JPH0565510B2 - - Google Patents

Info

Publication number
JPH0565510B2
JPH0565510B2 JP19773987A JP19773987A JPH0565510B2 JP H0565510 B2 JPH0565510 B2 JP H0565510B2 JP 19773987 A JP19773987 A JP 19773987A JP 19773987 A JP19773987 A JP 19773987A JP H0565510 B2 JPH0565510 B2 JP H0565510B2
Authority
JP
Japan
Prior art keywords
group
yield
compound
amylphenoxy
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19773987A
Other languages
Japanese (ja)
Other versions
JPS6440463A (en
Inventor
Masaki Okazaki
Hiroo Fukunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP19773987A priority Critical patent/JPS6440463A/en
Publication of JPS6440463A publication Critical patent/JPS6440463A/en
Publication of JPH0565510B2 publication Critical patent/JPH0565510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、新規なニトロベンゼン誘導体に関す
る。より詳しくは、非線形光学材料として有用な
新規なニトロベンゼン誘導体に関する。 「従来の技術」 近年、非線形光学効果−レーザー光のような強
い光電界を与えたときに現われる、分極と電界と
の間の非線形性―を有した材料が注目を集めてい
る。 かかる材料は、一般に非線形光学材料として知
られており、例えば次のものなどに詳しく記載さ
れている。“Nonliner Optical Properties of
Organic and Polymeric Materials”ACS
SYMPOSIUM SERIES 233、David J.
Williams編(American Chemical Society、
1983年刊)、「有機非線形光学材料」加藤政雄、中
西八郎監修(シー・エム・シー社、1985年刊)。 非線形光学材料の用途の1つに、2次の非線形
効果に基いた第2高調波発生(SHG)および和
周波、差周波を用いた波長変換デバイスがある。
これまで実用上用いられているものは、ニオブ酸
リチウムに代表される無機質のペロブスカイト類
である。しかし近年になり、電子供与基および電
子吸引基を有するπ電子共役系有機化合物は前述
の無機質を大きく上回る、非線形光学材料として
の諸性能を有していることが知られるようになつ
た。しかしながら、高いSHGを示すことで知ら
れているp−ニトロアニリンの誘導体、例えば、
2−メチル−4−ニトロアニリン(MNA)や2
−N,N−ジメチルアミノ−5−ニトロアセトア
ニリド(DAN)などでは、強く黄色に着色して
いるために、青色光に対する透過率が低く問題と
なつている。従つて青色光に対する透過率の高い
非線形光学材料の出現が望まれている。従来、ニ
トロアニリンのベンゼン核の炭素原子を窒素原子
などで置き換えることが検討されて来たが必ずし
も満足のいく結果は得られていない。 そこで本出願人は既に特願昭61−53884号(特
開昭62−210432号参照)において青色光の透過率
が高く且つ効率の高い新規な有機非線形光学材料
に関する発明を開示した。しかし、青色光の透過
率においては十分な改良が成されたものの、前記
出願中に開示された微結晶状態での効率は未だ充
分とは言い難い。 さて、分子状態での2次の非線形感受率(β)
は分子軌道法を用いた計算によつて求められるこ
とがよく知られている。本発明および特願昭61−
53884号に関わる化合物について、PPP−MO法
を用いてβを求めた結果を、微結晶状態での第2
高調波発生効率の極めて高い化合物の基本構造で
あるp−ニトロアニリンと比較して表1に示し
た。
"Industrial Application Field" The present invention relates to novel nitrobenzene derivatives. More specifically, the present invention relates to novel nitrobenzene derivatives useful as nonlinear optical materials. "Prior Art" In recent years, materials that have a nonlinear optical effect - the nonlinearity between polarization and electric field that appears when a strong optical electric field such as that of a laser beam is applied - have attracted attention. Such materials are generally known as nonlinear optical materials and are described in detail in, for example: “Nonliner Optical Properties of
Organic and Polymeric Materials”ACS
SYMPOSIUM SERIES 233, David J.
Williams (ed.) (American Chemical Society,
(published in 1983), "Organic Nonlinear Optical Materials" supervised by Masao Kato and Hachiro Nakanishi (published by CMC, published in 1985). One of the applications of nonlinear optical materials is second harmonic generation (SHG) based on second-order nonlinear effects and wavelength conversion devices using sum frequency and difference frequency.
The materials that have been practically used so far are inorganic perovskites represented by lithium niobate. However, in recent years, it has become known that π-electron conjugated organic compounds having an electron-donating group and an electron-withdrawing group have various performances as nonlinear optical materials that far exceed those of the above-mentioned inorganic materials. However, derivatives of p-nitroaniline known to exhibit high SHG, e.g.
2-Methyl-4-nitroaniline (MNA) and 2
-N,N-dimethylamino-5-nitroacetanilide (DAN) and the like have a problem of low transmittance to blue light because they are strongly colored yellow. Therefore, the emergence of nonlinear optical materials with high transmittance for blue light is desired. Conventionally, attempts have been made to replace the carbon atoms in the benzene nucleus of nitroaniline with nitrogen atoms, but satisfactory results have not always been obtained. Therefore, the present applicant has already disclosed in Japanese Patent Application No. 61-53884 (see Japanese Patent Application Laid-Open No. 62-210432) an invention relating to a novel organic nonlinear optical material having high blue light transmittance and high efficiency. However, although sufficient improvements have been made in the transmittance of blue light, the efficiency in the microcrystalline state disclosed in the above-mentioned application is still far from being sufficient. Now, the second-order nonlinear susceptibility (β) in the molecular state
is well known to be obtained by calculation using the molecular orbital method. The present invention and patent application 1986-
Regarding the compound related to No. 53884, the results of determining β using the PPP-MO method were calculated using the second method in the microcrystalline state.
Table 1 shows a comparison with p-nitroaniline, which is the basic structure of a compound with extremely high harmonic generation efficiency.

【表】 表1から明らかなように、本発明および特願昭
61−53884号に関わる化合物は分子状態での非線
形感受率は、p−ニトロアニリンと同等乃至はそ
れ以上であり、高い効率での非線形光学効果の発
現する能力を本来有している化合物である。 微結晶状態において非線形光学効果を充分に発
揮し得ない理由は、分子の配列がβを100%有効
に利用する様になつておらず傾いてしまつている
ことにある。従つて、何らかの方法でβを100%
有効に利用できるように分子の配列を制御すれば
よいことになる。そのような方法として、LB膜
を用いる方法やポリマーに溶解した後、電場によ
つて一定方向に配列する方法が知られている。し
かし、LB膜を形成するには長鎖指肪族基を有す
る必要があり、また、ポリマーに溶解する場合に
は、溶解性の高いことが必要になるが、従来、そ
のような化合物は知られていなかつた。 「発明が解決しようとする問題点」 従つて本発明の目的は、LB膜の形成に適した
域はポリマーへの溶解性に優れた新規なp−ニト
ロベンゼン誘導体を提供することにある。 「問題点を解決するための手段」 本発明者らは前記の目的が一般式()で示さ
れる化合物を用いることにより、達成できること
を見出し、本発明を成すに至つた。 一般式() 式中、Zは置換されていてもよいイミダゾール
環、ピラゾール環、トリアゾール環を形成するに
必要な原子群を表わす。Rは炭素数の総計2以上
の直鎖アルキル基、分枝アルキル基および、置換
されていてもよいフエニルオキシ基置換アルキル
基を表わす。 Zによつて形成されるイミダゾール環、ピラゾ
ール環、トリアゾール環は、メチル基、エチル基
等のアルキル基、フツ素原子、塩素原子、臭素原
子等のハロゲン原子、メトキシ基、エトキシ基等
のアルコキシ基、
[Table] As is clear from Table 1, the present invention and patent application
The compound related to No. 61-53884 has a nonlinear susceptibility in the molecular state that is equivalent to or higher than p-nitroaniline, and is a compound that inherently has the ability to express a nonlinear optical effect with high efficiency. . The reason why nonlinear optical effects cannot be fully exerted in the microcrystalline state is that the molecular arrangement does not utilize β 100% effectively and is tilted. Therefore, somehow set β to 100%
All that is needed is to control the arrangement of the molecules so that they can be used effectively. As such methods, a method using an LB film and a method in which the LB film is dissolved in a polymer and then aligned in a certain direction using an electric field are known. However, in order to form an LB film, it is necessary to have a long-chain aliphatic group, and in order to dissolve it in a polymer, it is necessary to have high solubility, but such compounds have not been known so far. It wasn't. "Problems to be Solved by the Invention" Therefore, an object of the present invention is to provide a novel p-nitrobenzene derivative that is suitable for forming an LB film and has excellent solubility in polymers. "Means for Solving the Problems" The present inventors have discovered that the above object can be achieved by using a compound represented by the general formula (), and have accomplished the present invention. General formula () In the formula, Z represents an atomic group necessary to form an optionally substituted imidazole ring, pyrazole ring, or triazole ring. R represents a straight chain alkyl group, a branched alkyl group, and an optionally substituted phenyloxy group-substituted alkyl group having a total of 2 or more carbon atoms. The imidazole ring, pyrazole ring, and triazole ring formed by Z include alkyl groups such as methyl group and ethyl group, halogen atoms such as fluorine atom, chlorine atom, and bromine atom, and alkoxy groups such as methoxy group and ethoxy group. ,

【式】基(R′はRと同 義)のアシルアミノ基で置換されていてもよく、
中でもメチル基および
[Formula] may be substituted with an acylamino group of the group (R' is the same as R),
Among them, methyl group and

【式】基が好まし い。 Rによつて示されるアルキル基としては例えば
エチル基、プロピル基、i−プロピル基、ブチル
基、sec−ブチル基、t−ブチル基、アミル基、
i−アミル基、t−アミル基、ヘキシル基、1−
エチルペンチル基、オクチル基、ノニル基、ドデ
シル基、ペンタデシル基、ヘプタデシル基、ヘン
エイコシル基、フエノキシメチル基、1−フエノ
キシエチル基、1−フエノキシプロピル基、3−
フエノキシプロピル基、2,5−ジ−t−アミル
フエノキシメチル基、1−(2,5−ジ−t−ア
ミルフエノキシ)エチル基、1−(2,5−ジ−
t−アミルフエノキシ)プロピル基、3−(2,
5−ジ−t−アミルフエノキシ)プロピル基、4
−(2,5−ジ−t−アミルフエノキシ)ブチル
基、1−(2−クロロ−5−t−アミルフエノキ
シ)ヘキシル基、1−(2,4−ジ−t−アミル
フエノキシ)アミル基、1−(2,4−ジ−t−
アミルフエノキシ)ブチル基、1−(3−アセチ
ルアミノフエノキシ)アミル基、1−(2,4−
ジ−t−オクチルフエノキシ)ヘプチル基、1−
(2−クロロ−4−t−オクチルフエノキシ)ア
ミル基、1,1−ジメチル−1−(3−ペンタデ
シルフエノキシメチル基、1−(4−t−オクチ
ルフエノキシ)プロピル基等が挙げられる。中で
も炭素数の総計が4以上のものが好ましく特に、
分岐アルキル基、フエノキシ置換アルキル基、炭
素数17以上の直鎖アルキル基が好ましい。 以下に本発明の化合物の具体例を示す。
[Formula] group is preferred. Examples of the alkyl group represented by R include ethyl group, propyl group, i-propyl group, butyl group, sec-butyl group, t-butyl group, amyl group,
i-amyl group, t-amyl group, hexyl group, 1-
Ethylpentyl group, octyl group, nonyl group, dodecyl group, pentadecyl group, heptadecyl group, heneicosyl group, phenoxymethyl group, 1-phenoxyethyl group, 1-phenoxypropyl group, 3-
Phenoxypropyl group, 2,5-di-t-amylphenoxymethyl group, 1-(2,5-di-t-amylphenoxy)ethyl group, 1-(2,5-di-
t-amylphenoxy)propyl group, 3-(2,
5-di-t-amylphenoxy)propyl group, 4
-(2,5-di-t-amylphenoxy)butyl group, 1-(2-chloro-5-t-amylphenoxy)hexyl group, 1-(2,4-di-t-amylphenoxy)amyl group, 1-( 2,4-di-t-
amylphenoxy)butyl group, 1-(3-acetylaminophenoxy)amyl group, 1-(2,4-
di-t-octylphenoxy)heptyl group, 1-
(2-chloro-4-t-octylphenoxy)amyl group, 1,1-dimethyl-1-(3-pentadecylphenoxymethyl group, 1-(4-t-octylphenoxy)propyl group etc. Among them, those having a total number of carbons of 4 or more are particularly preferable,
A branched alkyl group, a phenoxy-substituted alkyl group, and a straight-chain alkyl group having 17 or more carbon atoms are preferred. Specific examples of the compounds of the present invention are shown below.

【表】【table】

【表】【table】

【表】【table】

〔経路1〕[Route 1]

(R′=H又は 〔経路2〕 (R′=H or [Route 2]

【式】 (X=RCOO又はハロゲン) 用いる塩基としては、ピリジン、トリエチルア
ミン、1,8−ジアザビシクロ〔5,4,0〕−
7−ウンデセンのような有機塩基、炭酸カリウ
ム、炭酸水素ナトリウム、カリウムt−ブトキシ
ド、水素化ナトリウム、水酸化ナトリウムのよう
な無機塩基のいずれでもよい。溶媒としては、n
−ヘキサンのような炭化水素、テトラヒドロフラ
ン、1,2−ジメトキシエタンのようなエーテ
ル、N,N−ジメチルホルムアミド、N−メチル
ピロリドンのようなアミド、ジメチルスルホキシ
ド、スルホランのような含硫黄化合物、アセトニ
トリルのようなニトリル、酢酸エチルのようなエ
ステルなどが用いられる。中でもアミド、含硫黄
化合物、ニトリルが好ましい。また反応温度に−
10℃ないし150℃、好ましくは20℃ないし10℃が
望ましい。 以下に、代表的化合物の実施例を示す。 「実施例」 実施例1 化合物1の合成 3,5−ビス−〔2−(2,4−ジ−t−アミル
フエノキシ)ブチロイルアミノ〕−1,2,4−
トリアゾール6.3g、4−フルオロニトロベンゼ
ン1.3gおよび炭酸カリウム1.3gに10mlのN,N
−ジメチルホルムアミド10mlを加え、100℃に加
熱した油溶上で3時間撹拌を行なつた。反応混合
物を室温で放冷した後、水50mlを加え、生じた固
体を濾取し、水で洗浄した。濾取した固体をカラ
ムクロマトグラフイー(酢酸エチル/n−ヘキサ
ン=1/9シリカゲル)により分離し、目的物を
得た。これを更に酢酸エチル/n−ヘキサン=
1/1の混合溶媒を用いて再結晶した。 収量5.3g(収率71.6%) 融点 140〜142.5℃ 実施例2 化合物3の合成 3−アミノ−1−(4−ニトロフエニル)ピラ
ゾール2.04gおよびプロピオニルクロリド0.92g
に10mlのアセトニトリルを加え、室温で撹拌しな
がらトリエチルアミン2mlを滴下した。この後60
℃に加熱した水溶上で2時間撹拌し、次で、室温
まで放冷した。水50mlを加え、析出した結晶を濾
取し、水で洗浄した。得られた粗組晶を活性炭を
用いてイソプロパノールより再結晶した。 収量2.1g(収率80.8%) 融点 202〜203℃ 実施例3 化合物5の合成 実施例2において、プロピオニルクロリド0.92
gを2−(2,4−ジ−t−アミルフエノキシ)
ブチロイル・クロリド3.39gに替え、アセトニト
リルをN,N−ジメチルアセトアミドに替え、同
様に反応を行なつた。シリカゲルおよびアルミナ
を用いたカラムクロマトグラフイー(溶解液クロ
ロホルム)により精製を行ない目的物を得た。 収量 4.15g(収率82.0%) 融点 127.5〜129.5℃ 実施例4 化合物6の合成 実施例3において、2−(2,4−ジ−t−ア
ミルフエノキシ)ブチロイルクロリド3.39gを、
ステアロイルクロリド3.03gに替え同様の操作を
行ない、目的物を得た。 収量 4.0g(収率85.1%) 融点 113.5℃〜115℃ 実施例5、化合物7の合成 実施例3において、2−(2,4−ジ−t−ア
ミルフエノキシ)ブチロイルクロリド3.39gを、
2−エチルヘキサノイルクロリド1.8gに替え、
同様の操作を行ない、目的物を得た 収量 2.62g(収率79.4%) 融点 98〜99℃ 実施例6 化合物9の合成 実施例2において、3−アミノ−1(4−ニト
ロフエニル)ピラゾールを5−アミノ−1−(4
−ニトロフエニル)ピラゾールに替え、プロピオ
ニルクロリド0.92gを2−(2−クロロ−4−t
−アミルフエノキシ)オクタノイルクロリド4.30
gに替え、更にアセトニトリルをN,N−ジメチ
ルアセトアミドに替えて同様の反応を行なつた
後、実施例3と同様の精製を行ない、目的物を得
た。 収量 4.15g(収率78.8%) 融点 108〜108.5℃ 実施例7 化合物10の合成 実施例2において、3−アミノ−1−(4−ニ
トロフエニル)ピラゾール2.04gを5−アミノ−
3−メチル−1−(4−ニトロフエニル)ピラゾ
ール2.18gに替え、プロピオニルクロリド0.92g
を2−(2,4−ジ−t−アミルフエノキシ)プ
ロピオニルクロリド4.04gに替え、更にアセトニ
トリルをN,N−ジメチルアセトアミドに替え、
同様の反応を行なつた後、実施例3と同様の精製
を行ない目的物を得た。 収量 4.23g(収率81.3%) 融点 83〜85℃ 実施例8 化合物14の合成 実施例7において2−(2,4−ジ−t−アミ
ルフエノキシ)プロピオニルクロリド4.04gを
2,2−ジメチルプロピオニルクロリド1.64gに
替え、同様に反応を行なつた後、イソプロパノー
ルを用いて再結晶を行ない目的物を得た。 収量 2.44g(収率80.8%) 融点 201.5〜202℃ 実施例9 化合物16の合成 1−(2−エチルヘキサノイル)−2−(2−エ
チルヘキサノイルアミノ)イミダゾール3.35g、
4−フルオロニトロベンゼン1.41gおよび炭酸カ
リウム2.76gに10mlのN,N−ジメチルホルムア
ミド10mlを加え、100℃に加熱した油溶上で3時
間撹拌を行なつた。反応混合物を室温まで放冷し
た後、水50mlを加えた。これをクロロホルムにて
抽出し、無水硫酸ナトリウムにて乾燥した後、シ
リカゲルおよびアルミナカラムクロマトグラフイ
ー(クロロホルムにて溶出)を行ない、目的物を
得た。 収量 1.57g(収率47.6%) 融点 144〜145℃ 参考例1 アセトンへの溶解性 表2に示した化合物の各々0.2ミリモルを試験
管に秤取し、1.5mlのアセトンを加え、加熱した
後、室温に放置した。結果を表2に示した。
[Formula] (X=RCOO or halogen) Examples of the base used are pyridine, triethylamine, 1,8-diazabicyclo[5,4,0]-
It may be an organic base such as 7-undecene, or an inorganic base such as potassium carbonate, sodium hydrogen carbonate, potassium t-butoxide, sodium hydride, or sodium hydroxide. As a solvent, n
- Hydrocarbons such as hexane, ethers such as tetrahydrofuran, 1,2-dimethoxyethane, amides such as N,N-dimethylformamide, N-methylpyrrolidone, sulfur-containing compounds such as dimethyl sulfoxide, sulfolane, acetonitrile. Nitriles such as, esters such as ethyl acetate, etc. are used. Among these, amides, sulfur-containing compounds, and nitriles are preferred. Also, at the reaction temperature -
The temperature is preferably 10°C to 150°C, preferably 20°C to 10°C. Examples of representative compounds are shown below. "Example" Example 1 Synthesis of Compound 1 3,5-bis-[2-(2,4-di-t-amylphenoxy)butyroylamino]-1,2,4-
10 ml of N,N to 6.3 g of triazole, 1.3 g of 4-fluoronitrobenzene and 1.3 g of potassium carbonate
-10 ml of dimethylformamide was added and stirred for 3 hours on an oil solution heated to 100°C. After the reaction mixture was allowed to cool at room temperature, 50 ml of water was added, and the resulting solid was collected by filtration and washed with water. The solid collected by filtration was separated by column chromatography (ethyl acetate/n-hexane = 1/9 silica gel) to obtain the desired product. This is further ethyl acetate/n-hexane=
Recrystallization was performed using a 1/1 mixed solvent. Yield 5.3g (yield 71.6%) Melting point 140-142.5°C Example 2 Synthesis of compound 3 2.04g of 3-amino-1-(4-nitrophenyl)pyrazole and 0.92g of propionyl chloride
10 ml of acetonitrile was added to the solution, and 2 ml of triethylamine was added dropwise while stirring at room temperature. 60 after this
The mixture was stirred for 2 hours over an aqueous solution heated to 0.degree. C., and then allowed to cool to room temperature. 50 ml of water was added, and the precipitated crystals were collected by filtration and washed with water. The obtained coarse crystals were recrystallized from isopropanol using activated carbon. Yield 2.1g (yield 80.8%) Melting point 202-203℃ Example 3 Synthesis of compound 5 In Example 2, propionyl chloride 0.92
g for 2-(2,4-di-t-amylphenoxy)
The reaction was carried out in the same manner except that 3.39 g of butyroyl chloride was used and acetonitrile was replaced with N,N-dimethylacetamide. Purification was performed by column chromatography using silica gel and alumina (chloroform solution) to obtain the desired product. Yield 4.15g (yield 82.0%) Melting point 127.5-129.5°C Example 4 Synthesis of compound 6 In Example 3, 3.39g of 2-(2,4-di-t-amylphenoxy)butyroyl chloride was
The same operation was performed except that 3.03 g of stearoyl chloride was used to obtain the desired product. Yield: 4.0 g (yield: 85.1%) Melting point: 113.5°C to 115°C Example 5, Synthesis of Compound 7 In Example 3, 3.39 g of 2-(2,4-di-t-amylphenoxy)butyroyl chloride was
Replaced with 1.8g of 2-ethylhexanoyl chloride,
A similar operation was performed to obtain the desired product. Yield: 2.62 g (yield: 79.4%) Melting point: 98-99°C Example 6 Synthesis of Compound 9 In Example 2, 3-amino-1(4-nitrophenyl)pyrazole was -amino-1-(4
-Nitrophenyl)pyrazole, 0.92g of propionyl chloride was added to 2-(2-chloro-4-t
−Amylphenoxy)octanoyl chloride 4.30
After replacing acetonitrile with N,N-dimethylacetamide, the same reaction was carried out, and the same purification as in Example 3 was carried out to obtain the desired product. Yield 4.15g (yield 78.8%) Melting point 108-108.5℃ Example 7 Synthesis of compound 10 In Example 2, 2.04g of 3-amino-1-(4-nitrophenyl)pyrazole was converted to 5-amino-
0.92 g of propionyl chloride instead of 2.18 g of 3-methyl-1-(4-nitrophenyl)pyrazole
was replaced with 4.04 g of 2-(2,4-di-t-amylphenoxy)propionyl chloride, and acetonitrile was further replaced with N,N-dimethylacetamide.
After carrying out the same reaction, the same purification as in Example 3 was carried out to obtain the desired product. Yield 4.23g (yield 81.3%) Melting point 83-85℃ Example 8 Synthesis of compound 14 In Example 7, 4.04g of 2-(2,4-di-t-amylphenoxy)propionyl chloride was converted to 2,2-dimethylpropionyl chloride. After changing the amount to 1.64 g and carrying out the reaction in the same manner, recrystallization was performed using isopropanol to obtain the desired product. Yield 2.44g (yield 80.8%) Melting point 201.5-202°C Example 9 Synthesis of compound 16 1-(2-ethylhexanoyl)-2-(2-ethylhexanoylamino)imidazole 3.35g,
10 ml of N,N-dimethylformamide was added to 1.41 g of 4-fluoronitrobenzene and 2.76 g of potassium carbonate, and the mixture was stirred for 3 hours on an oil solution heated to 100°C. After the reaction mixture was allowed to cool to room temperature, 50 ml of water was added. This was extracted with chloroform, dried over anhydrous sodium sulfate, and then subjected to silica gel and alumina column chromatography (elution with chloroform) to obtain the desired product. Yield 1.57g (yield 47.6%) Melting point 144-145℃ Reference example 1 Solubility in acetone 0.2 mmol of each of the compounds shown in Table 2 was weighed into a test tube, 1.5 ml of acetone was added, and after heating. , and left at room temperature. The results are shown in Table 2.

【表】 表2より、本発明の化合物はアセトンに対する
溶解性が高いことがわかる。 参考例2 ポリマーとの相溶性 表3に示した化合物の各々0.2ミリモル及び0.4
ミリモルを試験管に秤取し、ポリメチルメタクリ
レート50mg及び2〜5mlのアセトンをを加え、加
熱した後、室温に放冷した。この溶液をガラス基
盤上に流延し、アセトンを蒸発させた。化合物の
溶解性が高ければ生成した膜が透明となるので、
透明性を目視し、溶解性を判断した。
Table 2 shows that the compounds of the present invention have high solubility in acetone. Reference Example 2 Compatibility with polymer 0.2 mmol and 0.4 mmol of each of the compounds shown in Table 3
Millimoles were weighed into a test tube, 50 mg of polymethyl methacrylate and 2 to 5 ml of acetone were added, heated, and then allowed to cool to room temperature. This solution was cast onto a glass substrate and the acetone was evaporated. If the solubility of the compound is high, the resulting film will be transparent.
Solubility was determined by visual inspection of transparency.

【表】【table】

【表】【table】

【表】 尚、化合物Bは、アセチルアセトンと4−ニト
ロフエニルヒドラジンとを塩酸などの酸の存在下
に反応させることにより得られる。又、化合物D
は3,5−ジアミノ−1−(4−ニトロフエニル)
1,2,4−トリアゾールをジアゾ化した後、濃
塩酸中で加熱することにより得られる。 表3より明らかに本発明の化合物はポリマーと
の相溶性が高い。 参考例3 LB膜の形成 単分子膜形成装置としてジヨイス・レーブル社
の単分子膜形成装置を用いた。 化合物6を5×10-4mol/の濃度でクロロホ
ルムに溶解し、展開溶液を作成する。水相には超
純水を用い、リン酸水素二ナトリウム10-2mol/
、水酸化ナトリウム−塩酸でPHを7.0に調整す
る。水温は25℃に設定し、石英ガラス基板上にY
形膜を三層積層した。膜厚は50〜70Åと推定させ
る。 参考例4 dc−SHGの測定 分子状態での2次の非線形感受率を求める方法
としてdc−SHG法が知られている。梅垣らによ
る第4回オプテイツクスとエレクトロニクス有機
材料に関するシンポジウム講演要旨集50頁に記載
の方法に基き、以下の測定を行なつた。 結果を表4に示す。
[Table] Compound B can be obtained by reacting acetylacetone and 4-nitrophenylhydrazine in the presence of an acid such as hydrochloric acid. Also, compound D
is 3,5-diamino-1-(4-nitrophenyl)
It is obtained by diazotizing 1,2,4-triazole and then heating it in concentrated hydrochloric acid. Table 3 clearly shows that the compounds of the present invention have high compatibility with polymers. Reference Example 3 Formation of LB film A monomolecular film forming apparatus manufactured by Joeys Lebre was used as a monomolecular film forming apparatus. Compound 6 is dissolved in chloroform at a concentration of 5×10 −4 mol/to prepare a developing solution. Ultrapure water was used for the aqueous phase, and 10 -2 mol/disodium hydrogen phosphate was used.
, adjust the pH to 7.0 with sodium hydroxide-hydrochloric acid. The water temperature was set at 25℃, and Y was placed on a quartz glass substrate.
Three layers of film were laminated. The film thickness is estimated to be 50 to 70 Å. Reference Example 4 Measurement of dc-SHG The dc-SHG method is known as a method for determining second-order nonlinear susceptibility in a molecular state. The following measurements were performed based on the method described in the abstracts of the 4th Symposium on Optical and Electronics Organic Materials by Umegaki et al., page 50. The results are shown in Table 4.

【表】【table】

【表】 本発明の化合物についてはアセトン溶液とし、
その濃度は1mol/とした。ニトロベンゼンは
無溶媒で測定した。
[Table] For the compounds of the present invention, an acetone solution is used,
Its concentration was 1 mol/. Nitrobenzene was measured without solvent.

Claims (1)

【特許請求の範囲】 1 下記一般式()で表わされるニトロベンゼ
ン誘導体 一般式() 式中、Zは置換されていてもよいイミダゾール
環、ピラゾール環トリアゾール環を形成するに必
要な原子群を表わす。Rは、炭素数2以上の直鎖
アルキル基、分岐アルキル基および、置換されて
いてもよいフエニルオキシ基置換アルキル基を表
わす。
[Claims] 1. Nitrobenzene derivative represented by the following general formula () General formula () In the formula, Z represents an atomic group necessary to form an optionally substituted imidazole ring, pyrazole ring, or triazole ring. R represents a straight chain alkyl group having 2 or more carbon atoms, a branched alkyl group, and an optionally substituted phenyloxy group-substituted alkyl group.
JP19773987A 1987-08-07 1987-08-07 Novel nitrobenzene derivative Granted JPS6440463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19773987A JPS6440463A (en) 1987-08-07 1987-08-07 Novel nitrobenzene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19773987A JPS6440463A (en) 1987-08-07 1987-08-07 Novel nitrobenzene derivative

Publications (2)

Publication Number Publication Date
JPS6440463A JPS6440463A (en) 1989-02-10
JPH0565510B2 true JPH0565510B2 (en) 1993-09-17

Family

ID=16379534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19773987A Granted JPS6440463A (en) 1987-08-07 1987-08-07 Novel nitrobenzene derivative

Country Status (1)

Country Link
JP (1) JPS6440463A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329613A3 (en) * 1988-02-17 1991-06-05 Ciba-Geigy Ag Organic materials having non-linear optical properties
JP2700475B2 (en) * 1988-07-30 1998-01-21 コニカ株式会社 Nonlinear optical materials and elements

Also Published As

Publication number Publication date
JPS6440463A (en) 1989-02-10

Similar Documents

Publication Publication Date Title
US5112532A (en) Non-linear optical material and non-linear optical device employing it
JPH01228960A (en) Compound of squarylium
JPH0565510B2 (en)
US4994209A (en) Nonlinear optical material
JPH0711646B2 (en) Non-linear optical material
JP2836485B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JP2887833B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPS62210431A (en) Non linear optical material
JPH026486A (en) Organosilicon compound, and electrooptical material and device containing the same
Umezawa et al. Synthesis and crystal structures of phenylethynylpyridinium derivatives for second-order nonlinear optics
JPH03112950A (en) Squarylium derivative and production thereof
EP0761643B1 (en) Cyclobutenedione derivative, manufacturing method thereof and non-linear optical device containing the same
US5210302A (en) Cyclobutenedione derivative and process for preparing the same
JPH0618946A (en) Organic nonlinear optical material
JPS62187828A (en) Nonlinear optical material
JP3020119B2 (en) 2-furylacrylic acid disubstituted anilide compound and organic nonlinear optical material
Umezawa et al. Synthesis and crystal structures of fluorinated chromophores for second-order nonlinear optics
JPH04202165A (en) Cyclobutenedione derivative and its production
JPH06128234A (en) Compound having asymmetric carbon atom and non-linear optical material composed of the compound
JPH04202166A (en) Cyclobutenedione derivative and its production
KR100553514B1 (en) Triphenodioxazine compound, Method for preparing the same, Use of the compound as dichroic dye, and Liquid crystal composition
JPH08119914A (en) Cyclobutendione derivative, its production and nonlinear optical element using the same
JPH0242423A (en) Nonlinear optical material and light wavelength conversion method
JPH0667229A (en) Nonlinear optical material
JPH07225401A (en) Nonlinear optical material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term