JPH0564434B2 - - Google Patents
Info
- Publication number
- JPH0564434B2 JPH0564434B2 JP60246067A JP24606785A JPH0564434B2 JP H0564434 B2 JPH0564434 B2 JP H0564434B2 JP 60246067 A JP60246067 A JP 60246067A JP 24606785 A JP24606785 A JP 24606785A JP H0564434 B2 JPH0564434 B2 JP H0564434B2
- Authority
- JP
- Japan
- Prior art keywords
- chlorine
- battery
- gas
- halogen
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- RWNKSTSCBHKHTB-UHFFFAOYSA-N Hexachloro-1,3-butadiene Chemical compound ClC(Cl)=C(Cl)C(Cl)=C(Cl)Cl RWNKSTSCBHKHTB-UHFFFAOYSA-N 0.000 claims description 22
- 229910052736 halogen Inorganic materials 0.000 claims description 16
- 150000002367 halogens Chemical class 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 9
- 239000011149 active material Substances 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 description 26
- 229910052801 chlorine Inorganic materials 0.000 description 24
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 23
- 239000007789 gas Substances 0.000 description 17
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 10
- 229910052725 zinc Inorganic materials 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- ACXCKRZOISAYHH-UHFFFAOYSA-N molecular chlorine hydrate Chemical compound O.ClCl ACXCKRZOISAYHH-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000005074 zinc chloride Nutrition 0.000 description 3
- 239000011592 zinc chloride Substances 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- USYLIGCRWXYYPZ-UHFFFAOYSA-N [Cl].[Fe] Chemical compound [Cl].[Fe] USYLIGCRWXYYPZ-UHFFFAOYSA-N 0.000 description 1
- ICGLOTCMOYCOTB-UHFFFAOYSA-N [Cl].[Zn] Chemical compound [Cl].[Zn] ICGLOTCMOYCOTB-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Hybrid Cells (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
本発明はハロゲンを活物質とした電池において
ハロゲン分子を貯蔵又は供給する技術に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technology for storing or supplying halogen molecules in a battery using halogen as an active material.
ハロゲンを正極活物質とした電池において各種
金属還元性分子及び化合物を負極活物質として組
み合わせた電池が考えられる。例えば亜鉛/塩素
型電池、亜鉛/臭素型電池、水素/塩素型レドツ
クス電池などがあるが、亜鉛/塩素型電池を例と
して従来技術を説明する。
Batteries using halogen as a positive electrode active material in combination with various metal reducing molecules and compounds as negative electrode active materials are conceivable. For example, there are zinc/chlorine type batteries, zinc/bromine type batteries, hydrogen/chlorine type redox batteries, etc., and the prior art will be explained using a zinc/chlorine type battery as an example.
第1図a,b,c,dは亜鉛/塩素型電池の充
放電状態を示す模式図である。 FIGS. 1a, b, c, and d are schematic diagrams showing charging and discharging states of a zinc/chlorine type battery.
第1図aに示す完全充電状態においては塩素水
和物槽1の水又は無機塩を含む水溶液を0℃付近
迄冷却し、塩素はこの中に塩素水和物(氷状固
体)となり安定化され貯蔵される。亜鉛は金属と
して析出している。 In the fully charged state shown in Figure 1a, the water or aqueous solution containing inorganic salts in the chlorine hydrate tank 1 is cooled to around 0°C, and the chlorine is stabilized as chlorine hydrate (ice-like solid). and stored. Zinc is precipitated as a metal.
第1図bに示す放電中は塩素水和物槽1の温度
を次第に高めることにより水和物を分解させて塩
素ガスを発生させこれを電解液に吹き込み溶解し
て電池部に供給すると次の反応が正極、負極で起
る。 During the discharge shown in Fig. 1b, the temperature of the chlorine hydrate tank 1 is gradually increased to decompose the hydrate and generate chlorine gas, which is blown into the electrolytic solution, dissolved, and supplied to the battery section. Reactions occur at the positive and negative electrodes.
正極 Cl2+2e→2Cl-
負極 Zn→Zn+++2e
負極では金属亜鉛が亜鉛イオンとなり水溶液中
に溶解してゆく。 Positive electrode Cl 2 +2e→2Cl -Negative electrode Zn→Zn ++ +2e At the negative electrode, metallic zinc becomes zinc ions and dissolves in the aqueous solution.
第1図cに示す完全放電状態では水和物槽1中
の塩素水和物はほとんど分解してしまいその時の
水和物槽の温度は12℃位になる。負極上の亜鉛金
属は亜鉛イオンとなり電解液中に溶解している。 In the fully discharged state shown in FIG. 1c, most of the chlorine hydrate in the hydrate tank 1 is decomposed, and the temperature of the hydrate tank at that time is about 12°C. Zinc metal on the negative electrode becomes zinc ions and is dissolved in the electrolyte.
第1図dに示す充電中に発生する塩素は約10℃
以下の温度に冷却した水又は塩化亜鉛水溶液中に
吹き込まれ固体状の水和物となる。 The chlorine generated during charging as shown in Figure 1d is approximately 10°C.
It is blown into water or an aqueous zinc chloride solution cooled to the following temperature to form a solid hydrate.
以上のように二次電池においては充電中に生成
するハロゲンを冷却した水又は金属塩の水溶液中
に導入することによりCl2・8H2OやBr・10H2O
等の固体状水和物として保蔵する方法が主体であ
る。 As mentioned above, in secondary batteries, halogens generated during charging are introduced into cooled water or an aqueous solution of metal salts, thereby converting them into Cl 2 .8H 2 O and Br.10H 2 O.
The main method is to store it as a solid hydrate.
又水和物でなく臭素の場合四級アミンとの錯化
合物にして保蔵する方法や、塩素の場合加圧圧縮
してボンベに液体として貯蔵する方法もある。 In addition, in the case of bromine rather than a hydrate, there is a method of storing it as a complex compound with a quaternary amine, and in the case of chlorine, there is a method of compressing it under pressure and storing it as a liquid in a cylinder.
ハロゲンを水和物にしたり錯化合物にしたりす
る場合には一般に10〜20Kcal/molの水和熱又は
反応熱が発生するためハロゲン貯蔵するためには
外にこの熱を除去しなければならない。またハロ
ゲンを供給するには分解時に熱を吸収するためこ
の熱を外から与えてやらねばならない。このよう
に外部に熱の出し入れをしてやらねばならない。
その都度それにともなう水又は水溶液を冷却又は
加熱してやらねばならず、そのためのエネルギー
ロスが大きいため電池の総合エネルギー効率が下
がる。
When a halogen is converted into a hydrate or a complex compound, generally 10 to 20 Kcal/mol of heat of hydration or reaction heat is generated, and this heat must be removed to the outside in order to store the halogen. Furthermore, in order to supply halogen, heat must be supplied from outside because it absorbs heat during decomposition. In this way, heat must be taken in and out to the outside.
In each case, the accompanying water or aqueous solution must be cooled or heated, resulting in a large energy loss, which reduces the overall energy efficiency of the battery.
更に有機化合物と錯化合物にする場合には使用
する有機化合物が電解液中に混合し液を汚し電極
性能を落してしまうこともあつた。 Furthermore, when a complex compound is formed with an organic compound, the organic compound used may mix into the electrolytic solution, contaminating the solution and deteriorating the electrode performance.
また固体水和物又は固体錯化合物等は吹込み部
につまるなどして吹き込み機能を低下させ又水の
対流を妨害し効率よく多量のハロゲンを水又は水
溶液中に吸収させることが困難である。 In addition, solid hydrates or solid complex compounds clog the blowing section, lowering the blowing function, and impeding water convection, making it difficult to efficiently absorb a large amount of halogen into water or an aqueous solution.
加圧圧縮してボンベに貯蔵する場合もコンプレ
ツサー動力、圧力容器などが必要でありエネルギ
ー的にも設備的にも不利である。 Even when pressurized and compressed and stored in cylinders, compressor power, pressure vessels, etc. are required, which is disadvantageous in terms of energy and equipment.
本発明はかかる従来技術の難点を克服せんとし
て鋭意研究の結果得られたものであり、電池の運
転中の所要動力を減らして電池の総合エネルギー
効率を向上させると共にハロゲンを均一な溶液と
して貯蔵する方法を開発することを目的とするも
のである。
The present invention was obtained as a result of intensive research to overcome the drawbacks of the prior art, and it reduces the power required during operation of the battery, improves the overall energy efficiency of the battery, and stores halogen as a homogeneous solution. The purpose is to develop a method.
本発明はハロゲンを活物質として正極および水
溶液系電解液を有する電池において、ハロゲンを
ヘキサクロルブタジエンに溶解して貯蔵又は供給
することを特徴とするものである。
The present invention is a battery having a positive electrode and an aqueous electrolyte using halogen as an active material, and is characterized in that the halogen is dissolved in hexachlorobutadiene and stored or supplied.
ハロゲンの吸収、生成はハロゲンのヘキサクロ
ルブタジエンに対する溶解度が温度によつて異な
ることを利用するのが本発明の要点でありハロゲ
ン吸収時には温度を下げ生成時には温度を上げ
る。前記構成をとることによつて次のような作用
を生む。
The key point of the present invention is to utilize the fact that the solubility of halogen in hexachlorobutadiene differs depending on the temperature for absorption and production of halogen, and the temperature is lowered during halogen absorption and raised during production. By adopting the above configuration, the following effects are produced.
(1) ヘキサクロルブタジエンは第2図に示すよう
な塩素の溶解度曲線を持ち−5℃で約0.35Kg/
、25℃で約0.11Kg/の塩素を溶解する。従
つて例えばこの間の温度を往復させることによ
りこの溶媒1で約0.24Kgの塩素を吸収又は供
給することができる。この溶媒の融点は−20
℃、沸点は250℃であり25℃において約1mmHg
という低い蒸気圧を有するからガス放出の際の
溶媒の持ち出しは問題とはならない。(1) Hexachlorobutadiene has a chlorine solubility curve as shown in Figure 2, and is approximately 0.35 kg/kg at -5℃.
, dissolves about 0.11Kg/chlorine at 25℃. Therefore, for example, by changing the temperature between these times, approximately 0.24 kg of chlorine can be absorbed or supplied with this solvent 1. The melting point of this solvent is −20
℃, the boiling point is 250℃ and about 1 mmHg at 25℃
Since it has such a low vapor pressure, there is no problem with the solvent being taken out when gas is released.
(2) また電池の構造材料としプラスチツクを用い
ることが多いが、塩素ガス又は塩素を含む水溶
液に腐食されにくいプラスチツクは数少い。含
弗素のプラスチツクを除くとPVC、アクリル
樹脂等が比較的良いが、有機溶媒には侵され易
い。(2) Plastics are often used as structural materials for batteries, but there are only a few plastics that are resistant to corrosion by chlorine gas or aqueous solutions containing chlorine. PVC, acrylic resin, etc. are relatively good except for fluorine-containing plastics, but they are easily attacked by organic solvents.
しかし本発明で用いるヘキサクロルブタジエン
は分子中のブタジエンが共役二重結合を有するた
め、置換塩素の作用が変りPVCを溶解又は膨潤
させてしまう作用が非常に少く好都合である。 However, since the butadiene in the molecule of hexachlorobutadiene used in the present invention has a conjugated double bond, the effect of substituted chlorine changes and the effect of dissolving or swelling PVC is very small, which is advantageous.
次に実施例により具体的に本発明の内容を説明
するが、これは一例であり本発明の範囲を制約す
るものではない。
Next, the content of the present invention will be specifically explained using Examples, but these are merely examples and do not limit the scope of the present invention.
実施例 1
正極活物質に塩素、負極活物質に亜鉛を用いた
第3図に示した構成の二次電池を組み立てた。Example 1 A secondary battery having the configuration shown in FIG. 3 was assembled using chlorine as the positive electrode active material and zinc as the negative electrode active material.
電池部…正極に多孔質グラフアイト、負極に緻密
グラフアイトよりなる各々1100cm2の有効面積を
有する単電池15セルを直列につなぎ出力
500Wで約5時間の充・放電が可能な電池とし
た。Battery part: 15 single cells each with an effective area of 1100 cm 2 made of porous graphite for the positive electrode and dense graphite for the negative electrode are connected in series and output.
The battery can be charged and discharged for approximately 5 hours at 500W.
電解液槽…液循環用口、ガス吹込み口、ガス循環
用口および液温調節用熱交換器を備えた100
の容積を有するプラスチツクス製容器。Electrolyte tank...100 equipped with a liquid circulation port, gas injection port, gas circulation port, and a heat exchanger for liquid temperature adjustment.
