し、PH7.0に調節後500
ml容の振盪フラスコに夫々20mlずつ分注し、
[Table] Bacillus subtilis FERM BP-208, which had been cultured in advance, was inoculated into each medium and incubated at 30°C.
The cells were cultured with shaking until glucose disappeared. L
-The yield of tryptophan based on sugar is shown in Table 16. Table 16 TMG addition amount L-tryptophan yield 0 g/dl 5.0% 0.01 6.0 0.02 6.5 0.5 7.0 1.0 7.5 2.0 6.5 3.0 6.0 5.0 5.5 Example 11 Addition of DMG to a medium containing glucose as a carbon source and having the composition shown in Table 17 Add .01~3g/dl L
-Prepare a medium for serine production and adjust the pH to 500 ml.
Dispense 20 ml each into ml shake flasks,

【表】【table】

【表】 夫々の培地に、予め培養して得られたコリネバ
クテリウム・グリシノフイラムFERM−P
1687を接種し、34℃にて振盪培養した。 L−セリンの消費グリシンモル収率を第18表に
示した。 第18表 DMG添加量 L−セリン収率 0g/dl 36.0% 0.01 37.0 0.05 38.0 1.0 38.5 2.0 37.5 3.0 35.0 実施例 12 第19表に示す組成の培地にTMG0.1〜5g/dl
添加し500ml容肩付フラスコに20mlずつ分注し120
℃で10分間加熱滅菌した。この培地にコリネバク
テリウム・エキイAJ 11749(FERM−P6261)を
グルコース20g/、酵母エキス10g/、ペプ
トン10g/、食塩5g/、寒天20g/(PH
7.2)の組成の斜面培地で31.5℃にて18時間培養
して得られた菌体を3白金耳ずつ接種し、34℃で
2日間培養後、グルコース50g/、イノシン10
g/を添加し、更に3日間振盪培養を行なつ
た。培養液中に蓄積した5′−イノシン酸の量を第
20表に示した。
[Table] Corynebacterium glycinophyllum FERM-P obtained by culturing in each medium in advance
1687 was inoculated and cultured with shaking at 34°C. Table 18 shows the molar yield of consumed glycine for L-serine. Table 18 DMG addition amount L-serine yield 0 g/dl 36.0% 0.01 37.0 0.05 38.0 1.0 38.5 2.0 37.5 3.0 35.0 Example 12 Add TMG 0.1 to 5 g/dl to the medium with the composition shown in Table 19
Add and dispense 20 ml each into a 500 ml shoulder flask.
Heat sterilized at ℃ for 10 minutes. Corynebacterium equii AJ 11749 (FERM-P6261) was added to this medium at 20g/glucose/10g/yeast extract/10g/peptone/5g/salt/20g/agar/(PH
The cells obtained by culturing at 31.5℃ for 18 hours on a slant medium with the composition of 7.2) were inoculated with 3 platinum loops, and after culturing at 34℃ for 2 days, glucose 50g/, inosine 10
g/ was added and cultured with shaking for an additional 3 days. The amount of 5′-inosinic acid accumulated in the culture solution was
Table 20 shows this.

【表】【table】

【表】 第20表 5′−イノシン酸蓄積量TMG添加量 (5′−IMP・2Na・7.5H2O) 0g/dl 28 0.1 28.5 0.5 29 1.0 30 2.0 29.5 3.0 29 5.0 27 実施例 13 グルコース3g/dl、KH2PO40.1g/dl、
MgSO4・7H2O0.04g/dl、FeSO4・7H2O0.001
g/dl、MnSO4・4H2O0.001g/dl、尿素0.3
g/dl、大豆蛋白酸加水分解液を全窒素として60
mg/dl、サイアミン・HCl30μg/dl、ビオチン
20μg/dlを含む種母培地をPH6.0に調節し、その
50mlを500ml容肩付フラスコに入れ、加熱殺菌し
た。 これに菌株ブレビバクテリウム・ラクトフエル
メンタムFERM−P 5936(AJ 11678)を接種
し、31.5℃に保ちつつ、13時間振盪培養した。 一方、グルコース13g/dl、KH2PO40.1g/
dl、MgSO4・7H2O0.04g/dl、FeSO4
7H2O0.001g/dl、MnSO4・4H2O0.001g/dl、
硫安4.0g/dl、大豆蛋白酸加水分解液を全窒素
として65mg/dl、サイアミン・HCl20μg/dl、
ビオチン10μg/dl、L−アルギニン70mg/dlを
含むPH7.0に調節した培地とこれにDMG0.01〜3
g/dlを添加した培地それぞれ20mlを500ml容肩
付フラスコに分注して、115℃、10分間加熱滅菌
した。これにあらかじめ乾熱滅菌した炭酸カルシ
ウム2gを夫々に添加し、更に上記種母培養液1
mlずつ加えて31.5℃にて培養した。培養終了時の
L−オルニチンの対糖収率を第21表に示した。 第21表 DMG添加量 L−オルニチン収率 0g/dl 24.5% 0.01 26.0 0.05 27.5 1.0 29.0 2.0 27.0 3.0 23.0 実施例 14 グルコース3g/dl、KH2PO40.1g/dl、
MgSO4・7H2O0.04g/dl、FeSO4・7H2O0.001
g/dl、MnSO4・4H2O0.001g/dl、尿素0.3
g/dl、大豆蛋白酸加水分解液を全窒素として60
mg/dl、サイアミン・HCl30μg/dl、ビオチン
20μg/dlを含む種母培地をPH6.0に調節し、その
50mlを500ml容肩付フラスコに入れ、加熱殺菌し
た。 これに菌株コリネバクテリウム・グルタミクム
ATCC 13232を接種し、31.5℃に保ちつつ、13時
間振盪培養した。 一方、グルコース13g/dl、KH2PO40.1g/
dl、MgSO4・7H2O0.04g/dl、FeSO4
7H2O0.001g/dl、MnSO4・4H2O0.001g/dl、
硫安4.0g/dl、大豆蛋白酸加水分解液を全窒素
として65mg/dl、サイアミン・HCl20μg/dl、
ビオチン10μg/dl、L−ホモセリン70mg/dlを
含むPH7.0に調節した培地とこれにDMG0.01〜3
g/dlを添加した培地それぞれ20mlを500ml容肩
付フラスコに分注して、115℃、10分間加熱滅菌
した。これにあらかじめ乾熱滅菌した炭酸カルシ
ウム2gを夫々に添加し、更に上記種母培養液1
mlずつ加えて31.5℃にて培養した。培養終了時の
L−オルニチンの対糖収率を第22表に示した。 第22表 DMG添加量 L−オルニチン収率 0g/dl 24.5% 0.01 26.0 0.05 27.5 1.0 29.0 2.0 27.0 3.0 23.0 実施例 15 グルコース3g/dl、KH2PO40.1g/dl、
MgSO4・7H2O0.04g/dl、FeSO4・7H2O1.0
mg/dl、MnSO4・4H2O1.0mg/dl、尿素0.3g/
dl、大豆蛋白酸加水分解液を全窒素として60mg/
dl、サイアミン・HCl30γ/dl、ビオチン20γ/dl
を含む種母培地をPH6.0に調節し、その50mlを500
ml容肩付フラスコに入れ、加熱殺菌した。コリネ
バクテリウム・グルタミクムFERM−P 5643
(AJ 11588)を接種し、31.5℃に保ちつつ、13時
間振盪培養した。 一方、グルコース13g/dl、KH2PO40.1g/
dl、MgSO4・7H2O0.04g/dl、FeSO4
7H2O1.0mg/dl、MnSO4・4H2O1.0mg/dl、塩安
3.0g/dl、大豆蛋白酸加水分解液を全窒素とし
て65mg/dl、サイアミン・HCl20γ/dl、ビオチ
ン10γ/dl、L−アルギニン70mg/dlを含むPH7.0
に調節した培地とこれにMGを0.01〜3g/dl加
えた培地それぞれについて実施例14と同様に培養
した。培養終了時のL−シトルリンの対糖収率は
第23表のとおりであつた。 第23表 MG添加量 L−シトルリン収率 0g/dl 13.5% 0.01 14.0 0.05 14.5 1.0 15.5 2.0 14.0 3.0 13.0 実施例 16 第24表の組成の縦母培地を500ml容の振盪フラ
スコに50ml宛分注し、110℃にて5分間加熱・滅
菌した後、菌株コリネバクテリウム・グルタミク
ムFERM−P 5836(AJ 11655)を接種し31.5℃
で12時間振盪培養を行い種培養液を得た。 一方第25表のL−チロシン主発酵培地とこれに
HETMA0.01〜3g/dlを加えた培地それぞれを
実施例14と同様に培養した。培養終了時のL−チ
ロシン量は第25表に示すとおりであつた。
[Table] Table 20 5'-inosinic acid accumulation TMG addition amount (5'-IMP・2Na・7.5H 2 O) 0g/dl 28 0.1 28.5 0.5 29 1.0 30 2.0 29.5 3.0 29 5.0 27 Example 13 Glucose 3g /dl, KH 2 PO 4 0.1g/dl,
MgSO 4・7H 2 O0.04g/dl, FeSO 4・7H 2 O0.001
g/dl, MnSO 4・4H 2 O0.001g/dl, urea 0.3
g/dl, 60 as total nitrogen for soybean protein acid hydrolyzate
mg/dl, thiamine/HCl30μg/dl, biotin
The seed medium containing 20 μg/dl was adjusted to pH 6.0, and the
50ml was placed in a 500ml shoulder flask and sterilized by heating. This was inoculated with the strain Brevibacterium lactofermentum FERM-P 5936 (AJ 11678), and cultured with shaking while maintaining the temperature at 31.5°C for 13 hours. On the other hand, glucose 13g/dl, KH 2 PO 4 0.1g/
dl, MgSO 4・7H 2 O0.04g/dl, FeSO 4
7H2O0.001g /dl, MnSO44H2O0.001g /dl,
Ammonium sulfate 4.0g/dl, soybean protein acid hydrolyzate as total nitrogen 65mg/dl, thiamine/HCl 20μg/dl,
A medium adjusted to pH 7.0 containing 10 μg/dl of biotin and 70 mg/dl of L-arginine and 0.01 to 3 DMG
20 ml of each medium supplemented with g/dl was dispensed into 500 ml shouldered flasks and sterilized by heating at 115° C. for 10 minutes. 2 g of calcium carbonate, which had been dry heat sterilized in advance, was added to each of these, and then 1 g of the above seed culture solution was added.
ml each was added and cultured at 31.5°C. The yield of L-ornithine relative to sugar at the end of the culture is shown in Table 21. Table 21 DMG addition amount L-ornithine yield 0g/dl 24.5% 0.01 26.0 0.05 27.5 1.0 29.0 2.0 27.0 3.0 23.0 Example 14 Glucose 3g/dl, KH 2 PO 4 0.1g/dl,
MgSO 4・7H 2 O0.04g/dl, FeSO 4・7H 2 O0.001
g/dl, MnSO 4・4H 2 O0.001g/dl, urea 0.3
g/dl, 60 as total nitrogen for soybean protein acid hydrolyzate
mg/dl, thiamine/HCl30μg/dl, biotin
The seed medium containing 20 μg/dl was adjusted to pH 6.0, and the
50ml was placed in a 500ml shoulder flask and sterilized by heating. In this, the strain Corynebacterium glutamicum
ATCC 13232 was inoculated and cultured with shaking for 13 hours while maintaining the temperature at 31.5°C. On the other hand, glucose 13g/dl, KH 2 PO 4 0.1g/
dl, MgSO 4・7H 2 O0.04g/dl, FeSO 4
7H2O0.001g /dl, MnSO44H2O0.001g /dl,
Ammonium sulfate 4.0g/dl, soybean protein acid hydrolyzate as total nitrogen 65mg/dl, thiamine/HCl 20μg/dl,
A medium adjusted to pH 7.0 containing biotin 10 μg/dl and L-homoserine 70 mg/dl and DMG 0.01-3
20 ml of each medium supplemented with g/dl was dispensed into 500 ml shouldered flasks and sterilized by heating at 115° C. for 10 minutes. 2 g of calcium carbonate, which had been dry heat sterilized in advance, was added to each of these, and then 1 g of the above seed culture solution was added.
ml each was added and cultured at 31.5°C. The yield of L-ornithine relative to sugar at the end of the culture is shown in Table 22. Table 22 DMG addition amount L-ornithine yield 0 g/dl 24.5% 0.01 26.0 0.05 27.5 1.0 29.0 2.0 27.0 3.0 23.0 Example 15 Glucose 3 g/dl, KH 2 PO 4 0.1 g/dl,
MgSO 4・7H 2 O0.04g/dl, FeSO 4・7H 2 O1.0
mg/dl, MnSO 4・4H 2 O1.0mg/dl, urea 0.3g/
dl, 60mg/total nitrogen of soybean protein acid hydrolyzate
dl, thiamine/HCl30γ/dl, biotin 20γ/dl
Adjust the seed culture medium containing PH6.0 to 500ml
The mixture was placed in a ml shoulder flask and sterilized by heating. Corynebacterium glutamicum FERM-P 5643
(AJ 11588) and cultured with shaking for 13 hours while maintaining at 31.5°C. On the other hand, glucose 13g/dl, KH 2 PO 4 0.1g/
dl, MgSO 4・7H 2 O0.04g/dl, FeSO 4
7H 2 O 1.0 mg/dl, MnSO 4・4H 2 O 1.0 mg/dl, ammonium chloride
3.0g/dl, 65mg/dl based on total nitrogen of soybean protein acid hydrolyzate, PH7.0 including thiamine/HCl20γ/dl, biotin 10γ/dl, L-arginine 70mg/dl
Cultures were carried out in the same manner as in Example 14 using a medium adjusted to 0.2 g/dl and a medium to which 0.01 to 3 g/dl of MG was added. The yield of L-citrulline relative to sugar at the end of the culture was as shown in Table 23. Table 23 MG addition amount L-citrulline yield 0 g/dl 13.5% 0.01 14.0 0.05 14.5 1.0 15.5 2.0 14.0 3.0 13.0 Example 16 Dispense 50 ml of the vertical mother medium having the composition shown in Table 24 into a 500 ml shaking flask. After heating and sterilizing at 110°C for 5 minutes, the strain Corynebacterium glutamicum FERM-P 5836 (AJ 11655) was inoculated at 31.5°C.
A seed culture solution was obtained by performing shaking culture for 12 hours. On the other hand, the L-tyrosine main fermentation medium in Table 25 and this
Each medium containing 0.01 to 3 g/dl of HETMA was cultured in the same manner as in Example 14. The amount of L-tyrosine at the end of the culture was as shown in Table 25.

【表】 第25表 HETMA添加量 L−チロシン収率 0g/dl 6.0% 0.01 6.5 0.03 8.0 0.5 9.0 1.0 8.2 2.0 7.5 3.0 6.0 実施例 17 グルコース3g/dl、KH2PO40.1g/dl、尿
素0.3g/dl、MgSO4・7H2O0.04g/dl、
FeSO4・7H2O1mg/dl、MnSO4・4H2O1mg/dl、
DL−メチオニン40mg/dl、ビオチン10μg/、
サイアミン・塩酸塩200μg/、大豆蛋白酸加
水分解液を全窒素として50mg/dlを含む種母培地
をPH6に調節し、その50mlを500ml容肩付フラス
コに入れ、120℃、10分間加熱殺菌した。これに
ブレビバクテニウム・フラバムFERM BP−755
を接種し、31.5℃にて20時間振盪培養した。 一方、てん菜糖蜜(グルコース換算)13g/
dl、KH2PO40.1g/dl、(NH42SO42.0g/dl、
MgSO4・7H2O0.04g/dl、FeSO4・7H2O1mg/
dl、MnSO4・4H2O1mg/dl、DL−メチオニン
100mg/dl、ビオチン50μg/、サイアミン塩
酸塩300μg/、脱脂大豆酸分解液50mg/dlを
含むPH7.0に調節した培地とこれにHETMA0.01
〜3g/dlを加えた培地のそれぞれを実施例14と
同様に培養した。培養終了時のL−ロイシンの生
成量は第26表のとおりであつた。 第26表 HETMA添加量 L−ロイシン収率 0g/dl 12.0% 0.01 13.2 0.5 14.2 1.0 15.0 2.0 14.0 3.0 12.5
[Table] Table 25 HETMA addition amount L-tyrosine yield 0g/dl 6.0% 0.01 6.5 0.03 8.0 0.5 9.0 1.0 8.2 2.0 7.5 3.0 6.0 Example 17 Glucose 3g/dl, KH 2 PO 4 0.1g/dl, Urea 0.3 g/dl, MgSO 4・7H 2 O0.04g/dl,
FeSO 4・7H 2 O1mg/dl, MnSO 4・4H 2 O1mg/dl,
DL-methionine 40mg/dl, biotin 10μg/,
A seed medium containing 200 μg/dl of thiamine hydrochloride and 50 mg/dl of soybean protein acid hydrolyzate as total nitrogen was adjusted to pH 6, and 50 ml of it was placed in a 500 ml flask with a shoulder and heat sterilized at 120°C for 10 minutes. . This includes Brevibactenium flavum FERM BP−755
was inoculated and cultured with shaking at 31.5°C for 20 hours. On the other hand, sugar beet molasses (converted to glucose) 13g/
dl, KH 2 PO 4 0.1g/dl, (NH 4 ) 2 SO 4 2.0g/dl,
MgSO 4・7H 2 O0.04g/dl, FeSO 4・7H 2 O1mg/
dl, MnSO 4 4H 2 O1mg/dl, DL-methionine
A medium adjusted to PH7.0 containing 100mg/dl, biotin 50μg/, thiamine hydrochloride 300μg/, defatted soybean acid decomposition solution 50mg/dl, and HETMA0.01
Each medium containing ~3 g/dl was cultured in the same manner as in Example 14. The amount of L-leucine produced at the end of the culture was as shown in Table 26. Table 26 HETMA addition amount L-leucine yield 0g/dl 12.0% 0.01 13.2 0.5 14.2 1.0 15.0 2.0 14.0 3.0 12.5

Claims (1)

【特許請求の範囲】[Claims] 1 ブレビバクテリウム属、コリネバクテリウム
属、エセリヒア属もしくはバチルス属に属するL
−アミノ酸生産菌又はコリネバクテリウム属に属
する5′−イノシン酸生産菌をケーンモラセス、シ
ユークロース又はグルコースを主炭素源とし、N
−メチルグリシン、N,N−ジメチルグリシン、
N,N,N−トリメチルグリシン及び[2−ハイ
ドロキシエチル]トリメチルアンモニウムより成
る群より選ばれる1種類以上の物質を含有する培
地で培養し、L−アミノ酸又は5′−イノシン酸を
生成せしめ、これを採取することを特徴とする発
酵法によるL−アミノ酸又は5′−イノシン酸の製
造法。
1 L belonging to the genus Brevibacterium, Corynebacterium, Eserichia or Bacillus
- Amino acid-producing bacteria or 5'-inosinic acid-producing bacteria belonging to the genus Corynebacterium are used as main carbon sources, such as cane molasses, sucrose, or glucose, and N
-Methylglycine, N,N-dimethylglycine,
Cultured in a medium containing one or more substances selected from the group consisting of N,N,N-trimethylglycine and [2-hydroxyethyl]trimethylammonium to produce L-amino acids or 5'-inosinic acid, 1. A method for producing L-amino acid or 5'-inosinic acid by a fermentation method, which comprises collecting .
JP61022504A 1986-02-04 1986-02-04 Production of l-amino acid or 5'-inosinic acid by fermentation method Granted JPS62181791A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61022504A JPS62181791A (en) 1986-02-04 1986-02-04 Production of l-amino acid or 5'-inosinic acid by fermentation method
AU67569/87A AU590659B2 (en) 1986-02-04 1987-01-14 Process for producing l-amino acids or 5'-inosinic acid by fermentation
FR8702795A FR2611743B1 (en) 1986-02-04 1987-03-02 PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS OR 5'-INOSINIC ACID BY FERMENTATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022504A JPS62181791A (en) 1986-02-04 1986-02-04 Production of l-amino acid or 5'-inosinic acid by fermentation method

Publications (2)

Publication Number Publication Date
JPS62181791A JPS62181791A (en) 1987-08-10
JPH0566113B2 true JPH0566113B2 (en) 1993-09-21

Family

ID=12084574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022504A Granted JPS62181791A (en) 1986-02-04 1986-02-04 Production of l-amino acid or 5'-inosinic acid by fermentation method

Country Status (3)

Country Link
JP (1) JPS62181791A (en)
AU (1) AU590659B2 (en)
FR (1) FR2611743B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698879B1 (en) * 1992-12-09 1995-01-13 Rhone Poulenc Biochimie capsules modified in the catabolism of betaine, preparation and uses, in particular for the production of metabolites or enzymes.
CN106701853B (en) * 2016-12-02 2019-09-20 武汉远大弘元股份有限公司 A kind of production l-Isoleucine Corynebacterium glutamicum fermentation medium and cultural method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154594A (en) * 1976-06-17 1977-12-22 Mitsubishi Petrochem Co Ltd Preparation of amino acid
JPS5655196A (en) * 1979-10-08 1981-05-15 Mitsubishi Gas Chem Co Inc Method of culturing microorganism
DD204105A1 (en) * 1981-10-23 1983-11-16 Univ Leipzig PROCESS FOR SUPPLEMENTING BACTERIA
JP2572567B2 (en) * 1985-06-07 1997-01-16 理化学研究所 Enzyme production method

Also Published As

Publication number Publication date
AU590659B2 (en) 1989-11-09
JPS62181791A (en) 1987-08-10
FR2611743B1 (en) 1994-06-10
AU6756987A (en) 1988-07-21
FR2611743A1 (en) 1988-09-09

Similar Documents

Publication Publication Date Title
JP3006926B2 (en) Method for producing L-threonine by fermentation method
HU225737B1 (en) Process for producing l-amino acids by fermentation
US5164307A (en) Process for producing L-amino acids by fermentation
JPS62195293A (en) Production of l-isoleucine by fermentation method
JP3245881B2 (en) Simultaneous fermentation of basic and acidic amino acids
US5164306A (en) Process for producing 5'-inosinic acid by fermentation
JPH0566113B2 (en)
JPH02131589A (en) Production of l-threonine by fermentation method
JP2578463B2 (en) Production method of L-lysine by fermentation method
JPS6224074B2 (en)
JP2971089B2 (en) Method for producing L-threonine by fermentation
KR920009542B1 (en) Method for producing l-aminoacid
JPS641116B2 (en)
JPS6236672B2 (en)
US5034319A (en) Process for producing L-arginine
JPH0644871B2 (en) Fermentation method for producing L-leucine
JP3008549B2 (en) Production method of L-lysine by fermentation method
AU5706899A (en) Process for the fermentative production of L-amino acids
KR0130196B1 (en) Simultaneous fermentation of basic and acidic amino acids
JPH0347838B2 (en)
JPH09271382A (en) Production of l-amino acid by fermentation method using ectoine
JPH0520068B2 (en)
JPH0358716B2 (en)
JPH074264B2 (en) Method for producing L-amino acid by fermentation method
KR960016873B1 (en) Preparation process of l-threonine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term