JPH0565782B2 - - Google Patents
Info
- Publication number
- JPH0565782B2 JPH0565782B2 JP2308017A JP30801790A JPH0565782B2 JP H0565782 B2 JPH0565782 B2 JP H0565782B2 JP 2308017 A JP2308017 A JP 2308017A JP 30801790 A JP30801790 A JP 30801790A JP H0565782 B2 JPH0565782 B2 JP H0565782B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- compressed
- heat
- raw material
- compressed raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 47
- 239000012535 impurity Substances 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 20
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 20
- 239000002994 raw material Substances 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 239000003054 catalyst Substances 0.000 claims description 17
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 238000006555 catalytic reaction Methods 0.000 description 10
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/04—Purification or separation of nitrogen
- C01B21/0405—Purification or separation processes
- C01B21/0411—Chemical processing only
- C01B21/0422—Chemical processing only by reduction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0045—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/82—Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/42—Nitrogen or special cases, e.g. multiple or low purity N2
- F25J2215/44—Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、圧縮原料空気を不純物除去工程を経
て液化精溜により分離して半導体製造に使用され
る高純度窒素を製造する方法において、前記不純
物除去工程に導入される原料空気の前処理方法に
関するものである。Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for producing high-purity nitrogen used in semiconductor manufacturing by separating compressed raw air through an impurity removal step and by liquefaction rectification. The present invention relates to a method for pre-treating raw air introduced into an impurity removal process.
不活性ガスとしての窒素は、多くの産業分野で
利用されているが、その大部分は、原料空気を圧
縮し、水分、炭酸ガス等の不純物を除去した後冷
却して、液化精溜により窒素を分離することによ
つて採取している。この窒素ガス製造方法におい
ては、空気中の不純物を、吸着等の手段で除去
し、さらに精溜の際にも分離しているので、不純
物の大部分は除去されて、比較的純度の高い窒素
が得られる。
Nitrogen as an inert gas is used in many industrial fields, but most of it is produced by compressing raw air, removing impurities such as moisture and carbon dioxide, and cooling it to produce nitrogen through liquefaction rectification. It is collected by separating the In this nitrogen gas production method, impurities in the air are removed by means such as adsorption and further separated during rectification, so most of the impurities are removed and relatively pure nitrogen is produced. is obtained.
ところで、一般に半導体の製造に使用される窒
素ガスは、この空気分離によつて得られた液体窒
素を半導体製造工場に供給し、これをガス化して
消費しているが、近時半導体製造分野では、比較
的小型のガス状窒素装置を設置するようになつて
きた。そして、製品窒素ガスは、さらに高純度の
ものが要求されるため、空気中の不純物のうち、
微量に含まれている水素、一酸化炭素等が、従来
の窒素ガス製造方法における通常の吸着工程では
除去が困難なため問題視されるようになつてき
た。 By the way, nitrogen gas used in semiconductor manufacturing is generally produced by supplying liquid nitrogen obtained through air separation to semiconductor manufacturing factories, which is then gasified and consumed. , relatively small gaseous nitrogen equipment has been installed. Since the product nitrogen gas is required to be of even higher purity, among the impurities in the air,
Hydrogen, carbon monoxide, etc. contained in trace amounts have become a problem because they are difficult to remove by the normal adsorption process in conventional nitrogen gas production methods.
このため、原料空気中に微量(約0.5ppm乃至1
ppm)に含まれる水素については、実開昭58−
93790号公報に開示される如く、原料空気を圧縮
機で圧縮される際の圧縮熱により80〜150℃の温
度に昇温して触媒筒へ導入して、原料空気中の共
存酸素と反応させて水とした後、液化精溜工程の
前段工程の不純物除去工程で除去することが提案
されている。 Therefore, a trace amount (approximately 0.5 ppm to 1 ppm) is present in the raw air.
Regarding hydrogen contained in ppm),
As disclosed in Publication No. 93790, raw air is heated to a temperature of 80 to 150°C by the heat of compression when it is compressed by a compressor, and is introduced into a catalyst cylinder to react with coexisting oxygen in the raw air. It has been proposed that the impurities be removed in the impurity removal step, which is the first stage of the liquefaction rectification step, after converting the impurities into water.
また、前記不純物除去工程で除去できなかつた
水素は、その沸点が−252.7℃であり、窒素に対
して沸点差が大きいので、装置の改造等により精
溜操作で除去することができる。 Further, hydrogen that could not be removed in the impurity removal step has a boiling point of -252.7°C, which has a large boiling point difference with respect to nitrogen, so it can be removed by rectification by modifying the equipment or the like.
一方、原料空気中に微量に含まれる一酸化炭素
は、周知の如く、通常0.1ppm以下であるが、立地
条件により、例えば空気液化精溜装置が設置され
る工業地帯では5ppm〜10ppm程度に達する場合があ
る。他方、半導体製造用として使用される窒素ガ
ス中の一酸化炭素の許容量は、1ppm以下と厳しい
仕様が要求されている。したがつて、精製後の原
料空気中の一酸化炭素は、これ以下程度の濃度が
要求される。
On the other hand, as is well known, the trace amount of carbon monoxide contained in raw air is usually less than 0.1 ppm, but depending on the location, for example, it can reach around 5 ppm to 10 ppm in industrial areas where air liquefaction rectification equipment is installed. There are cases. On the other hand, strict specifications are required for the permissible amount of carbon monoxide in nitrogen gas used for semiconductor manufacturing, such as 1 ppm or less. Therefore, the concentration of carbon monoxide in the raw material air after purification is required to be lower than this.
また、半導体製造に使用される窒素ガスを工業
的に採取するための空気液化分離装置は、規模が
原料空気量で数千Nm3/hr以上であり、この容量
の原料空気を処理して、上記仕様値を確実にクリ
ヤーするためには厳しい条件が要求される。 In addition, air liquefaction separation equipment for industrially collecting nitrogen gas used in semiconductor manufacturing has a scale of several thousand Nm 3 /hr or more in terms of raw material air volume, and it is necessary to process this volume of raw material air. Strict conditions are required to reliably meet the above specification values.
さらに、触媒による反応は、一般に触媒性能の
面からは温度が高い程有利であるが、温度が高い
と、高純度窒素製造方法を実施するための設備に
耐熱性が要求され、設備費が高くなる。 Furthermore, for reactions using catalysts, higher temperatures are generally more advantageous in terms of catalytic performance, but at higher temperatures, heat resistance is required for the equipment used to carry out the high-purity nitrogen production method, resulting in high equipment costs. Become.
このようなことから、本発明者は、原料空気中
に微量に含まれる一酸化炭素を、前記公開公報に
開示される如き原料空気中に微量に含まれる水素
と同様に、液化精溜工程前に触媒による反応で酸
化させて不純物除去工程で除去しようと試みた
が、触媒反応温度が80〜150℃であるため、条件
によつては触媒反応で除去しきれない場合があ
り、この触媒反応で除去しきれなかつた一酸化炭
素を、上記仕様値を満足するように経済的に精溜
分離することは、一酸化炭素が窒素と近似した沸
点をもつため、極めて困難であつた。 For this reason, the present inventor has proposed that the carbon monoxide contained in the feed air be treated in a similar way to the hydrogen contained in the feed air as disclosed in the above-mentioned publication before the liquefaction rectification process. However, since the catalytic reaction temperature is 80 to 150°C, depending on the conditions, the catalytic reaction may not be able to completely remove the impurities. Since carbon monoxide has a boiling point similar to that of nitrogen, it has been extremely difficult to economically separate the carbon monoxide that could not be removed by distillation in a manner that satisfies the above specifications.
そこで、本発明は、以上に述べた課題を解決し
て、圧縮原料空気に触媒反応に有利な温度に効率
よく昇温し、仕様値を確実かつ経済的にクリヤー
することができる半導体製造に使用される高純度
窒素の製造方法における原料空気の前処理方法を
提供することを目的とするものである。 Therefore, the present invention solves the above-mentioned problems, efficiently raises the temperature of compressed feed air to a temperature favorable for catalytic reaction, and can be used in semiconductor manufacturing to reliably and economically meet specification values. The purpose of the present invention is to provide a method for pretreating raw material air in a method for producing high-purity nitrogen.
本発明は、上記目的を達成するため、圧縮原料
空気を不純物除去工程を経て液化精溜により分離
し、高純度窒素を採取する窒素製造方法におい
て、前記不純物除去工程に原料空気を導入するに
あたり、圧縮機にて所要圧に昇圧し圧縮熱により
80℃乃至150℃に昇温した前記圧縮原料空気を、
熱交換器にて加熱した後さらに加熱器にて加熱
し、次いで触媒筒へ導入して前記圧縮原料空気に
含有する微量の一酸化炭素を該圧縮原料空気に共
存する酸素と反応させ、さらに前記熱交換器で前
記圧縮原料空気に熱を与え、冷却器を経て前記不
純物除去工程へ導入することを特徴とするもので
ある。
In order to achieve the above object, the present invention provides a nitrogen production method in which compressed feed air is separated by liquefaction rectification through an impurity removal step and high purity nitrogen is collected, in which when introducing the feed air into the impurity removal step, The compressor increases the pressure to the required level and the heat of compression
The compressed raw air heated to 80°C to 150°C,
After being heated in a heat exchanger, it is further heated in a heater, and then introduced into a catalyst cylinder to cause a trace amount of carbon monoxide contained in the compressed feed air to react with oxygen coexisting in the compressed feed air. The method is characterized in that a heat exchanger applies heat to the compressed raw material air, and the compressed raw material air is introduced into the impurity removal step through a cooler.
以下、本発明の一実施例を図によつて説明する
と、圧縮機1に供給された原料空気は、所要圧力
まで圧縮されるとともに、圧縮熱により80℃〜
150℃に昇温する。この圧縮原料空気は、管2、
弁3を介して熱交換器4に入り、後記する最高約
190℃の高温圧縮原料空気と熱交換して加温され
た後、管5を介して加熱器6に導入される。該加
熱器6では、電熱、燃焼等任意の熱源を利用し
て、熱交換器4で加温された高温圧縮原料空気
を、触媒反応に必要な温度、即ち最高約190℃に
加温する。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. Raw air supplied to the compressor 1 is compressed to a required pressure, and the heat of compression
Raise the temperature to 150℃. This compressed raw air is supplied to pipe 2,
It enters the heat exchanger 4 through the valve 3, and the maximum
After being heated by exchanging heat with 190° C. high-temperature compressed raw material air, it is introduced into a heater 6 via a pipe 5. The heater 6 uses any heat source such as electric heat or combustion to heat the high-temperature compressed raw material air heated by the heat exchanger 4 to a temperature necessary for the catalytic reaction, that is, a maximum of about 190°C.
この加温温度は、触媒の種類、使用方法等によ
つて異なるのは周知の通りであり、したがつてこ
れ等の条件を基に決められることは勿論である
が、実際の空気液化精溜による高純度窒素の製造
における稼働条件としては、高温圧縮原料空気が
約190℃迄加熱されている状態が最適な温度範囲
である。 It is well known that this heating temperature differs depending on the type of catalyst, method of use, etc., and therefore it can of course be determined based on these conditions, but it is The optimum temperature range for the operating conditions in the production of high-purity nitrogen is when the high-temperature compressed feed air is heated to about 190°C.
即ち、触媒反応では、触媒のみに注目すれば最
適温度は、触媒の種類と対象ガスの種類によつて
決まり、前述の如く触媒性能の面では温度が高い
程有利であるが、温度が高いと設備的な面から
は、高純度窒素製造方法を実施するための、例え
ばアルミニウム製の熱交換器や、管、弁等に耐熱
性が要求され、材料の選定条件が厳しくなり、設
備費が高くなる。 In other words, in a catalytic reaction, if we focus only on the catalyst, the optimal temperature is determined by the type of catalyst and the type of target gas, and as mentioned above, higher temperatures are more advantageous in terms of catalytic performance, but higher temperatures From an equipment standpoint, for example, aluminum heat exchangers, pipes, valves, etc. required to be heat resistant are required to carry out the high-purity nitrogen production method, making selection conditions for materials stricter and equipment costs higher. Become.
したがつて、前記圧縮原料空気に含有する微量
の一酸化炭素を除去するには、上記の最高約190
℃であれば、市販性、汎用性のある一般の材料を
用いることができ、一方触媒反応にも有利であ
る。 Therefore, in order to remove trace amounts of carbon monoxide contained in the compressed feed air, the maximum
If the temperature is .degree. C., commercially available and versatile general materials can be used, and it is also advantageous for catalytic reactions.
前記加熱器6でさらに加熱された高温圧縮原料
空気は、次いで管7を経て適宜な触媒の充填して
なる触媒筒8に導入し、高温圧縮原料空気に含有
する微量の一酸化炭素を、同じく高温圧縮原料空
気に共存する酸素と反応させて炭酸ガスとした
後、管9を経て前記熱交換器4に戻される。な
お、触媒筒に充填されている触媒が水素をも対象
ガスとしているときは、高温圧縮原料空気に微量
に含まれている水素も共存する酸素と反応して水
になる。 The high-temperature compressed feed air further heated by the heater 6 is then introduced through a pipe 7 into a catalyst cylinder 8 filled with an appropriate catalyst, and the trace amount of carbon monoxide contained in the high-temperature compressed feed air is also removed. After reacting with oxygen present in the high-temperature compressed raw material air to form carbon dioxide gas, it is returned to the heat exchanger 4 through the pipe 9. Note that when the catalyst filled in the catalyst cylinder also targets hydrogen, the trace amount of hydrogen contained in the high-temperature compressed feed air also reacts with the coexisting oxygen and becomes water.
一酸化炭素を炭酸ガスとした高温圧縮原料空気
は、熱交換器4にて圧縮機1で圧縮された前記圧
縮原料空気と熱交換して該圧縮原料空気に熱を与
えて降温した後、管10、弁11を経て冷却器1
2に入り、常温まで冷却されて管13から、常法
により不純物除去工程14に導入され、該不純物
除去工程14にて、通常の不純物除去処理によ
り、一酸化炭素が変化した前記炭酸ガスは、原料
空気中に同伴されている炭酸ガス、水分と共に除
去され、これら不純物を含まない原料空気は、管
15を介して液化精溜工程16に導入され、該液
化精溜工程16で液化精溜されて不純物を殆んど
含まない高純度窒素を得ることができる。 The high-temperature compressed raw air containing carbon monoxide as carbon dioxide gas exchanges heat with the compressed raw air compressed by the compressor 1 in a heat exchanger 4 to give heat to the compressed raw air and lower the temperature, and then 10, cooler 1 via valve 11
2, the carbon dioxide gas is cooled to room temperature and introduced into an impurity removal step 14 through a pipe 13 by a conventional method, and in the impurity removal step 14, the carbon monoxide has been converted into carbon monoxide by a normal impurity removal treatment. The raw air, which is removed together with carbon dioxide and moisture entrained in the raw air and does not contain these impurities, is introduced into the liquefaction rectification process 16 through the pipe 15, and is liquefied and rectified in the liquefaction rectification process 16. High purity nitrogen containing almost no impurities can be obtained.
したがつて、圧縮機1で圧縮された前記圧縮原
料空気は、加熱器6で加熱されて触媒筒8を通過
した高温圧縮原料空気と熱交換器4にて熱を与え
られるので、該高温圧縮原料空気の熱を有効に利
用して触媒反応に有利な高温を得ることができ、
液化精溜工程16に導入される前に、圧縮原料空
気に含まれる一酸化炭素を、前記不純物除去工程
で容易に除去することができる炭酸ガスに変える
ことができ、しかも、該高温圧縮原料空気はこの
熱交換により降温するので、前記冷却器12を大
型にする必要がない。 Therefore, the compressed feed air compressed by the compressor 1 is heated by the heater 6 and is given heat in the heat exchanger 4 with the high temperature compressed feed air that has passed through the catalyst cylinder 8, so that the high temperature compression By effectively utilizing the heat of the feed air, it is possible to obtain high temperatures that are advantageous for catalytic reactions.
Before being introduced into the liquefaction rectification step 16, carbon monoxide contained in the compressed feed air can be converted into carbon dioxide gas that can be easily removed in the impurity removal step, and the high temperature compressed feed air Since the temperature is lowered by this heat exchange, there is no need to make the cooler 12 large.
また、本実施例は、熱交換器4、加熱器6及び
触媒筒8を圧縮機の最終段の後に設けているが、
これらを圧縮機の中間段に設けても同様な効果が
得られる。 Furthermore, in this embodiment, the heat exchanger 4, heater 6, and catalyst cylinder 8 are provided after the final stage of the compressor.
A similar effect can be obtained even if these are provided at an intermediate stage of the compressor.
なお、大気中に含有される一酸化炭素量は、環
境によつて大きく異なるので、その量が少なく本
発明の触媒反応による一酸化炭素の反応工程を使
用しないで済む場合は、原料空気を圧縮機1で圧
縮した後、弁17、バイパス管18を介して冷却
器12へ供給することもできる。即ち、弁3,1
1を閉じ、バイパス管18の弁17を開くことに
より行なわれる。 Note that the amount of carbon monoxide contained in the atmosphere varies greatly depending on the environment, so if the amount is small and the carbon monoxide reaction step by the catalytic reaction of the present invention can be omitted, the raw air can be compressed. After being compressed in the machine 1, it can also be supplied to the cooler 12 via the valve 17 and bypass pipe 18. That is, valves 3, 1
1 and opening the valve 17 of the bypass pipe 18.
本発明は以上の通り、圧縮原料空気を不純物除
去工程を経て液化精溜により分離し、高純度窒素
を採取する窒素製造方法において、前記不純物除
去工程に原料空気を導入するにあたり、圧縮機に
て所要圧に昇圧し圧縮熱により80℃乃至150℃に
昇温した前記圧縮原料空気を、熱交換器にて加熱
した後さらに加熱器にて加熱し、次いで触媒筒へ
導入して前記圧縮原料空気に含有する微量の一酸
化炭素を該圧縮原料空気に共存する酸素と反応さ
せ、さらに前記熱交換器で前記圧縮原料空気に熱
を与え、冷却器を経て前記不純物除去工程へ導入
するから、
(a) 圧縮熱により80℃乃至150℃に昇温した圧縮
原料空気を、加熱器でさらに加熱されて触媒筒
を通過した高温圧縮原料空気と熱交換して加熱
するので、該高温圧縮原料空気の熱を有効に利
用して触媒反応に有利な高温を得ることがで
き、極めて僅かな熱源の付加のみで、効率良く
かつ確実に一酸化炭素の触媒反応が行え、通常
の窒素ガス製造方法における不純物除去のため
の前処理工程及び液化精溜工程では除去が困難
な原料空気に含まれる微量の一酸化炭素を、液
化精溜工程へ導入する前に確実に除去すること
ができる。
As described above, in a nitrogen production method in which compressed raw air is separated by liquefaction rectification through an impurity removal process and high-purity nitrogen is collected, when the raw air is introduced into the impurity removal process, a compressor is used. The compressed raw material air, which has been pressurized to the required pressure and heated to 80°C to 150°C by the heat of compression, is heated in a heat exchanger and then further heated in a heater, and then introduced into the catalyst cylinder to generate the compressed raw material air. The trace amount of carbon monoxide contained in the compressed raw material air is reacted with oxygen coexisting in the compressed raw material air, further heat is given to the compressed raw material air in the heat exchanger, and the compressed raw material air is introduced into the impurity removal process via a cooler. a) The compressed feed air whose temperature has been raised to 80℃ to 150℃ due to the heat of compression is further heated by the heater and heated by exchanging heat with the high temperature compressed feed air that has passed through the catalyst cylinder. It is possible to effectively utilize heat to obtain high temperatures that are advantageous for catalytic reactions, and with the addition of an extremely small heat source, the catalytic reaction of carbon monoxide can be carried out efficiently and reliably, eliminating the impurities that occur in ordinary nitrogen gas production methods. Trace amounts of carbon monoxide contained in the raw material air, which is difficult to remove in the pretreatment step and the liquefaction rectification step, can be reliably removed before being introduced into the liquefaction rectification step.
(b) したがつて、半導体の製造に使用される高純
度窒素ガスを、その仕様値を効率よく確実かつ
経済的に製造でき、仕様値を確実にクリヤーし
て経済的に得ることができる。(b) Therefore, high-purity nitrogen gas used in the manufacture of semiconductors can be produced efficiently, reliably, and economically to the specified value, and can be obtained economically while reliably meeting the specified value.
(c) また、触媒筒へ導入される高温圧縮原料空気
の温度を、最高約190℃にすれば、例えばアル
ミニウム製の熱交換器が使用可能になり、管、
弁等が熱に耐え、本発明方法に用いられる装置
構成を、市販性、汎用性のある一般の材料で製
作でき、しかも、既設装置を改造して本発明方
法の実施に必要な熱交換器等を付設する場合
も、既存の部分は従来通りでよく、高純度の窒
素ガスの製造方法として実用効果が大きいもの
である。(c) In addition, if the temperature of the high-temperature compressed feed air introduced into the catalyst tube is set to a maximum of approximately 190°C, it becomes possible to use, for example, an aluminum heat exchanger, and the tube,
A heat exchanger whose valves, etc. can withstand heat, allows the device configuration used in the method of the present invention to be manufactured from commercially available and versatile general materials, and is necessary for implementing the method of the present invention by modifying existing equipment. Even in the case of adding such equipment, the existing parts may be left in the same way as before, and the practical effect is great as a method for producing high-purity nitrogen gas.
図は本発明方法の一実施例を説明するための系
統図である。
1……圧縮機、4……熱交換器、6……加熱
器、8……触媒筒、12……冷却器、14……不
純物除去工程、16……液化精溜工程。
The figure is a system diagram for explaining one embodiment of the method of the present invention. 1... Compressor, 4... Heat exchanger, 6... Heater, 8... Catalyst cylinder, 12... Cooler, 14... Impurity removal process, 16... Liquefaction rectification process.
Claims (1)
溜により分離し、高純度窒素を採取する窒素製造
方法において、 前記不純物除去工程に原料空気を導入するにあ
たり、 圧縮機にて所要圧に昇圧し圧縮熱により80℃乃
至150℃に昇温した前記圧縮原料空気を、 熱交換器にて加熱した後さらに加熱器にて加熱
し、 次いで触媒筒へ導入して前記圧縮原料空気に含
有する微量の一酸化炭素を該圧縮原料空気に共存
する酸素と反応させ、 さらに前記熱交換器で前記圧縮原料空気に熱を
与え、 冷却器を経て前記不純物除去工程へ導入する ことを特徴とする半導体製造に使用される高純度
窒素の製造方法における原料空気の前処理方法。[Scope of Claims] 1. In a nitrogen production method in which compressed raw air is separated by liquefaction rectification after passing through an impurity removal process to collect high-purity nitrogen, when the raw air is introduced into the impurity removal process, in a compressor. The compressed raw air, which has been pressurized to the required pressure and heated to 80°C to 150°C due to the heat of compression, is heated in a heat exchanger, further heated in a heater, and then introduced into the catalyst cylinder to become the compressed raw air. A trace amount of carbon monoxide contained in the compressed raw material air is reacted with oxygen coexisting in the compressed raw material air, further heat is given to the compressed raw material air in the heat exchanger, and the compressed raw material air is introduced into the impurity removal step via a cooler. A method for pre-treating raw air in a method for producing high-purity nitrogen used in semiconductor manufacturing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2308017A JPH03170786A (en) | 1990-11-14 | 1990-11-14 | Manufacture of high-purity nitrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2308017A JPH03170786A (en) | 1990-11-14 | 1990-11-14 | Manufacture of high-purity nitrogen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03170786A JPH03170786A (en) | 1991-07-24 |
JPH0565782B2 true JPH0565782B2 (en) | 1993-09-20 |
Family
ID=17975884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2308017A Granted JPH03170786A (en) | 1990-11-14 | 1990-11-14 | Manufacture of high-purity nitrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03170786A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048509A (en) * | 1997-05-23 | 2000-04-11 | Nippon Sanso Corporation | Gas purifying process and gas purifying apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9400024A (en) * | 1993-01-06 | 1994-07-26 | Praxair Technology Inc | Process and apparatus for removing oxidizable species from a feed charge stream |
CN111609669A (en) * | 2020-05-22 | 2020-09-01 | 启东柯兰机电设备有限公司 | Air separation equipment for obtaining multiple air products |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS548190A (en) * | 1977-06-21 | 1979-01-22 | Nippon Oxygen Co Ltd | Process for purifying inert gas |
JPS5488893A (en) * | 1977-12-26 | 1979-07-14 | Nippon Oxygen Co Ltd | Method of purifying inert gas |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5893790U (en) * | 1981-12-18 | 1983-06-25 | 日本酸素株式会社 | High purity nitrogen production equipment |
-
1990
- 1990-11-14 JP JP2308017A patent/JPH03170786A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS548190A (en) * | 1977-06-21 | 1979-01-22 | Nippon Oxygen Co Ltd | Process for purifying inert gas |
JPS5488893A (en) * | 1977-12-26 | 1979-07-14 | Nippon Oxygen Co Ltd | Method of purifying inert gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048509A (en) * | 1997-05-23 | 2000-04-11 | Nippon Sanso Corporation | Gas purifying process and gas purifying apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH03170786A (en) | 1991-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0367428B1 (en) | Air separation | |
US20230242395A1 (en) | Ammonia Cracking for Green Hydrogen | |
KR930001207B1 (en) | Production of high purity argon | |
JPH06304432A (en) | Manufacture of various types of gas for semi-conductor manufacture plant and device therefor | |
JP5756180B2 (en) | Method and system for producing high purity hydrogen chloride | |
JPS5953245B2 (en) | Methane gas | |
US3743699A (en) | Process for ammonia manufacture | |
CN114477093B (en) | Polycrystalline silicon reduction tail gas recovery system | |
JPH0972656A (en) | Argon refining method and device | |
JP2000088455A (en) | Method and apparatus for recovering and refining argon | |
CN107648976B (en) | Method for preparing ultra-high-purity gas through low-temperature separation and low-temperature separation system | |
US20180155202A1 (en) | Methods for carbon dioxide production and power generation | |
JPH0565782B2 (en) | ||
US4559069A (en) | Integrated fractional condensation system for the purification of separate crude gas streams | |
US6190632B1 (en) | Method and apparatus for the production of ammonia utilizing cryogenic rectification | |
RU2203214C1 (en) | Methanol production process | |
JPH0255210A (en) | Production of hydrogen sulfide | |
US3407146A (en) | Process for the recovery of hydrogennitrogen mixtures with reduced carbon-monoxide content | |
JP3325805B2 (en) | Air separation method and air separation device | |
JPH0658663A (en) | Method and apparatus for manufacturing ultra high purity nitrogen | |
US3397959A (en) | Process and apparatus for the production of ammonia | |
KR940009650A (en) | Method and apparatus for producing ultra high purity nitrogen under pressure | |
JP3466437B2 (en) | Air separation equipment | |
JP2645137B2 (en) | Equipment for purifying raw material air for nitrogen production equipment | |
JPH0777385A (en) | Method and apparatus for separating high purity argon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |