JPH0564433B2 - - Google Patents
Info
- Publication number
- JPH0564433B2 JPH0564433B2 JP60133687A JP13368785A JPH0564433B2 JP H0564433 B2 JPH0564433 B2 JP H0564433B2 JP 60133687 A JP60133687 A JP 60133687A JP 13368785 A JP13368785 A JP 13368785A JP H0564433 B2 JPH0564433 B2 JP H0564433B2
- Authority
- JP
- Japan
- Prior art keywords
- halogen
- battery
- gas
- chlorine
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052736 halogen Inorganic materials 0.000 claims description 42
- 150000002367 halogens Chemical class 0.000 claims description 41
- 239000003960 organic solvent Substances 0.000 claims description 14
- 239000003792 electrolyte Substances 0.000 claims description 10
- 239000011149 active material Substances 0.000 claims description 5
- RWNKSTSCBHKHTB-UHFFFAOYSA-N Hexachloro-1,3-butadiene Chemical compound ClC(Cl)=C(Cl)C(Cl)=C(Cl)Cl RWNKSTSCBHKHTB-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 239000000460 chlorine Substances 0.000 description 13
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 11
- 229910052801 chlorine Inorganic materials 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000004677 hydrates Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- ACXCKRZOISAYHH-UHFFFAOYSA-N molecular chlorine hydrate Chemical compound O.ClCl ACXCKRZOISAYHH-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000005074 zinc chloride Nutrition 0.000 description 3
- 239000011592 zinc chloride Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- -1 halogen hydrates Chemical class 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- USYLIGCRWXYYPZ-UHFFFAOYSA-N [Cl].[Fe] Chemical compound [Cl].[Fe] USYLIGCRWXYYPZ-UHFFFAOYSA-N 0.000 description 1
- ICGLOTCMOYCOTB-UHFFFAOYSA-N [Cl].[Zn] Chemical compound [Cl].[Zn] ICGLOTCMOYCOTB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
- H01M12/085—Zinc-halogen cells or batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hybrid Cells (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
本発明はハロゲンを活物質とした電池において
ハロゲン分子を貯蔵又は供給する技術に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technology for storing or supplying halogen molecules in a battery using halogen as an active material.
ハロゲンを正極活物質とした電池において各種
金属還元性分子及び化合物を負極活物質として組
み合わせた電池が考えられる。例えば亜鉛/塩素
型電池、亜鉛/臭素型電池、水素/塩素型レドツ
クス電池などがあるが、亜鉛/塩素型電池を例と
して従来技術を説明する。
Batteries using halogen as a positive electrode active material in combination with various metal reducing molecules and compounds as negative electrode active materials are conceivable. For example, there are zinc/chlorine type batteries, zinc/bromine type batteries, hydrogen/chlorine type redox batteries, etc., and the prior art will be explained using a zinc/chlorine type battery as an example.
第1図a,b,c,dは亜鉛/塩素型電池の充
放電状態を示す模式図である。 FIGS. 1a, b, c, and d are schematic diagrams showing charging and discharging states of a zinc/chlorine type battery.
第1図aに示す完全充電状態においては塩素水
和物槽1の水又は無機塩を含む水溶液を0℃附近
迄冷却し、塩素はこの中に塩素水和物(氷状固
体)となり安定化され貯蔵される。亜鉛は金属と
して析出している。 In the fully charged state shown in Figure 1a, the water or aqueous solution containing inorganic salts in the chlorine hydrate tank 1 is cooled to around 0°C, and the chlorine becomes chlorine hydrate (ice-like solid) and becomes stable. and stored. Zinc is precipitated as a metal.
第1図bに示す放電中は塩素水和物槽1の温度
を次第に高めることにより水和物を分解させて塩
素ガスを発生させこれを電解液に吹き込み溶解し
て電池部に供給すると次の反応が正極、負極で起
る。 During the discharge shown in Fig. 1b, the temperature of the chlorine hydrate tank 1 is gradually increased to decompose the hydrate and generate chlorine gas, which is blown into the electrolytic solution, dissolved, and supplied to the battery section. Reactions occur at the positive and negative electrodes.
正極 Cl2+2e→2Cl-
負極 Zn→Zn+++2e
負極では金属亜鉛が亜鉛イオンとなり水溶液中
に溶解してゆく。 Positive electrode Cl 2 +2e→2Cl -Negative electrode Zn→Zn ++ +2e At the negative electrode, metallic zinc becomes zinc ions and dissolves in the aqueous solution.
第1図cに示す完全放電状態では水和物槽1中
の塩素水和物はほとんど分解してしまいその時の
水和物槽の温度は12℃位になる。負極上の亜鉛金
属は亜鉛イオンとなり電解液中に溶解している。 In the fully discharged state shown in FIG. 1c, most of the chlorine hydrate in the hydrate tank 1 is decomposed, and the temperature of the hydrate tank at that time is about 12°C. Zinc metal on the negative electrode becomes zinc ions and is dissolved in the electrolyte.
第1図dに示す充電中に発生する塩素は約10℃
以下の温度に冷却した水又は塩化亜鉛水溶液中に
吹きこまれ固体上の水和物となる。 The chlorine generated during charging as shown in Figure 1d is approximately 10°C.
It is blown into water or an aqueous zinc chloride solution cooled to the following temperature to form a solid hydrate.
以上のように二次電池においては充電中に生成
するハロゲンを冷却した水又は金属塩の水溶液中
に導入することによりCl2・8H2OやBr2・10H2O
等の固体状水和物として保蔵するのである。 As described above, in secondary batteries, halogens generated during charging are introduced into cooled water or an aqueous solution of metal salts, thereby converting them into Cl 2 .8H 2 O and Br 2 .10H 2 O.
It is stored as a solid hydrate.
又水和物でなく錯化合物にして保蔵する方法や
加圧して液体とする方法もある。 There is also a method of storing it as a complex compound instead of a hydrate, or a method of pressurizing it and making it into a liquid.
ハロゲンを水和物にしたり錯化合物にしたりす
る場合には一般に10〜20Kcal/molの水和熱又は
反応熱が発生するためハロゲンを貯蔵するために
は外にこの熱を除去しなければならない。またハ
ロゲンを供給するには分解時に熱を吸収するため
この熱を外から与えてやらねばならない。このよ
うに外部に熱の出し入れをしてやらねばならな
い。その都度それにともなう水又は水溶液を冷却
又は加熱してやらねばならず、そのためのエネル
ギーロスが大きいため電池の総合効率が下がる。
When a halogen is made into a hydrate or a complex compound, generally 10 to 20 Kcal/mol of heat of hydration or reaction heat is generated, and this heat must be removed in order to store the halogen. Furthermore, in order to supply halogen, heat must be supplied from outside because it absorbs heat during decomposition. In this way, heat must be taken in and out to the outside. The accompanying water or aqueous solution must be cooled or heated each time, resulting in a large energy loss, which reduces the overall efficiency of the battery.
更に有機化合物と錯化合物にする場合には使用
する有機化合物が電解液中に混合し液を汚し電極
性能を落してしまうこともあつた。 Furthermore, when a complex compound is formed with an organic compound, the organic compound used may mix into the electrolytic solution, contaminating the solution and deteriorating the electrode performance.
また固体水和物又は固体錯化合物等は吹込み部
につまるなどして吹込み機能を低下させ又水の対
流を妨害し効率よく多量のハロゲンを水又は水溶
液中に吸収させることが困難である。 In addition, solid hydrates or solid complex compounds clog the blowing section, lowering the blowing function, and obstructing water convection, making it difficult to efficiently absorb a large amount of halogen into water or an aqueous solution. .
本発明はかかる従来技術の難点を克服せんとし
て鋭意研究の結果得られたものであり、電池の運
転中の所要動力を減らして電池の総合エネルギー
効率を向上させると共にハロゲンを均一な溶液と
して貯蔵する方法を開発することを目的とするも
のである。
The present invention was obtained as a result of intensive research to overcome the drawbacks of the prior art, and it reduces the power required during operation of the battery, improves the overall energy efficiency of the battery, and stores halogen as a homogeneous solution. The purpose is to develop a method.
本発明はハロゲンを活物質とした正極および水
溶液系電解液を有する電池において、ハロゲンを
ヘキサクロルブタジエンを除く、ハロゲン含有有
機溶媒に溶解して貯蔵または供給することを特徴
とするものである。
The present invention is a battery having a positive electrode and an aqueous electrolyte in which a halogen is used as an active material, and is characterized in that the halogen is stored or supplied dissolved in a halogen-containing organic solvent other than hexachlorobutadiene.
ハロゲンの吸収、生成はハロゲンの有機溶媒に
対する溶解度が温度によつて異なることを利用す
るのが本発明の要点でありハロゲン吸収時には温
度を下げ生成時には温度を上げる。前記構成をと
ることによつて次のような作用を生む。
The key point of the present invention is to utilize the fact that the solubility of halogen in organic solvents differs depending on the temperature for absorption and production of halogen, and the temperature is lowered during halogen absorption and raised during production. By adopting the above configuration, the following effects are produced.
(1) ハロゲンは水和物にも、錯化合物にもならな
いため水和熱又は反応熱の出入が殆んどない。
このため貯蔵、供給にともなうエネルギーロス
が殆んどない。(1) Halogens do not form hydrates or complex compounds, so there is almost no heat of hydration or reaction.
Therefore, there is almost no energy loss during storage and supply.
(2) 水和物、錯化合物を生成させるためにはとも
に多量の水又は水溶液を冷却し、また分解する
ためにこの多量の水又は水溶液を加熱しなけれ
ばならなかつたのが有機溶媒を貯蔵用に用いる
ことにより加熱、冷却は行うが有機溶媒の比熱
は水の20%程度のものが多く、このため溶媒の
温度の上げ下げで消費されるエネルギーロスが
非常に少くなる。(2) Storage of organic solvents requires cooling a large amount of water or aqueous solution in order to generate hydrates and complex compounds, and heating this large amount of water or aqueous solution in order to decompose it. Although heating and cooling are performed depending on the purpose of use, the specific heat of organic solvents is often around 20% that of water, and therefore the energy loss consumed by raising and lowering the temperature of the solvent is extremely small.
(3) ハロゲンの水和物、錯化合物は一般に固体で
あるのに反し、本方法ではハロゲンは有機溶媒
に単に溶解するのみであり、吸収後も均一な溶
液であるため吸収が終始効率よく進みガスポン
プの所要動力量が減少するのみならず取り扱い
も容易である。(3) Contrary to the fact that halogen hydrates and complex compounds are generally solid, in this method the halogen is simply dissolved in the organic solvent, and even after absorption, the halogen remains a homogeneous solution, so absorption proceeds efficiently from beginning to end. Not only is the amount of power required for the gas pump reduced, but it is also easier to handle.
(4) 有機溶剤を選択することにより、加熱冷却の
幅を広い範囲に設定することが出来少量の溶剤
に多量のハロゲンを吸収させることができる。(4) By selecting an organic solvent, the range of heating and cooling can be set over a wide range, and a large amount of halogen can be absorbed with a small amount of solvent.
(5) 水に不溶性の有機溶媒を使用することにより
水分を含むハロゲンも有機溶媒に溶ける時点で
水は分離してしまうためハロゲンを無水の状態
で吸収し、その溶液は腐食性が著しく弱いため
鉄などの金属容器に入れて保蔵できる。これは
一次電池に使用する場合には特に有効に利用で
きる。(5) By using an organic solvent that is insoluble in water, water will separate when the halogen containing water is dissolved in the organic solvent, so the halogen will be absorbed in an anhydrous state, and the resulting solution will have extremely low corrosivity. It can be stored in a metal container such as iron. This can be used particularly effectively when used in primary batteries.
使用される有機溶媒としてはハロゲンと反応せ
ずかつハロゲンを溶解するものであればよいが好
ましくは次のような性質を持つものがよい。 The organic solvent used may be any organic solvent as long as it does not react with the halogen and dissolves the halogen, but preferably it has the following properties.
(1) 加熱冷却の使用温度範囲で安定した液体を保
つこと。(1) Maintain a stable liquid within the operating temperature range of heating and cooling.
(2) 使用温度範囲で蒸気圧があまり高くないこ
と。(2) The vapor pressure must not be too high within the operating temperature range.
(3) 溶解度の温度依存性が大きいこと。(3) The temperature dependence of solubility is large.
具体的にいえばハロゲン化炭化水素、例えば四
塩化炭素、弗化炭化水素、弗化塩化炭化水素等が
良い性質を示す。 Specifically, halogenated hydrocarbons, such as carbon tetrachloride, fluorinated hydrocarbons, and fluorinated chlorinated hydrocarbons, exhibit good properties.
本発明の原理を一次電池、二次電池に適用する
場合その基本構造は第2図(一次電池)、第3図
(二次電池)に例示するようになる。無論本発明
の原理を利用した電池はこの例以外にも多数の構
造のものが考えられるためこれに示す構造はその
一部に過ぎない。 When the principle of the present invention is applied to a primary battery or a secondary battery, the basic structure thereof is illustrated in FIG. 2 (primary battery) and FIG. 3 (secondary battery). Of course, batteries utilizing the principles of the present invention may have many structures other than this example, and the structures shown here are only some of them.
第2図は一次電池の例を示すもので、ハロゲン
を十分に溶解した有機溶剤を含むハロゲン貯槽1
と少くとも1組の金属活物質を持つ負極とハロゲ
ン反応をつかさどる正極と金属ハロゲン化物溶液
とからなる電池部2からなつている。 Figure 2 shows an example of a primary battery, in which a halogen storage tank 1 contains an organic solvent in which halogen is sufficiently dissolved.
It consists of a battery section 2 consisting of a negative electrode having at least one set of metal active materials, a positive electrode controlling a halogen reaction, and a metal halide solution.
放電が進むにつれて、電解液中のハロゲンが消
費されバルブV13が開いてハロゲン貯槽よりハ
ロゲンを供給する。ハロゲン貯槽1はバルブによ
り熱媒体が熱交換機内を流れることにより加熱冷
却が出来、ハロゲン貯槽中のハロゲン圧を一定圧
に保ち必要に応じて放出する。 As the discharge progresses, halogen in the electrolyte is consumed and valve V 1 3 opens to supply halogen from the halogen storage tank. The halogen storage tank 1 can be heated and cooled by a heat medium flowing through a heat exchanger using a valve, and the halogen pressure in the halogen storage tank is maintained at a constant pressure and released as necessary.
第3図は二次電池の例を示すものでハロゲン貯
槽1、少くとも1組の負極と正極を有する電池部
2と電解液貯槽3とからなる。 FIG. 3 shows an example of a secondary battery, which consists of a halogen storage tank 1, a battery section 2 having at least one set of negative and positive electrodes, and an electrolyte storage tank 3.
ガスポンプP14を有するガス循環系と液ポン
プP35を有する液循環系からなつている。 It consists of a gas circulation system with a gas pump P 1 4 and a liquid circulation system with a liquid pump P 3 5.
充電時は電池部より発生するハロゲンを比較的
低温に保たれたハロゲン貯槽に導入して吸収させ
放電時には貯槽の温度を次第に上げて発生するハ
ロゲンを電解液貯槽に導入し電解浴にハロゲンを
溶解させ、この液を液循環により電池部に循環し
て供給し放電反応を行わせるものである。 During charging, the halogen generated from the battery is introduced into a halogen storage tank kept at a relatively low temperature and absorbed. During discharging, the temperature of the storage tank is gradually raised and the generated halogen is introduced into the electrolyte storage tank, dissolving the halogen in the electrolytic bath. This liquid is circulated and supplied to the battery part by liquid circulation to cause a discharge reaction to occur.
本発明は正極活物質にハロゲンを用いる電池に
はすべて利用できる技術であり負極に用いる活物
質の種類、電池の構造に制約を受けることはな
い。 The present invention is a technology that can be used in all batteries that use halogen as the positive electrode active material, and is not limited by the type of active material used in the negative electrode or the structure of the battery.
次に実施例により具体的に本発明の内容を説明
するが、これは一例であり本発明の範囲を制約す
るものではない。
Next, the content of the present invention will be specifically explained using Examples, but these are merely examples and do not limit the scope of the present invention.
実施例 1
正極活物質に塩素、負極活物質に亜鉛を用いた
第3図に示した構成の二次電池を組み立てた。Example 1 A secondary battery having the configuration shown in FIG. 3 was assembled using chlorine as the positive electrode active material and zinc as the negative electrode active material.
電池部……正極に多孔質グラフアイト、負極に緻
密グラフアイトよりなる各々320cm2の有効面積
を有する単電池を30セル直列につなぎ出力
500Wで約3時間の充・放電が可能な電池とし
た。Battery section: 30 single cells each with an effective area of 320 cm 2 made of porous graphite for the positive electrode and dense graphite for the negative electrode are connected in series and output.
The battery can be charged and discharged at 500W for approximately 3 hours.
電解液槽……液循環用口、ガス吹込み口、ガス循
環用口および液温調節用熱交換器を備えた100
の容積を有するプラスチツク製容器。Electrolyte tank...100 equipped with a liquid circulation port, gas injection port, gas circulation port, and a heat exchanger for liquid temperature adjustment.
A plastic container with a volume of
有機溶媒ガス貯蔵槽……ガス吹込口・排出口、液
温調節用熱交換器を備えた50の容積を有する
プラスチツク製容器。Organic solvent gas storage tank: A plastic container with a capacity of 50 mm, equipped with a gas inlet/outlet and a heat exchanger for controlling the liquid temperature.
冷却機……200Wの電動機を有するフレオンガス
圧縮式冷凍機。Cooler: A Freon gas compression type refrigerator with a 200W electric motor.
ガスポンプ……65Wの電動機を有するベローズ式
ガスポンプ。Gas pump...A bellows type gas pump with a 65W electric motor.
電解液ポンプ……65Wの電動機を有するシール式
液ポンプ。Electrolyte pump...Sealed liquid pump with a 65W electric motor.
以上の設備により構成された電池において、電
解液として塩化亜鉛の2ml水溶液を70用い、塩
素ガス貯蔵用の有機溶媒として四塩化炭素40を
用いた。 In the battery constructed with the above equipment, 2 ml of zinc chloride aqueous solution was used as the electrolyte, and carbon tetrachloride was used as the organic solvent for storing chlorine gas.
初めにガス貯蔵槽の四塩化炭素を20℃にし外部
より塩素ガスを吹き込み、十分飽和させて後5℃
に冷却し500Wの充電電力により3時間充電を行
つた。この間発生する塩素ガスはガス貯蔵槽中の
四塩化炭素数に吹き込み吸収させた。吸収にとも
なう発熱は冷却機につながれた熱交換機を作動さ
せて冷却し液温を5℃に保つた。 First, the carbon tetrachloride in the gas storage tank is heated to 20℃, and chlorine gas is blown in from the outside to saturate it, and then it is heated to 5℃.
The battery was cooled to 500 W and charged for 3 hours. The chlorine gas generated during this time was blown into carbon tetrachloride in the gas storage tank and absorbed. The heat generated by absorption was cooled by operating a heat exchanger connected to a cooler to maintain the liquid temperature at 5°C.
3時間の充電が終了した後ただちに400Wの出
力で放電を行つた。正極で消費される塩素はガス
貯蔵槽の温度を徐々に上昇させることにより発生
するガスを電解液中に吹き込み電解液中に吸収さ
せて後電解液とともに正極に流すことにより供給
した。放電は2時間48分継続した。ガス貯蔵槽の
温度は最終的には25℃になつた。電池のエネルギ
ー効率は約75%であつた。 Immediately after 3 hours of charging, the battery was discharged with an output of 400W. Chlorine consumed at the positive electrode was supplied by gradually increasing the temperature of the gas storage tank, blowing the gas generated into the electrolytic solution, absorbing it into the electrolytic solution, and then flowing it together with the electrolytic solution to the positive electrode. The discharge lasted for 2 hours and 48 minutes. The temperature of the gas storage tank eventually reached 25°C. The energy efficiency of the battery was approximately 75%.
この1サイクルの運転において消費された補機
運転のための動力量は
冷却機 150wh ガスポンプ 570wh 液ポン
プ 420wh
であつた。 The amount of power consumed for operating the auxiliary equipment in this one cycle of operation was 150wh for the cooler, 570wh for the gas pump, and 420wh for the liquid pump.
比較例
実施例1と同様の装置を用いガス貯蔵槽に50
の水を入れて同様に運転した。この場合充電開始
時は水は0℃に冷却し、発生する塩素は水中に吹
き込まれて水和物を生成した。この間水和物生成
にともない発生する熱は冷凍機を動かし冷却し
た。実施例1と同様に500Wで3時間充電後ただ
ちに400W出力で放電を行つた。この時に必要な
塩素はガス貯蔵槽の温度を徐々に上げて水和物を
分解し発生する塩素ガスを用いた。放電は2時間
49分継続した。最終のガス貯蔵槽の温度は9℃で
あつた。電池のエネルギー効率は約75%であつ
た。Comparative example Using the same device as in Example 1, 50
of water and operated in the same manner. In this case, the water was cooled to 0° C. at the start of charging, and the generated chlorine was blown into the water to form hydrates. During this time, the heat generated by hydrate formation was cooled by running a refrigerator. As in Example 1, the battery was charged at 500W for 3 hours and immediately discharged at 400W output. The chlorine gas required at this time was generated by gradually increasing the temperature of the gas storage tank and decomposing the hydrate. Discharge is 2 hours
It lasted 49 minutes. The final gas storage tank temperature was 9°C. The energy efficiency of the battery was approximately 75%.
この1サイクルの運転において消費された補機
運転のための動力量は冷却機620wh ガスポンプ
1120wh 液ポンプ420whであつた。 The amount of power consumed for auxiliary equipment operation in this one cycle of operation is 620wh for the cooler and gas pump.
It was 1120wh and the liquid pump was 420wh.
実施例1においては比較例に比較して冷却機動
力量は約1/4、ガスポンプ動力は約1/2になつた。 In Example 1, compared to the comparative example, the cooler power amount was about 1/4, and the gas pump power was about 1/2.
実施例 2
塩素ガス貯蔵に用いる溶媒として四塩化炭素の
代りに平均分子量約700の1−モノクロル、1′,
2,2′トリフルオロエチレンのオリゴマーを用い
た以外は実施例1と同様の装置、運転法により
充・放電を行つた。電池のエネルギー効率は約73
%であり、この場合に使用された動力は冷却機
160wh ガスポンプ550wh 液ポンプ415whであ
つた。Example 2 1-monochlor, 1', with an average molecular weight of about 700 was used instead of carbon tetrachloride as a solvent for storing chlorine gas.
Charging and discharging were carried out using the same equipment and operating method as in Example 1, except that a 2,2' trifluoroethylene oligomer was used. The energy efficiency of the battery is approximately 73
%, and the power used in this case is the cooling machine
It was 160wh, gas pump 550wh, and liquid pump 415wh.
実施例 3
正極に多孔質グラフアイト、負極に亜鉛圧延板
を用いて各々の電極は100cm2を有する単セルを用
いて10セル並列、3セル直列の電池を構成した。
両極端子は容器を密閉した状態で外部に取り出し
た。これを縦30cm、横60cm、高さ50cmのプラスチ
ツクライニングの鉄容器に収納した。鉄容器には
ガス吹込口、電解液注入口、圧力計、圧力安全弁
および水素ガス反応器が備えられている。ガス吹
出口は容積3の鉄製塩素ガス貯蔵槽に定圧バル
ブを介して接続されている。塩素ガス貯蔵槽中に
は3Kgの四塩化炭素を入れ、圧力5Kg/cm2にて飽
和する迄塩素を溶解した。約1Kgの塩素を溶解し
た。電池容器に塩化亜鉛1モル濃度、支持塩3モ
ル濃度よりなる電解液50を入れた。塩素ガス貯
蔵槽の定圧バルブを1Kg/cm2Gにセツトし塩素ガ
スを吹込管を通して導入した。約50Wの放電を2
時間行つた後ガス貯蔵槽とのバルブを閉じ起電力
がほとんどなくなるまで放電して終了した。かか
る操作を間欠的に行うことが可能であつた。この
一次電池はほぼ1kwhの容量を有していた。Example 3 A battery with 10 cells in parallel and 3 cells in series was constructed using porous graphite for the positive electrode and a rolled zinc plate for the negative electrode, each electrode having a single cell of 100 cm 2 .
Both terminals were taken out to the outside while the container was sealed. This was stored in a plastic-lined iron container measuring 30 cm in length, 60 cm in width, and 50 cm in height. The iron vessel is equipped with a gas inlet, an electrolyte inlet, a pressure gauge, a pressure safety valve, and a hydrogen gas reactor. The gas outlet is connected to an iron chlorine gas storage tank with a volume of 3 via a constant pressure valve. 3 kg of carbon tetrachloride was placed in the chlorine gas storage tank, and chlorine was dissolved at a pressure of 5 kg/cm 2 until it was saturated. Approximately 1 kg of chlorine was dissolved. An electrolytic solution 50 containing 1 molar concentration of zinc chloride and 3 molar concentration of supporting salt was placed in a battery container. The constant pressure valve of the chlorine gas storage tank was set at 1 kg/cm 2 G, and chlorine gas was introduced through the blowing pipe. Approximately 50W discharge 2
After a certain period of time, the valve to the gas storage tank was closed and the discharge was completed until almost no electromotive force was generated. It was possible to perform such operations intermittently. This primary battery had a capacity of approximately 1kwh.
以上述べた如く本発明による電池は従来のもの
に比してエネルギー効率がよく、工業上極めて顕
著な効果を有するものである。
As described above, the battery according to the present invention has higher energy efficiency than conventional batteries, and has extremely significant industrial effects.
第1図は亜鉛−塩素電池の充放電反応模式図、
第2図は一次電池の基本構造、第3図は二次電池
の基本構造。
Figure 1 is a schematic diagram of the charging/discharging reaction of a zinc-chlorine battery.
Figure 2 shows the basic structure of a primary battery, and Figure 3 shows the basic structure of a secondary battery.
Claims (1)
電解液を有する電池において、ハロゲンをヘキサ
クロルブタジエンを除くハロゲン含有有機溶媒に
溶解して貯蔵または供給することを特徴とするハ
ロゲンを活物質とした電池。1. A battery having a positive electrode containing halogen as an active material and an aqueous electrolyte, wherein the halogen is stored or supplied after being dissolved in a halogen-containing organic solvent other than hexachlorobutadiene.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60133687A JPS61292864A (en) | 1985-06-19 | 1985-06-19 | Cell having halogen as active material |
GB08614695A GB2177251B (en) | 1985-06-19 | 1986-06-17 | Battery |
US06/875,868 US4728587A (en) | 1985-06-19 | 1986-06-18 | Battery using halogen as active material |
FR8608844A FR2583926B1 (en) | 1985-06-19 | 1986-06-19 | ELECTROCHEMICAL GENERATOR, ESPECIALLY A BATTERY OR ACCUMULATOR, COMPRISING A HALOGEN AS AN ACTIVE INGREDIENT AND METHOD FOR OPERATING THE SAME |
DE19863620556 DE3620556A1 (en) | 1985-06-19 | 1986-06-19 | BATTERY USING HALOGEN AS ACTIVE MATERIAL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60133687A JPS61292864A (en) | 1985-06-19 | 1985-06-19 | Cell having halogen as active material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61292864A JPS61292864A (en) | 1986-12-23 |
JPH0564433B2 true JPH0564433B2 (en) | 1993-09-14 |
Family
ID=15110528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60133687A Granted JPS61292864A (en) | 1985-06-19 | 1985-06-19 | Cell having halogen as active material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61292864A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9553328B2 (en) * | 2013-08-26 | 2017-01-24 | e-Zn Inc. | Electrochemical system for storing electricity in metals |
-
1985
- 1985-06-19 JP JP60133687A patent/JPS61292864A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61292864A (en) | 1986-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ng et al. | Nonaqueous rechargeable aluminum batteries | |
US4956244A (en) | Apparatus and method for regenerating electrolyte of a redox flow battery | |
EP3461275B1 (en) | Electrochemical method and apparatus for generation of ammonia | |
US8911612B2 (en) | Method of operating metal-bromine cells | |
US4728587A (en) | Battery using halogen as active material | |
WO2013042103A1 (en) | A method of operating metal- bromine cells | |
US7579117B1 (en) | Electrochemical cell energy device based on novel electrolyte | |
US4273839A (en) | Activating carbonaceous electrodes | |
JP2705241B2 (en) | Shutdown method of phosphoric acid fuel cell | |
US4144381A (en) | Electrochemical pH control | |
CN115149117A (en) | Additive of aqueous battery electrolyte and application thereof | |
JPH0564433B2 (en) | ||
KR101521391B1 (en) | Redox flow battery | |
JPH0564434B2 (en) | ||
US20230361328A1 (en) | Flow battery systems and methods of using the same | |
JP5252908B2 (en) | Method for producing tetrafluoroborate | |
CN111446508A (en) | High-concentration solution and application and preparation method thereof | |
CN106169608A (en) | A kind of lithium thionyl chloride battery electrolyte manufacture method | |
Gray et al. | Plating and Stripping of Sodium from a Room Temperature 1, 2‐Dimethyl‐3‐propylimidazolium Chloride Melt | |
Liu et al. | Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range | |
US4594298A (en) | Zinc-chloride cell | |
JPS622470A (en) | Zinc-chlorine battery | |
KR20190011391A (en) | A oxidation-reduction flow battery | |
JPS59182203A (en) | Tank for producing chlorine hydrate | |
Dai | Novel materials for renewable energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |