JPH0564705B2 - - Google Patents

Info

Publication number
JPH0564705B2
JPH0564705B2 JP1054875A JP5487589A JPH0564705B2 JP H0564705 B2 JPH0564705 B2 JP H0564705B2 JP 1054875 A JP1054875 A JP 1054875A JP 5487589 A JP5487589 A JP 5487589A JP H0564705 B2 JPH0564705 B2 JP H0564705B2
Authority
JP
Japan
Prior art keywords
coating layer
blade
erosion
sprayed coating
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1054875A
Other languages
Japanese (ja)
Other versions
JPH02236265A (en
Inventor
Michitoshi Ito
Koichi Takeda
Katsuji Sudo
Shizuo Sawa
Koichi Kazama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Nippon Steel Corp
Original Assignee
Chubu Electric Power Co Inc
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Nippon Steel Corp filed Critical Chubu Electric Power Co Inc
Priority to JP5487589A priority Critical patent/JPH02236265A/en
Publication of JPH02236265A publication Critical patent/JPH02236265A/en
Publication of JPH0564705B2 publication Critical patent/JPH0564705B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、蒸気タービン翼の低圧最終段翼の耐
エロージヨン性を改善する被覆層の形成方法に関
する。 [従来の技術] 一般に蒸気タービン翼は強度に優れた12Cr鋼
が使用されている。しかしながら、湿り蒸気中で
長時間運転される低圧最終段翼は凝縮した水滴に
よるエロージヨン損傷を受ける。このため従来は
損傷防止のため12Cr鋼翼の前縁にステライト板
を銀ロー付けする方法が採られている。 [発明が解決しようとする課題] しかしながら、銀ロー付けステライト板もその
寿命は十分とはいえず、数年でステライト板の張
替えを必要としている。又、銀ロー付け作業は高
度の熟練を要すると共に、ピンホールの発生とい
つた欠陥を皆無にすることは困難な上、銀ローに
含まれる亜鉛、カドミウムが有害である等の問題
がある。 本発明は上記問題のあるステライト板の銀ロー
付け作業を行うことなく、減圧プラズマ溶射法に
よつて従来のステライト板以上の耐エロージヨン
性に優れた被覆層をタービン翼に形成する方法を
提供することを目的とする。 [課題を解決するための手段] 上記目的を達成するための本発明のタービン翼
の耐エロージヨン被覆層の形成方法は、蒸気ター
ビンの翼表面に、該翼の温度を300〜800℃に保持
した状態で、Coを主成分とし、Cr20〜30%、W3
〜6%を含有する合金粉末を減圧中でプラズマ溶
射して、気孔率5%以下の溶射被覆層を形成する
ことを特徴とする。 溶射被覆層の耐エロージヨン特性は、該翼と溶
射被覆層との密着力および溶射被覆層内の粒子間
結合力に依存する。又、該翼と溶射被覆層との密
着力および溶射被覆層内の粒子間結合力は、減圧
溶射を実施する際の該翼の温度が高いほど強固に
なる。該翼の温度が300℃以下では該翼と溶射被
覆層との密着力は10Kg/mm2以下に低下し、更に、
溶射被覆層内の粒子間結合力も低下してエロージ
ヨン環境下で剥離する危険性が有り実用できな
い。該翼を予熱せず溶射した場合、該翼と溶射被
覆層との熱膨張差に起因する歪力によつて該翼の
変形が生ずる。このことから300〜800℃、より好
ましくは400〜600℃に該翼を予熱することによつ
て、熱膨張差に起因する歪力を最小にすることが
でき、該翼の変形を防止できる。該翼の温度が
800℃以上になると該翼の熱変形と強度低下を生
じ、蒸気タービン翼としての性能が維持できなく
なる。以上が本発明を実施するにあたり該翼の温
度を300〜800℃に限定した理由である。 更に、溶射被覆層の耐エロージヨン特性は、以
下で定義される溶射被覆層の気孔率にも依存す
る。 気孔率(%)=(1−(溶射被覆層の比
重/バルク材の比重))×100 気孔が多い場合、エロージヨンは気孔を核にし
て進展するので、気孔の少ないち密な被覆層ほど
耐エローシヨン性に優れている。 本発明の方法で減圧溶射した溶射被覆層は、微
細で偏平な結晶の積層体で、気孔も1μm以下で
微細に分散している。従来のステライト板以上の
耐エロージヨン性を示す溶射被覆層の気孔率の最
大値は5%程度とみられる。 溶射被覆層の高い密着力と粒子間結合力を確保
し、気孔率を低減してち密な溶射被覆層とするた
め、減圧プラズマ溶射法を実施するに当つての減
圧チヤンバーの最適の圧力範囲は20〜200mmHgで
あり、より好ましくは30〜100mmHgである。 エロージヨン損傷は、結晶の粒界でクラツクが
発生し結晶粒が脱落して損傷が進展すると考えら
れるが、本発明の方法で得られる溶射被覆層の結
晶粒は微細編平なため粒界でクラツクが発生して
も、クラツクの生長進展が妨げられるため耐エロ
ージヨン性が向上するものと考えられる。 本発明の実施にあたつて用いられる粉末の組成
は、Coを主成分としCr20〜30%、W3〜6%を含
有する合金粉末であるが、Ni、Fe、Si、C、B
その他の元素を1種以上含有してもよい。粉末の
粒径は好ましくは44μm〜1μm、より好ましくは
25〜5μmである。 合金粉末の粒径が粗くなると、気孔率が増加
し、粒子間結合力も低下して耐エロージヨン性が
劣化する。又、粉末の粒径があまり細かくなる
と、プラズマ中への粉末の送給が不安定となり、
ち密で均質な被覆層の形成が困難となる。 本発明の実施に当り使用されるプラズマガス
は、Ar+He、Ar+H2、Ar+N2混合ガスが使用
できるがAr+H2の使用が好ましい。 以下、実施例により本発明を更に詳細に説明す
る。 [実施例] 実施例 1 第1表に示す組成(重量%)、粒径(μm)の
合金粉末a、b、cを、第2表に示す溶射条件で
12Cr鋼表面にそれぞれ減圧溶射して溶射被覆層
A、B、Cを形成した。溶射被覆層の厚さは0.7
〜1.0mmとした。 湿り蒸気中で運転される蒸気タービン翼は凝縮
した水滴によるドレイン・エロージヨン損傷を受
けるが、液滴衝突によるドレイン・エロージヨン
とキヤビテーシヨン・エロージヨンは材料損傷の
原因となる衝撃圧発生機構は全く同様であり、両
者の間には良い相関があると言われている。超音
波キヤビテーシヨン・エロージヨン試験法は蒸気
タービンの耐エロージヨン性の評価に一般的に使
われている方法であつて、本発明の実施例もこの
試験法によつた。 表面に溶射被覆層を有する12Cr鋼を加工して
第1図に示す試験片を製作し、超音波キヤビテー
シヨン・エロージヨン試験法によりエロージヨン
損傷の程度を評価した。試験条件は、振動数19K
Hz、振幅40μmで第1図に示す試験片をイオン交
換水中に3mm浸漬して試験した。試験片表面は予
め3μmのダイヤモンドにより表面研磨して試験
に供した。イオン交換水の温度は24±1℃一定と
した。比較材として、従来タービン翼の前縁に銀
ロー付けされているステライト板を用い、第2図
に示す結果を得た。第2図の結果より、本発明の
溶射被覆層A、B、Cはいずれも従来のステライ
ト板以上の耐エロージヨン性を示している。 実施例 2 第1表に示す合金粉末cを用い、第3表に示す
溶射条件で12Cr鋼表面にそれぞれ減圧溶射して、
気孔率の異なる溶射被覆層C、D、E、Fを形成
し、実施例1と同様の方法でエロージヨン損傷の
程度を評価した。各溶射被覆層の気孔率と20時間
試験後の重量減少量の関係を第3図に示した。各
溶射被覆層の厚さは2mm程度とし、第1図に示す
試験片の他に、溶射被覆層から10×10×1.5mmの
比重測定用試料を切り出し、JIS Z8807で規定さ
れる液中秤量法で比重を測定した。 又、バルク材の比重は、合金粉末cをAr雰囲
気中の水冷鋼ルツボ内でプラズマ溶解した試料か
ら前記同様寸法の試料を切り出し、同様方法で比
重測定してバルク材の比重として気孔率を求め
た。 第3図の結果から、気孔率がほぼ5%以下であ
れば本発明の方法による溶射被覆層は、従来のス
テライト板以上の耐エロージヨン性を示すことが
わかる。
[Industrial Application Field] The present invention relates to a method for forming a coating layer that improves the erosion resistance of a low-pressure final stage blade of a steam turbine blade. [Prior Art] 12Cr steel, which has excellent strength, is generally used for steam turbine blades. However, low-pressure final stage blades operated in humid steam for long periods of time are subject to erosion damage due to condensed water droplets. For this reason, conventional methods have been adopted in which a stellite plate is silver-brazed to the leading edge of a 12Cr steel wing to prevent damage. [Problems to be Solved by the Invention] However, the silver brazed Stellite board does not have a sufficient lifespan, and the Stellite board needs to be replaced after several years. Furthermore, silver brazing requires a high degree of skill, it is difficult to completely eliminate defects such as pinholes, and there are problems such as the fact that zinc and cadmium contained in silver brazing are harmful. The present invention provides a method for forming a coating layer on a turbine blade that has superior erosion resistance than conventional Stellite plates by using a low-pressure plasma spraying method, without performing the silver brazing work of Stellite plates, which has the above-mentioned problem. The purpose is to [Means for Solving the Problems] A method for forming an erosion-resistant coating layer for a turbine blade according to the present invention to achieve the above-mentioned object is a method for forming an erosion-resistant coating layer on a blade surface of a steam turbine by maintaining the temperature of the blade at 300 to 800°C. condition, with Co as the main component, Cr20~30%, W3
It is characterized by plasma spraying an alloy powder containing ~6% under reduced pressure to form a sprayed coating layer with a porosity of 5% or less. The erosion resistance properties of the sprayed coating layer depend on the adhesion between the blade and the sprayed coating layer and the bonding force between particles within the sprayed coating layer. In addition, the adhesion between the blade and the thermally sprayed coating layer and the interparticle bonding force within the thermally sprayed coating layer become stronger as the temperature of the blade increases during vacuum spraying. When the temperature of the blade is below 300°C, the adhesion between the blade and the sprayed coating layer decreases to below 10Kg/ mm2 , and further,
The interparticle bonding force within the thermally sprayed coating layer also decreases, and there is a risk that it will peel off in an erosion environment, making it impractical. If the blade is thermally sprayed without preheating, the blade will be deformed due to strain force caused by the difference in thermal expansion between the blade and the thermally sprayed coating layer. Therefore, by preheating the blade to 300 to 800°C, more preferably 400 to 600°C, the strain caused by the difference in thermal expansion can be minimized and deformation of the blade can be prevented. The temperature of the blade is
If the temperature exceeds 800°C, the blade will undergo thermal deformation and strength reduction, making it impossible to maintain its performance as a steam turbine blade. The above is the reason why the temperature of the blade was limited to 300 to 800°C in carrying out the present invention. Furthermore, the anti-erosion properties of the sprayed coating also depend on the porosity of the sprayed coating, defined below. Porosity (%) = (1 - (specific gravity of thermal spray coating layer / specific gravity of bulk material)) × 100 If there are many pores, erosion will develop around the pores, so the denser the coating layer with fewer pores, the better the erosion resistance. Excellent in sex. The thermal spray coating layer sprayed under reduced pressure by the method of the present invention is a laminate of fine, flat crystals, and has finely dispersed pores of 1 μm or less. The maximum value of the porosity of the sprayed coating layer, which exhibits better erosion resistance than conventional Stellite plates, is believed to be about 5%. In order to ensure high adhesion and interparticle bonding force of the sprayed coating layer, reduce porosity, and obtain a dense sprayed coating layer, the optimal pressure range of the vacuum chamber when performing the vacuum plasma spraying method is: It is 20 to 200 mmHg, more preferably 30 to 100 mmHg. Erosion damage is thought to occur when cracks occur at grain boundaries and the damage progresses as the crystal grains fall off, but since the crystal grains of the sprayed coating layer obtained by the method of the present invention are finely knitted, cracks occur at grain boundaries. Even if cracks occur, it is thought that erosion resistance is improved because the growth and progress of cracks is hindered. The composition of the powder used in carrying out the present invention is an alloy powder containing Co as the main component and 20 to 30% of Cr and 3 to 6% of W.
It may contain one or more other elements. The particle size of the powder is preferably 44 μm to 1 μm, more preferably
It is 25-5 μm. When the particle size of the alloy powder becomes coarse, the porosity increases and the interparticle bonding strength also decreases, resulting in deterioration of erosion resistance. In addition, if the particle size of the powder becomes too small, the feeding of the powder into the plasma becomes unstable.
It becomes difficult to form a dense and homogeneous coating layer. The plasma gas used in carrying out the present invention may be Ar+He, Ar+H 2 or Ar+N 2 mixed gas, but it is preferable to use Ar+H 2 . Hereinafter, the present invention will be explained in more detail with reference to Examples. [Example] Example 1 Alloy powders a, b, and c having the composition (wt%) and particle size (μm) shown in Table 1 were sprayed under the thermal spraying conditions shown in Table 2.
Thermal spray coating layers A, B, and C were formed by vacuum spraying on the surface of 12Cr steel. The thickness of the sprayed coating layer is 0.7
~1.0mm. Steam turbine blades operated in wet steam are subject to drain erosion damage caused by condensed water droplets, but drain erosion caused by droplet collisions and cavitation erosion have exactly the same impact pressure generating mechanism that causes material damage. It is said that there is a good correlation between the two. The ultrasonic cavitation/erosion test method is a method commonly used to evaluate the erosion resistance of steam turbines, and the examples of the present invention were also conducted using this test method. A test piece shown in Figure 1 was prepared by processing 12Cr steel with a thermally sprayed coating layer on the surface, and the degree of erosion damage was evaluated using an ultrasonic cavitation erosion test method. The test conditions were a frequency of 19K.
The test was conducted by immersing the test piece shown in FIG. 1 in ion exchange water for 3 mm at Hz and amplitude of 40 μm. The surface of the test piece was polished in advance with a 3 μm diamond and used for the test. The temperature of the ion-exchanged water was kept constant at 24±1°C. As a comparison material, a stellite plate, which is conventionally soldered with silver to the leading edge of a turbine blade, was used, and the results shown in FIG. 2 were obtained. From the results shown in FIG. 2, the thermal spray coating layers A, B, and C of the present invention all exhibit better erosion resistance than the conventional Stellite plate. Example 2 Using alloy powder c shown in Table 1, vacuum spraying was carried out on a 12Cr steel surface under the spraying conditions shown in Table 3.
Thermal spray coating layers C, D, E, and F having different porosity were formed, and the degree of erosion damage was evaluated in the same manner as in Example 1. Figure 3 shows the relationship between the porosity of each thermal spray coating layer and the amount of weight loss after the 20 hour test. The thickness of each thermal spray coating layer is approximately 2 mm. In addition to the test piece shown in Figure 1, a 10 x 10 x 1.5 mm sample for specific gravity measurement is cut out from the thermal spray coating layer, and weighed in liquid as specified in JIS Z8807. The specific gravity was measured using the method. In addition, to determine the specific gravity of the bulk material, cut out a sample with the same dimensions as above from a sample obtained by plasma melting alloy powder C in a water-cooled steel crucible in an Ar atmosphere, measure the specific gravity in the same manner, and determine the porosity as the specific gravity of the bulk material. Ta. From the results shown in FIG. 3, it can be seen that when the porosity is approximately 5% or less, the thermally sprayed coating layer produced by the method of the present invention exhibits better erosion resistance than the conventional Stellite plate.

【表】【table】

【表】【table】

【表】【table】

【表】 [発明の効果] 以上説明したごとく本発明によれば、従来の銀
ロー付け作業に伴う問題を回避できる上、更に、
従来の銀ロー付けステライト板以上の耐エロージ
ヨン性に優れたタービン翼の表面被覆層の形成が
可能となる。
[Table] [Effects of the Invention] As explained above, according to the present invention, problems associated with conventional silver brazing work can be avoided, and furthermore,
It is possible to form a surface coating layer for a turbine blade that has better erosion resistance than conventional silver-brazed Stellite plates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエロージヨン損傷の程度を評価するた
めに用いた試験片の形状を示す。第2図は超音波
キヤビテーシヨン・エロージヨン試験結果を示す
グラフである。第3図は気孔率と20時間試験後の
重量減少量の関係を示すグラフである。
Figure 1 shows the shape of the test piece used to evaluate the degree of erosion damage. FIG. 2 is a graph showing the results of an ultrasonic cavitation/erosion test. FIG. 3 is a graph showing the relationship between porosity and weight loss after a 20-hour test.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気タービンの翼表面に、該翼の温度を300
〜800℃に保持した状態で、Coを主成分とし、
Cr20〜30%、W3〜6%を含有する合金粉末を減
圧中でプラズマ溶射して、気孔率5%以下の溶射
被覆層を形成することを特徴とする、タービン翼
の耐エロージヨン被覆層の形成方法。
1 The temperature of the blade is set to 300 on the blade surface of the steam turbine.
When maintained at ~800℃, Co is the main component,
Formation of an erosion-resistant coating layer for a turbine blade, characterized by plasma spraying an alloy powder containing 20-30% Cr and 3-6% W under reduced pressure to form a sprayed coating layer with a porosity of 5% or less. Method.
JP5487589A 1989-03-09 1989-03-09 Formation of erosion resistant coating layer of turbine vane Granted JPH02236265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5487589A JPH02236265A (en) 1989-03-09 1989-03-09 Formation of erosion resistant coating layer of turbine vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5487589A JPH02236265A (en) 1989-03-09 1989-03-09 Formation of erosion resistant coating layer of turbine vane

Publications (2)

Publication Number Publication Date
JPH02236265A JPH02236265A (en) 1990-09-19
JPH0564705B2 true JPH0564705B2 (en) 1993-09-16

Family

ID=12982767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5487589A Granted JPH02236265A (en) 1989-03-09 1989-03-09 Formation of erosion resistant coating layer of turbine vane

Country Status (1)

Country Link
JP (1) JPH02236265A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703901B2 (en) * 2001-07-12 2011-06-15 三菱重工コンプレッサ株式会社 How to make erosion prevention coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639389A (en) * 1979-09-08 1981-04-15 Roser Erich Oil lubrication system
JPS5940904A (en) * 1982-08-31 1984-03-06 Sumitomo Rubber Ind Ltd Pneumatic radial tire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639389A (en) * 1979-09-08 1981-04-15 Roser Erich Oil lubrication system
JPS5940904A (en) * 1982-08-31 1984-03-06 Sumitomo Rubber Ind Ltd Pneumatic radial tire

Also Published As

Publication number Publication date
JPH02236265A (en) 1990-09-19

Similar Documents

Publication Publication Date Title
US5955182A (en) Heat resisting member and its production method
KR20080063449A (en) Method for treating organs subject to erosion by liquids and anti-erosion coating alloy
MX2007013601A (en) Coating process for manufacture or reprocessing of sputter targets and x-ray anodes.
UA61920C2 (en) A piece of super-alloy and a method for making thereof
US9273387B2 (en) Member covered with hard coating
US6071627A (en) Heat-resistant member and a method for evaluating quality of a heat-resistant member
JPH0258346B2 (en)
CN110450477A (en) A kind of reinforced aluminium alloy composite board and preparation method thereof
EP0678590B1 (en) Anti-fretting coating
RU2619419C2 (en) Application method of titanium aluminide and product with titanium aluminide surface
CN113278964A (en) Surface wear-resistant layer of oilfield drill rod and preparation method thereof
JPH0564705B2 (en)
JPH09272987A (en) Heat resistant member
JPH03150331A (en) Erosion-resistant alloy
US20090134020A1 (en) Sputtering target and process for producing the same
JP2017014569A (en) Ceramic coating film and method for manufacturing the same
CA2179335C (en) Method for surface erosion of superalloys employing a liquid jet
JPH07126827A (en) Composite film of metallic surface and its formation
KR20120096198A (en) Ceramic coating method for corrosion resistant member and corrosion resistant member coated by ceramic
JP2001192801A (en) Unit containing ultra-hard material body and producing method therefor
Itoh et al. Effects of substrate temperature during spraying on the properties of sprayed coatings
Saber A comparative study on corrosion behavior of ceramic coatings via plasma spray process in 3.5% NaCl
JPH03261671A (en) Bonding method of diamond for machining tool
JP3917564B2 (en) Heat- and oxidation-resistant thermal spray coating member and method for producing the same
Ahmed A Comparative Study on Corrosion Behavior of Ceramic Coatings via Plasma Spray Process in 3.5% NaCl Solution.