JPH0564749U - Three-dimensional center of gravity measuring device - Google Patents

Three-dimensional center of gravity measuring device

Info

Publication number
JPH0564749U
JPH0564749U JP1337692U JP1337692U JPH0564749U JP H0564749 U JPH0564749 U JP H0564749U JP 1337692 U JP1337692 U JP 1337692U JP 1337692 U JP1337692 U JP 1337692U JP H0564749 U JPH0564749 U JP H0564749U
Authority
JP
Japan
Prior art keywords
axis
subject
gravity
dimensional center
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337692U
Other languages
Japanese (ja)
Inventor
政雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP1337692U priority Critical patent/JPH0564749U/en
Publication of JPH0564749U publication Critical patent/JPH0564749U/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Balance (AREA)

Abstract

(57)【要約】 【構成】 被検体をx軸方向でx軸回りに揺動自在に支
持し、そのx軸上の位置を含むと共に、それに直交する
z軸上を移動するレーザ光発射体からレーザ光を発射し
て被検体に照射し、被検体上に鉛直線を直接書き込んで
重心位置を特定する。 【効果】 簡易な装置でありながら、被検体を測定位置
に置くのが容易であると共に、直接被測定物上に書き込
むことが出来て精度が向上する。
(57) [Summary] [Structure] A laser beam projecting body that supports an object to be swung in the x-axis direction around the x-axis, and includes a position on the x-axis and moves on a z-axis orthogonal thereto. A laser beam is emitted from the target to irradiate the subject, and a vertical line is directly written on the subject to specify the position of the center of gravity. [Effect] Although it is a simple device, it is easy to place the subject at the measurement position and the accuracy can be improved because it can be written directly on the subject.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、物体のx,y,z軸からなる3次元空間上の重心位置を測定する 装置に関する。 The present invention relates to an apparatus for measuring the position of the center of gravity of an object in a three-dimensional space consisting of x, y, and z axes.

【0002】[0002]

【従来の技術】[Prior Art]

航空機の搭載部品など重量バランスを考慮して組み立てることを要求される部 品の場合には、予め3次元重心を測定して部品上ないしはその図面上で重心位置 を特定しておく必要がある。3次元重心は原理的には測定すべき物体(以下「被 検体」と称する)を1点で吊して吊り下げた位置から物体を通る鉛直線を求め、 次いで別の点で吊るして同様の鉛直線を求めれば、その交点が被検体の3次元上 の重心位置を示すことになる。 In the case of parts that are required to be assembled in consideration of weight balance, such as parts mounted on aircraft, it is necessary to measure the three-dimensional center of gravity in advance and specify the position of the center of gravity on the part or on the drawing. In principle, the three-dimensional center of gravity is obtained by suspending an object to be measured (hereinafter referred to as the “subject”) at one point and obtaining a vertical line passing through the object from the suspended position, and then suspending it at another point. When the vertical line is obtained, the intersection point indicates the three-dimensional barycentric position of the subject.

【0003】 一般には図6に示す如く、測定が容易となる様に被検体100の任意の平面、 同図において面A,B,C,Dを基準面として選択し、その基準面が図面におい て平面図、正面図、側面図のいずれかになる様に、即ち基準面が水平面に対して 垂直になる様に糸102,104を調節してD,Eの2点で吊り下げる。そのと き被検体の3次元重心位置Gは鉛直平面D,E,F,Hの面内に位置することに なる。よって、かかる操作により別の平面を求めて交差する線を求め、更に別の 平面から交点を求めれば、重心位置Gを特定することができる。そこで、鉛直線 を出すために先端に重錘106を取りつけた糸108を糸102,104と同一 軸(x軸)線上に位置させ、それをカメラ110で撮影して印画紙上に線DHを 写す。次いで、別の2点A,Iから同一の作業を行って印画紙上で線AJを得て その交点G1(2次元重心位置)を求める。線G1・Gは平面ABCDと垂直で あるので、被検体100を90度回転させてy軸方向から同様に第2の2次元重 心位置G2を測定すれば、3次元重心位置Gを図面上で特定することができる。Generally, as shown in FIG. 6, an arbitrary plane of the subject 100, that is, planes A, B, C, and D in FIG. 6 are selected as reference planes so as to facilitate measurement, and the reference planes are shown in the drawing. The yarns 102 and 104 are adjusted so that the plan view, the front view, or the side view, that is, the reference plane is perpendicular to the horizontal plane, and is suspended at two points D and E. At that time, the three-dimensional center-of-gravity position G of the subject is located in the plane of the vertical planes D, E, F, and H. Therefore, the center of gravity position G can be specified by obtaining another plane by such an operation, obtaining a line intersecting with the plane, and further obtaining an intersection from another plane. Therefore, the thread 108 with the weight 106 attached to the tip to draw the vertical line is positioned on the same axis (x-axis) line as the threads 102 and 104, and it is photographed by the camera 110 to copy the line DH on the photographic paper. .. Then, the same operation is performed from the other two points A and I to obtain the line AJ on the photographic printing paper, and the intersection G1 (two-dimensional barycentric position) is obtained. Since the lines G1 and G are perpendicular to the plane ABCD, if the object 100 is rotated 90 degrees and the second two-dimensional center-of-gravity position G2 is similarly measured from the y-axis direction, the three-dimensional center-of-gravity position G is shown in the drawing. Can be specified with.

【0004】 しかしながら、かかる手法によるときは、風、振動などにより被検体の揺れが 治まって静止するまで時間がかかり、また基準面を垂直に面出しするために糸1 02,104の微調整が面倒であり、また吊る個所を決めるのが被検体によって は困難であったり、更には被検体の重量分布が極端に偏っている場合には糸10 2(104)が弛んで糸108と並ばないため、測定が困難であった。更には、 印画紙を介して測定するため、縮小されてしまうこととなり、またカメラのレン ズの歪みなどもあって精度的にも十分なものではなかった。However, according to such a method, it takes time until the shaking of the subject is stopped by wind, vibration, etc. and the subject stands still, and the fine adjustment of the yarns 102, 104 is required to vertically surfacing the reference plane. It is troublesome, and it is difficult for the subject to determine where to hang it. Further, when the weight distribution of the subject is extremely biased, the yarn 102 (104) does not slack and does not line up with the yarn 108. Therefore, the measurement was difficult. Furthermore, since the measurement is performed via photographic paper, the size of the image is reduced, and there is distortion of the lens of the camera, which is not sufficient in terms of accuracy.

【0005】 そのため近時、特開昭63─98536号公報に記載される様に、3個の荷重 センサを用いて3次元重心を測定する技術も提案されている。Therefore, recently, as described in JP-A-63-98536, a technique for measuring a three-dimensional center of gravity by using three load sensors has been proposed.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、この提案技術の場合には3個の荷重センサを用いて行う複雑な 構成のものであり、また3次元重心位置を測定する技術を開示するのみであって 、測定された重心位置を図面ないしは被検体上に精度良く特定する技術は何等開 示するものではなかった。 However, this proposed technique has a complicated structure in which three load sensors are used, and only the technique for measuring the three-dimensional center of gravity position is disclosed. Or, the technique of accurately specifying on the subject was not disclosed at all.

【0007】 従って、この考案の目的は上記した課題を解決することにあり、比較的簡易な 装置でありながら、被検体の、どの様な重量分布を備えるものであれ、3次元重 心位置を短時間に測定すると共に、その重心位置を被検体または図面上に精度良 く特定することができる3次元重心測定装置を提供することを目的とする。Therefore, an object of the present invention is to solve the above-mentioned problems, and it is possible to determine the three-dimensional center-of-gravity position regardless of the weight distribution of a subject, even though it is a relatively simple device. An object of the present invention is to provide a three-dimensional barycentric measuring device capable of measuring the barycentric position in a short time and accurately specifying the barycentric position on a subject or a drawing.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

上記した課題を解決するためにこの考案は例えば請求項1項に示す如く、物体 のx,y,z軸からなる3次元上の重心位置を測定する装置であって、被測定物 体をx軸とy軸上の対向する位置でそれぞれx軸とy軸回りとに揺動自在に支持 する支持手段と、及び前記x軸とy軸のうちのいずれかの軸と同一の軸線上にお いて、それと直交するz軸(鉛直)方向に上下動自在に配置されると共に、前記 被測定物体の面上に該z軸方向上の任意の点または線をマークするマーキング手 段とからなる如く構成した。 In order to solve the above-mentioned problems, the present invention is, for example, as shown in claim 1, a device for measuring the three-dimensional barycentric position of an object, which is composed of x, y and z axes. Support means for swingably supporting the x-axis and the y-axis at opposite positions on the axis and the y-axis, and on the same axis as any one of the x-axis and the y-axis. And is arranged so as to be movable up and down in the z-axis (vertical) direction orthogonal to it, and also comprises a marking means for marking an arbitrary point or line in the z-axis direction on the surface of the object to be measured. Configured.

【0009】[0009]

【作用】[Action]

簡易な装置でありながら、被検体を測定位置に置くのが容易であると共に、直 接被検体上に書き込むことが出来て精度が向上する。 Although it is a simple device, it is easy to place the subject at the measurement position and the accuracy can be improved because it can be written directly on the subject.

【0010】[0010]

【実施例】【Example】

以下、図面に即してこの考案に係る3次元重心測定装置の実施例を説明する。 図1はその装置の斜視図であり、図2はその上面図、図3はその正面図、図4は その側面図である。図において、この考案に係る3次元重心測定装置10は大略 、炬燵櫓状のフレーム12を備える。フレーム12の上部には2本のレール14 ,14が対向して敷設され、それに沿ってx軸方向に滑動自在にスライダ16が 取着される。スライダ16には突起18が備えられており、その突起18と対向 する位置には第2の突起20がフレーム12の上辺12aから突出する様に設け られる。突起18,20は図1に示す様に、その間に被検体100を挟持するた めのものである。即ち、被検体100には図5に示す如く、予め被検体の製作時 に旋盤上で、またはその後に定盤上で、穴(ピンポイント)24を3組(K,K ′,M,M′,O,O′で示す)加工しておき、被検体100の大きさに応じて スライダ16の位置を調節し、そのピンポイント24に突起18,20を挿入し て両側から対向支持する様に構成する。その結果、被検体100はx軸回りに揺 動自在に挟持される。 An embodiment of a three-dimensional center of gravity measuring device according to the present invention will be described below with reference to the drawings. 1 is a perspective view of the apparatus, FIG. 2 is a top view thereof, FIG. 3 is a front view thereof, and FIG. 4 is a side view thereof. In the figure, a three-dimensional center-of-gravity measuring apparatus 10 according to the present invention is provided with a frame 12 in the shape of a stilt. Two rails 14, 14 are laid opposite to each other on the upper portion of the frame 12, and a slider 16 is attached along the rails 14 so as to be slidable in the x-axis direction. The slider 16 is provided with a protrusion 18, and a second protrusion 20 is provided at a position facing the protrusion 18 so as to protrude from the upper side 12 a of the frame 12. As shown in FIG. 1, the protrusions 18 and 20 are for holding the subject 100 between them. That is, as shown in FIG. 5, three sets of holes (pin points) 24 (K, K ', M, M) are formed on the subject 100 in advance on a lathe when the subject is manufactured, or on a surface plate thereafter. After processing, the position of the slider 16 is adjusted according to the size of the subject 100, and the projections 18 and 20 are inserted into the pin points 24 of the object 100 so as to support them from both sides. To configure. As a result, the subject 100 is clamped so as to be swingable around the x-axis.

【0011】 またフレーム12の上辺12aと下辺12bとは突起20が突設された付近で 外方に張り出されており、その間にピラー26が上下方向に架け渡され、そのピ ラー26には上下(z軸)方向に滑動自在にレーザ光発射体28が装着される。 ここで特徴的なことの一つは、図2に良く示す如く、突起18,20,レーザ光 発射体28がx軸方向において同一軸線上に配置されることである。正確に言え ば、突起18,20の尖端とレーザ光発射体28のレーザ光軸とがx軸方向にお いて同一軸線上に配置される。更に、レーザ光発射体28は、そのレーザ光軸が 今述べたx軸線上の位置を含み、かつそれと直交するz軸方向を移動自在に構成 され、図1に示す様に被検体100上にレーザ光を照射して点または線をマーク できる様に構成されることである。尚、レーザ光発射体のレーザ光量は比較的弱 く、被検体100上に位置を示す程度のものを使用し、具体的なマーキングは測 定者が投射されたレーザ光に沿ってマジックインキあるいはケガキなどで印を付 すことで行う。尚、図において符号32はスライダ16を固定するためのストッ パネジを示す。また装置下部には水準出しのためのアジャスタ36が設けられる 。Further, the upper side 12 a and the lower side 12 b of the frame 12 are projected outward in the vicinity of the protrusion 20 provided therebetween, and a pillar 26 is bridged in the up and down direction between them, and the pillar 26 is attached to the pillar 26. A laser light projecting body 28 is mounted so as to be slidable in the vertical direction (z axis). Here, one of the features is that the projections 18, 20 and the laser beam projecting body 28 are arranged on the same axis in the x-axis direction, as shown in FIG. To be precise, the tips of the protrusions 18 and 20 and the laser optical axis of the laser light projecting body 28 are arranged on the same axis in the x-axis direction. Further, the laser beam projecting body 28 is configured so that its laser optical axis includes the position on the x-axis line described above, and is movable in the z-axis direction orthogonal thereto, and is placed on the subject 100 as shown in FIG. It is designed to be able to mark points or lines by irradiating laser light. It should be noted that the amount of laser light emitted by the laser light projecting body is relatively weak, and a laser light projecting body that shows a position on the subject 100 is used. It is done by marking with markings. In the figure, reference numeral 32 indicates a stopper screw for fixing the slider 16. An adjuster 36 for leveling is provided at the bottom of the device.

【0012】 次いで、本装置による測定動作を説明する。Next, the measurement operation of this apparatus will be described.

【0013】 先ず、図1に示す様に突起18,20間に被検体100を支持する。図5を参 照して説明すると、具体的には、このとき基準面、例えば面ABCDが装置に支 持されたとき正確に垂直(z軸方向に平行)になる様にピンポイント24の中、 K,K′の組を選んで被検体100を支持して鉛直線Lを測定する。前記の如く 、ピンポイント24(K,K′)に突起尖端を挿入して支持することから被検体 100はx軸回りに自由に揺動自在であり、糸の微調整などを必要とせず、被検 体100は直ちに静止する。またレーザ光発射体28は前述の如く支持したピン ポイントからz軸方向を上下動する様に構成されていることから、位置Kから始 まる鉛直線Lを容易に指示することができ、測定者がそれに基づいて被検体10 0の上に鉛直線Lをマークする。次いでピンポイント24のM,M′の組で支持 し、鉛直線Nをマークして交点G1を求める。次いで被検体を90度回転させ、 y軸面に穿設されたピンポイント24のO,O′の組で支持して鉛直線Pを求め る。G1と重心位置Gを結ぶ線Qは基準面(面ABCD)に直交することから、 G1と線Pとの交点G2を求めることができ、この2次元重心G1,G2の位置 から重心位置Gを特定することができる。最後に、図面に2次元重心G1,G2 を書き込んで終了する。First, as shown in FIG. 1, the subject 100 is supported between the protrusions 18 and 20. Referring to FIG. 5, specifically, in this case, the reference point, for example, the plane ABCD, is pinpointed in the pinpoint 24 so as to be accurately vertical (parallel to the z-axis direction) when supported by the apparatus. , K, K ′ are selected, the subject 100 is supported, and the vertical line L is measured. As described above, since the tip of the protrusion is inserted into and supported by the pin point 24 (K, K ′), the subject 100 can freely swing around the x-axis and does not require fine adjustment of the thread. The subject 100 immediately stops. Further, since the laser beam projecting body 28 is constructed so as to move up and down in the z-axis direction from the pin point supported as described above, the vertical line L starting from the position K can be easily designated, and the measurer Marks the vertical line L on the subject 100 based on it. Then, it is supported by a pair of M and M'of pinpoints 24, and a vertical line N is marked to obtain an intersection G1. Then, the subject is rotated by 90 degrees, supported by a set of O and O'of pinpoints 24 formed on the y-axis surface, and a vertical line P is obtained. Since the line Q connecting G1 and the barycentric position G is orthogonal to the reference plane (plane ABCD), the intersection G2 between the G1 and the line P can be obtained, and the barycentric position G can be calculated from the positions of the two-dimensional barycenters G1 and G2. Can be specified. Finally, the two-dimensional centers of gravity G1 and G2 are written in the drawing, and the process ends.

【0014】 本実施例は上記の如く構成したので、測定時に被検体の静止を待つ時間が殆ど 必要ではなく、また基準面出しに関わる糸の微調整、吊る位置の探索なども最早 必要ではないため、測定時間が大幅に短縮する。更に、被検体の重量分布が偏っ ている場合でも測定に支障はなく、更に特開昭63−98536号公報記載の技 術に比べても装置として簡易であると共に、重心位置を被検体上に直接書き込む ことができ、また即図面に反映することができて精度が大幅に向上する。またレ ーザ光を利用したことから、被検体上に所要の位置を正確に指示することができ る。Since the present embodiment is configured as described above, there is almost no need to wait for the subject to stand still at the time of measurement, and it is no longer necessary to finely adjust the yarn for reference plane alignment, search for a hanging position, and the like. Therefore, the measurement time is significantly reduced. Further, even if the weight distribution of the subject is biased, it does not hinder the measurement, and the device is simpler than the technique described in Japanese Patent Laid-Open No. 63-98536 and the center of gravity is located on the subject. It can be written directly and can be immediately reflected in the drawing, greatly improving the accuracy. Moreover, since the laser light is used, it is possible to accurately indicate the required position on the subject.

【0015】 尚、上記した実施例において、投射されたレーザ光に従って測定者が表面にマ ークしたが、感光剤を被検体表面に塗布したり感光紙を被検体表面に貼りつけて て自動的にマークする様にしても良い。熱転写技術を用いて同様に処理しても良 い。更にはレーザ光の光量を強めて直接被検体上にマークさせても良く、更には レーザ光に代えて紫外線照射、ノズル噴射、ボールを当てて痕跡を付けるなどし ても良い。In the above-described embodiment, the measurer marks the surface according to the projected laser light. However, a photosensitive agent is applied to the surface of the subject or a photosensitive paper is attached to the surface of the subject to perform automatic measurement. It may be marked as desired. The same processing may be performed using thermal transfer technology. Further, the amount of laser light may be increased to mark directly on the subject, and instead of laser light, ultraviolet irradiation, nozzle injection, or ball hitting may be used to make a mark.

【0016】[0016]

【考案の効果】[Effect of the device]

請求項1項にあっては、物体のx,y,z軸からなる3次元上の重心位置を測 定する装置であって、被測定物体をx軸とy軸上の対向する位置でそれぞれx軸 とy軸回りとに揺動自在に支持する支持手段と、及び前記x軸とy軸のうちのい ずれかの軸と同一の軸線上において、それと直交するz軸(鉛直)方向に上下動 自在に配置されると共に、前記被測定物体の面上に該z軸方向上の任意の点また は線をマークするマーキング手段とからなる如く構成したので、簡易な構成であ りながら被検体を測定位置に容易において短時間で重心位置を測定できると共に 、直接被測定物上に書き込むことができるので、精度が向上する。 According to claim 1, which is a device for measuring a three-dimensional center-of-gravity position consisting of x, y, and z axes of an object, the measured object is located at a position opposite to each other on the x axis and the y axis. Supporting means for swingably supporting around the x-axis and the y-axis, and in the z-axis (vertical) direction on the same axis as any one of the x-axis and the y-axis. It is arranged so as to be movable up and down, and is composed of marking means for marking an arbitrary point or line in the z-axis direction on the surface of the object to be measured. Since the position of the center of gravity can be easily measured at the measurement position in a short time and the sample can be directly written on the object to be measured, the accuracy is improved.

【0017】 請求項2項記載の装置にあっては、前記マーキング手段が、レーザ光を用いる ものである如く構成したので、被測定物上に正確に所要位置を示すことができる 。In the apparatus according to the second aspect, since the marking means is configured to use the laser beam, the required position can be accurately indicated on the object to be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案に係る3次元重心測定装置の斜視図で
ある。
FIG. 1 is a perspective view of a three-dimensional center of gravity measuring device according to the present invention.

【図2】図1装置の上面図である。FIG. 2 is a top view of the device of FIG.

【図3】図1装置の正面図である。FIG. 3 is a front view of the apparatus shown in FIG.

【図4】図1装置の側面図である。FIG. 4 is a side view of the device of FIG.

【図5】被検体のピンポイント位置と測定動作を示す説
明図である。
FIG. 5 is an explanatory diagram showing a pinpoint position of a subject and a measurement operation.

【図6】従来技術の測定動作を示す説明図である。FIG. 6 is an explanatory diagram showing a measurement operation of a conventional technique.

【符号の説明】[Explanation of symbols]

10 3次元重心測定装置 12 フレーム 16 スライダ 18,20 突起 24 穴(ピンポイント) 28 レーザ光発射体 10 three-dimensional center of gravity measuring device 12 frame 16 slider 18, 20 protrusion 24 hole (pinpoint) 28 laser light projecting body

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 物体のx,y,z軸からなる3次元上の
重心位置を測定する装置であって、 a.被測定物体をx軸とy軸上の対向する位置でそれぞ
れx軸とy軸回りとに揺動自在に支持する支持手段と、 及び b.前記x軸とy軸のうちのいずれかの軸と同一の軸線
上において、それと直交するz軸(鉛直)方向に上下動
自在に配置されると共に、前記被測定物体の面上に該z
軸方向上の任意の点または線をマークするマーキング手
段と、 からなることを特徴とする3次元重心測定装置。
1. A device for measuring a three-dimensional center-of-gravity position of an object, which is composed of x-, y-, and z-axes, comprising: a. Supporting means for supporting the object to be measured swingably about the x-axis and the y-axis at opposite positions on the x-axis and the y-axis, and b. On the same axis as any one of the x-axis and the y-axis, the z-axis is arranged so as to be vertically movable in the z-axis (vertical) direction orthogonal thereto, and the z-axis is arranged on the surface of the object to be measured.
A three-dimensional center-of-gravity measuring device comprising: a marking means for marking an arbitrary point or line in the axial direction.
【請求項2】 前記マーキング手段が、レーザ光を用い
るものであることを特徴とする請求項1項記載の3次元
重心測定装置。
2. The three-dimensional center of gravity measuring device according to claim 1, wherein the marking means uses laser light.
JP1337692U 1992-02-10 1992-02-10 Three-dimensional center of gravity measuring device Pending JPH0564749U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337692U JPH0564749U (en) 1992-02-10 1992-02-10 Three-dimensional center of gravity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337692U JPH0564749U (en) 1992-02-10 1992-02-10 Three-dimensional center of gravity measuring device

Publications (1)

Publication Number Publication Date
JPH0564749U true JPH0564749U (en) 1993-08-27

Family

ID=11831386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337692U Pending JPH0564749U (en) 1992-02-10 1992-02-10 Three-dimensional center of gravity measuring device

Country Status (1)

Country Link
JP (1) JPH0564749U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049184A (en) * 2021-04-06 2021-06-29 中国人民解放军63853部队 Method, device and storage medium for measuring mass center

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049184A (en) * 2021-04-06 2021-06-29 中国人民解放军63853部队 Method, device and storage medium for measuring mass center

Similar Documents

Publication Publication Date Title
US6701633B2 (en) Apparatus and method for measuring a shape using multiple probes
JP3612068B2 (en) Coordinate measurement method for workpiece
US4206550A (en) Point-to-point self-plumbing apparatus and method
JPH0564749U (en) Three-dimensional center of gravity measuring device
US8027530B2 (en) Apparatus and method for optically surveying and/or examining a welding componentry
CN216593192U (en) Full-automatic image measuring instrument part positioning device
CN207197460U (en) A kind of High-precision angle measuring system that face is leaned on for vignette axle and structure
CN113532334B (en) Device and method for measuring toe-in angle and camber angle of vehicle
Adams The use of a non‐metric camera for very short range dental stereophotogrammetry
JPH04283638A (en) Apparatus for measuring center of gravity
CN107607061A (en) A kind of High-precision angle measuring system and method that face is leaned on for vignette axle and structure
JPS63155616A (en) Unified measurement apparatus of contraction object lens for circuit printing
CN110609289B (en) Motion performance testing device
JPS61162706A (en) Method for measuring solid body
CN206402369U (en) A kind of device of measurable camera imaging parameter
JPH08111600A (en) High-accuracy mounting marker, high-accuracy mounting device and method
CN112815932B (en) Base checking method and checking method for centering base and control point
TWI375139B (en)
CN114061910B (en) Device and method for measuring focal length of convex-concave lens
JP2531691Y2 (en) Optical axis alignment device for optical measuring instruments
JPS625608Y2 (en)
JP2555400Y2 (en) Aiming mechanism of laser measuring instrument
CN208820953U (en) The device at rapid survey video camera inclination angle and field angle
JP2595918Y2 (en) Measuring device for position adjustment
JPS6340809A (en) Target mirror for laser measuring apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000404