A plastic container with a volume of
塩素ガス貯蔵器…ガス吹込み口、排出口、液温調
節用熱交換器を備えた50の容積を有するプラ
スチツク製容器。Chlorine gas storage: A plastic container with a capacity of 50 ml, equipped with a gas inlet, an outlet and a heat exchanger for regulating the liquid temperature.
冷却器…200Wの電動機を有するフレオンガス圧
縮式冷凍機。Cooler: Freon gas compression refrigerator with 200W electric motor.
ガスポンプ…65Wの電動機を有するベローズ式ガ
スポンプ。Gas pump...A bellows type gas pump with a 65W electric motor.
電解液ポンプ…65Wの電動機を有するシール式チ
タン製液ポンプ。Electrolyte pump: A sealed titanium liquid pump with a 65W electric motor.
以上の設備を組立て電解液槽には70の2mol
塩化亜鉛水溶液、塩素ガス貯蔵槽には40のヘキ
サクロルブタジエンを入れて電池を構成させた。 Assemble the above equipment and fill the electrolyte tank with 70 2mol
A zinc chloride aqueous solution and 40 hexachlorobutadiene were placed in a chlorine gas storage tank to construct a battery.
初めにガス貯蔵槽のヘキサクロルブタジエンを
25℃にし外部より塩素ガスを吹き込み十分に飽和
した溶液とした後−5℃迄冷却し500Kwで3時
間の充電を行つた。充電中に発生する塩素ガスは
ヘキサクロルブタジエン中に吹き込み吸収させ
た。吸収にともなう発生熱は冷却機につながれた
冷凍機を作動させて冷却し温度を−5℃に保持し
た。 First, the hexachlorobutadiene in the gas storage tank
The temperature was raised to 25°C, chlorine gas was blown in from the outside to make the solution sufficiently saturated, and then the solution was cooled to -5°C and charged at 500Kw for 3 hours. Chlorine gas generated during charging was blown into hexachlorobutadiene and absorbed. The heat generated due to absorption was cooled by operating a refrigerator connected to a cooler to maintain the temperature at -5°C.
5時間充電後ただちに450Wの出力で放電を行
つた。放電中正極で消費させる塩素は塩素ガス貯
蔵槽の温度を徐々に上昇させることにより発生す
る塩素ガスを電解液中に吹き込み電解液中に吸収
させて後電解液とともに正極を流すことにより供
給した。放電は4時間40分継続した。ガス貯蔵槽
の温度は次第に上昇させて最終は25℃に達成し
た。電池のエネルギー効率は80%であつた。 After charging for 5 hours, the battery was immediately discharged with an output of 450W. Chlorine to be consumed by the positive electrode during discharge was supplied by gradually increasing the temperature of the chlorine gas storage tank, blowing chlorine gas generated into the electrolytic solution, absorbing it into the electrolytic solution, and then flowing the positive electrode together with the electrolytic solution. The discharge lasted for 4 hours and 40 minutes. The temperature of the gas storage tank was gradually increased to reach a final temperature of 25°C. The energy efficiency of the battery was 80%.
実施例 2
正極活物質に塩素、負極活物質に亜鉛を用いた
第4図に示した構成の一次電池を組み立てた。正
極に多孔質グラフアイト、負極に亜鉛圧延板を用
いてセル直列のものを10並列にした30セルよりな
る電池を構成する。この場合の電極面積は100cm2
であつた。両極端子は容器を密閉した状態で外部
に取り出した。これを縦30cm、横60cm、高さ50cm
のプラスチツクライニング鉄容器に収納した。Example 2 A primary battery having the configuration shown in FIG. 4 was assembled using chlorine as the positive electrode active material and zinc as the negative electrode active material. The battery consists of 30 cells, with 10 cells connected in series and 10 in parallel, using porous graphite for the positive electrode and rolled zinc plate for the negative electrode. The electrode area in this case is 100cm 2
It was hot. Both terminals were taken out to the outside while the container was sealed. This is 30cm long, 60cm wide, and 50cm high.
stored in a plastic-lined iron container.
鉄容器はガス吹込口、電解液注入口、圧力計、
圧力安全弁および水素ガス反応器が備えられてい
る。ガス吹出口は容積3の鉄製塩素ガス貯蔵槽
に定圧バルブを介して接続されている。塩素ガス
貯蔵槽中には3Kgのヘキサクロルブタジエンを入
れ、塩素圧力5Kg/cm2にて溶解させ約1Kgの塩素
を溶解させた。電池容器に塩化亜鉛1モル、支持
塩3モルの水溶液よりなる電解液50を入れた。
空間部を塩素ガスで置換した後塩素ガス貯蔵槽と
1Kg/cm2にセツトされた定圧バルブを介して接続
した。約50Wの放電を20時間継続した。放電中消
費される電解液中の塩素は塩素貯蔵槽から供給さ
れることにより電解液中の塩素濃度は約0.6g/
以上に保たれた。放電は間欠的に行うことも可
能であつた。この一次電池は約1kWhの容量を有
していた。 The iron container has a gas inlet, an electrolyte inlet, a pressure gauge,
Equipped with pressure relief valve and hydrogen gas reactor. The gas outlet is connected to an iron chlorine gas storage tank with a volume of 3 via a constant pressure valve. 3 kg of hexachlorobutadiene was placed in the chlorine gas storage tank and dissolved at a chlorine pressure of 5 kg/cm 2 to dissolve approximately 1 kg of chlorine. An electrolytic solution 50 consisting of an aqueous solution containing 1 mol of zinc chloride and 3 mol of supporting salt was placed in a battery container.
After replacing the space with chlorine gas, it was connected to a chlorine gas storage tank via a constant pressure valve set at 1 kg/cm 2 . Discharge of approximately 50W continued for 20 hours. The chlorine in the electrolyte consumed during discharge is supplied from the chlorine storage tank, so the chlorine concentration in the electrolyte is approximately 0.6g/
It was maintained above. It was also possible to perform the discharge intermittently. This primary battery had a capacity of approximately 1 kWh.
比較例
実施例1と同様の装置を用いガス貯蔵槽に50
の水を入れて同様に運転した。この場合充電開始
時は水は0℃に冷却し、発生する塩素は水中に吹
き込まれて水和物を生成した。この間水和物生成
にともない発生する熱は冷凍機を動かし冷却し
た。実施例1と同様に500Wで3時間充電後ただ
ちに400W出力で放電を行つた。この時に必要な
塩素はガス貯蔵槽の温度を徐々に上げて水和物を
分解し発生する塩素ガスを用いた。放電は2時間
49分継続した。最終のガス貯蔵槽の温度は9℃で
あつた。電池のエネルギー効率は約75%であつ
た。Comparative example Using the same device as in Example 1, 50
of water and operated in the same manner. In this case, the water was cooled to 0° C. at the start of charging, and the generated chlorine was blown into the water to form hydrates. During this time, the heat generated by hydrate formation was cooled by running a refrigerator. As in Example 1, the battery was charged at 500W for 3 hours and immediately discharged at 400W output. The chlorine gas required at this time was generated by gradually increasing the temperature of the gas storage tank and decomposing the hydrate. Discharge is 2 hours
It lasted 49 minutes. The final gas storage tank temperature was 9°C. The energy efficiency of the battery was approximately 75%.
この1サイクルの運転において消費された補機
運転のための動力量は冷却機620Wh ガスポン
プ1120Wh 液ポンプ420Whであつた。 The amount of power consumed for operating the auxiliary equipment in this one cycle of operation was 620Wh for the cooler, 1120Wh for the gas pump, and 420Wh for the liquid pump.
実施例1においては比較例に比較して冷却機動
力量は約1/4、ガスポンプ動力は約1/2になつた。
ガスポンプ動力が低下するのはヘキサクロルブタ
ジエンが塩素をよく吸収するため充電中の塩素の
系内循環量を少なくすることが出来るためであ
る。 In Example 1, compared to the comparative example, the cooler power amount was about 1/4, and the gas pump power was about 1/2.
The gas pump power decreases because hexachlorobutadiene absorbs chlorine well, so the amount of chlorine circulating in the system during charging can be reduced.
以上述べた如く本発明による電池は従来のもの
に比してエネルギー効率がよく、工業上極めて顕
著な効果を有するものである。
As described above, the battery according to the present invention has higher energy efficiency than conventional batteries, and has extremely significant industrial effects.
第1図は亜鉛−塩素電池の充放電反応模式図、
第2図はヘキサクロルブタジエンへの塩素溶解
度、第3図は二次電池の基本構造、第4図は一次
電池の基本構造。
Figure 1 is a schematic diagram of the charging/discharging reaction of a zinc-chlorine battery.
Figure 2 shows the solubility of chlorine in hexachlorobutadiene, Figure 3 shows the basic structure of a secondary battery, and Figure 4 shows the basic structure of a primary battery.
Claims (1)
電解液を有する電池において、ハロゲンをヘキサ
クロルブタジエンに溶解して貯蔵または供給する
ことを特徴とするハロゲンを活物質とした電池。1. A battery having a positive electrode and an aqueous electrolyte containing a halogen as an active material, wherein the halogen is dissolved in hexachlorobutadiene and stored or supplied.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60246067A JPS62108476A (en) | 1985-11-01 | 1985-11-01 | Cell employing halogen as active material |
GB08614695A GB2177251B (en) | 1985-06-19 | 1986-06-17 | Battery |
US06/875,868 US4728587A (en) | 1985-06-19 | 1986-06-18 | Battery using halogen as active material |
DE19863620556 DE3620556A1 (en) | 1985-06-19 | 1986-06-19 | BATTERY USING HALOGEN AS ACTIVE MATERIAL |
FR8608844A FR2583926B1 (en) | 1985-06-19 | 1986-06-19 | ELECTROCHEMICAL GENERATOR, ESPECIALLY A BATTERY OR ACCUMULATOR, COMPRISING A HALOGEN AS AN ACTIVE INGREDIENT AND METHOD FOR OPERATING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60246067A JPS62108476A (en) | 1985-11-01 | 1985-11-01 | Cell employing halogen as active material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62108476A JPS62108476A (en) | 1987-05-19 |
JPH0564434B2 true JPH0564434B2 (en) | 1993-09-14 |
Family
ID=17142970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60246067A Granted JPS62108476A (en) | 1985-06-19 | 1985-11-01 | Cell employing halogen as active material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62108476A (en) |
-
1985
- 1985-11-01 JP JP60246067A patent/JPS62108476A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62108476A (en) | 1987-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4956244A (en) | Apparatus and method for regenerating electrolyte of a redox flow battery | |
US4814241A (en) | Electrolytes for redox flow batteries | |
CN102714295B (en) | Flowing electrolyte storage system | |
JPS5913154B2 (en) | redox battery | |
US4728587A (en) | Battery using halogen as active material | |
US7579117B1 (en) | Electrochemical cell energy device based on novel electrolyte | |
US4273839A (en) | Activating carbonaceous electrodes | |
CN111850597B (en) | Electrochemical fluorination external circulation electrolysis system | |
JP2705241B2 (en) | Shutdown method of phosphoric acid fuel cell | |
CN110416572B (en) | Heating system and method for heating formic acid reactor by using waste heat of fuel cell | |
CN220246280U (en) | Device for continuously preparing lithium iron phosphate precursor or hydrogen | |
JPH0564434B2 (en) | ||
JPH0950820A (en) | Fuel cell system, fuel cell, and hydrogen storage system | |
JPH0564433B2 (en) | ||
CN109841931A (en) | Chlorine-magnesium fuel cell | |
KR20100040279A (en) | The hydrogen gas for chemistry solution or metal an oxide compound adsorption occlusion polymer membrane fuel cell system | |
Ding et al. | Flow battery: An energy storage alternative for hydropower station | |
CN209929451U (en) | Chlorine-magnesium fuel cell | |
CN209798118U (en) | Circulating water cooling hydrogen production module | |
CN210140630U (en) | Hydrogen manufacturing installation | |
KR20190006375A (en) | Redox Flow Battery using Sodium-Biphenyl | |
CN103456962A (en) | Li2C6O6 composite material and preparation method thereof | |
CN111446508A (en) | High-concentration solution and application and preparation method thereof | |
Ji | Discussion on Charge Discharge and Repair Technology of Lead Acid Battery | |
CN212848592U (en) | Battery distribution box and battery reaction chamber connection locking structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |