JPH056440B2 - - Google Patents

Info

Publication number
JPH056440B2
JPH056440B2 JP63290551A JP29055188A JPH056440B2 JP H056440 B2 JPH056440 B2 JP H056440B2 JP 63290551 A JP63290551 A JP 63290551A JP 29055188 A JP29055188 A JP 29055188A JP H056440 B2 JPH056440 B2 JP H056440B2
Authority
JP
Japan
Prior art keywords
coil
magnetic pole
rotor
main magnetic
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63290551A
Other languages
Japanese (ja)
Other versions
JPH01157294A (en
Inventor
Masaharu Shida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP29055188A priority Critical patent/JPH01157294A/en
Publication of JPH01157294A publication Critical patent/JPH01157294A/en
Publication of JPH056440B2 publication Critical patent/JPH056440B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、両回転ステツプモータの駆動方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for driving a dual-rotation step motor.

〔従来の技術〕 従来、2つの主磁極と1つの副磁極を有するス
テータに2つのコイルを磁気的に結合させて、そ
れぞれのコイルに別個に駆動パルスを印加して、
ステツプモータを両方向に回転させる駆動方法が
知られていた。また、2つのコイルを有するステ
ツプモータの一方のコイルに駆動パルスを印加し
ている間に、他方のコイルに、駆動パルス印加中
に電圧の極性の反転する駆動パルスを印加する駆
動方法が知られていた。例えば、特開昭54−8815
号公報及び特開昭56−15163号公報などにこのよ
うな構造が開示されている。
[Prior Art] Conventionally, two coils are magnetically coupled to a stator having two main magnetic poles and one sub-magnetic pole, and driving pulses are applied to each coil separately.
Driving methods for rotating a step motor in both directions have been known. Furthermore, there is a known driving method in which a step motor having two coils is applied with a driving pulse whose voltage polarity is reversed while a driving pulse is applied to one coil of the other coil. was. For example, JP-A-54-8815
Such a structure is disclosed in Japanese Patent Application Laid-Open No. 15163/1983.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の両回転ステツプモータの駆動方
法においては、ロータの極数を多極としなければ
ならず、2極にできなかつたり、2つのコイルの
仕様を正確に合わせなければ動作が安定しないと
いう課題があつた。
However, in the conventional method of driving a double-rotation step motor, the number of poles on the rotor must be multi-pole, and the operation cannot be stabilized unless the number of poles is two or the specifications of the two coils are precisely matched. I have an assignment.

そこで、この発明の目的は、従来のこのような
課題を解決するため、2極ステツプモータにおい
て、2つのコイルの仕様を正確に合わせなくても
安定して両回転の可能な、小型で量産性の良いス
テツプモータを得ることである。
Therefore, the purpose of this invention is to solve these conventional problems by creating a small, mass-producible, two-pole step motor that can stably rotate in both directions without having to precisely match the specifications of the two coils. The key is to get a good step motor.

〔実施例〕〔Example〕

以下に、この発明の実施例を図面に基ずいて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明によるステツプモータの模式図
である。ロータ4は円筒形磁石であり径方向に2
極に着磁されている。ステータは主磁極1,2副
磁極3からなり、副磁極3のロータ対向角aは主
磁極1および2のロータ対向角より小さい。
FIG. 1 is a schematic diagram of a step motor according to the present invention. The rotor 4 is a cylindrical magnet with two
It is polarized. The stator consists of main magnetic poles 1 and 2 and a sub magnetic pole 3, and the rotor facing angle a of the sub magnetic pole 3 is smaller than the rotor facing angle of the main magnetic poles 1 and 2.

コイルは5と6の2つあり、コイル5は主磁極
2と副磁極3に、コイル6は主磁極1と副磁極3
にそれぞれ磁気的に接続されている。2つのコイ
ル5,6の巻線両端7,8,9,10は全て駆動
回路に接続される。
There are two coils, 5 and 6. Coil 5 has main magnetic pole 2 and sub magnetic pole 3, and coil 6 has main magnetic pole 1 and sub magnetic pole 3.
are magnetically connected to each other. Both winding ends 7, 8, 9, and 10 of the two coils 5 and 6 are all connected to a drive circuit.

第2図は非駆動時におけるロータ4の回転角θ
とポテンシヤルエネルギを示すグラフである。仮
に副磁極3が無く、主磁極1,2がそれぞれ180゜
のロータ対向角を有していた場合には破線11で
示した様なほぼ正弦波形状を有したポテンシヤル
エネルギ曲線となる。副磁極3がある場合にはロ
ータ回転角90゜と270゜にあるポテンシヤルエネル
ギのピーク値を下げる様に働く。しかし副磁極3
のロータに対する磁力の強さを適当に設計する事
により実線12の様な正弦波形状を大きく乱さな
いポテンシヤルエネルギ曲線を得る事が可能であ
る。ロータ4の安定位置は、この様なポテンシヤ
ルエネルギ曲線の場合、約90゜と270゜である。
Figure 2 shows the rotation angle θ of the rotor 4 when not driven.
It is a graph showing potential energy. If there is no auxiliary magnetic pole 3 and the main magnetic poles 1 and 2 each have a rotor facing angle of 180°, the potential energy curve will have a substantially sinusoidal shape as shown by the broken line 11. When the sub magnetic pole 3 is present, it works to lower the peak value of potential energy at rotor rotation angles of 90° and 270°. However, sub magnetic pole 3
By appropriately designing the strength of the magnetic force on the rotor, it is possible to obtain a potential energy curve such as the solid line 12 that does not significantly disturb the sinusoidal shape. The stable positions of the rotor 4 are approximately 90° and 270° for such potential energy curves.

次に第3図、第4図a,b,c、第5図a,
b,c,dにより本発明による両回転ステツプモ
ータの駆動法を説明する。
Next, Figure 3, Figure 4 a, b, c, Figure 5 a,
The driving method of the double-rotation step motor according to the present invention will be explained with reference to b, c, and d.

第3図は駆動回路の一実施例である。インバー
タ14,15,16,17は電子回路13により
発生される駆動パルス波形を電力に変換しコイル
5,6に印加する。第4図aはコイル5,6の端
子8,7,10,9に印加される電圧波形の一例
であり、bはその場合の端子7,9を基準にした
端子8,10の電圧波形である。以降bの形式で
駆動パルス波形を図示する。第4図bは右回転の
場合の、cは左回転の場合の駆動パルス波形であ
る。
FIG. 3 shows an embodiment of the drive circuit. Inverters 14 , 15 , 16 , and 17 convert the drive pulse waveform generated by electronic circuit 13 into electric power and apply it to coils 5 and 6 . Figure 4a is an example of the voltage waveform applied to terminals 8, 7, 10, and 9 of coils 5 and 6, and b is the voltage waveform of terminals 8 and 10 based on terminals 7 and 9 in that case. be. Hereinafter, the drive pulse waveform will be illustrated in the format b. FIG. 4b shows the drive pulse waveform for clockwise rotation, and FIG. 4c shows the drive pulse waveform for counterclockwise rotation.

次に第5図a,b,c,dにより動作を説明す
る。第5図aは第4図bのコイル5の駆動パルス
だけが立ち上がつている前置パルス区間24の時
点での状態である。この時点では主磁極1と副磁
極3がS極、主磁極2がN極となるのでロータ4
は右回転方向(時計回り方向)に回転をはじめ
る。第5図bはコイル5,6とも駆動パルスが印
加されている本駆動パルス区間25の時点であ
る。この時点では主磁極1にS極、主磁極2にN
極が現れ、副磁極3には強い磁極は現れないので
ロータ4は更に回転を続け図のような2極ロータ
の場合1ステツプ(180゜)の回転を終了する。
Next, the operation will be explained with reference to FIGS. 5a, b, c, and d. FIG. 5a shows the state at the time of the pre-pulse section 24 in which only the drive pulse for the coil 5 shown in FIG. 4b is rising. At this point, the main magnetic pole 1 and the sub magnetic pole 3 are the S pole, and the main magnetic pole 2 is the N pole, so the rotor 4
starts rotating in the right rotation direction (clockwise direction). FIG. 5b shows the time point of the main drive pulse section 25 in which the drive pulse is applied to both coils 5 and 6. At this point, main magnetic pole 1 has an S pole, and main magnetic pole 2 has an N pole.
A pole appears, and since no strong magnetic pole appears in the sub-magnetic pole 3, the rotor 4 continues to rotate further, and in the case of a two-pole rotor as shown in the figure, one step (180°) of rotation is completed.

この状態から更に1ステツプ右回転させるには
第4図bの様に駆動パルスの極性を反転して印加
すれば良い。
In order to further rotate one step clockwise from this state, the polarity of the driving pulse may be reversed and applied as shown in FIG. 4b.

第5図c,dは左回転(反時計方向)駆動の例
である。駆動パルス波形は第4図cである。この
場合には前置パルス区間26によつてコイル6が
先に励磁されロータ4は反時計方向に回転させ
る。
Figures 5c and 5d are examples of left rotation (counterclockwise) drive. The driving pulse waveform is shown in FIG. 4c. In this case, the coil 6 is first energized by the pre-pulse section 26, causing the rotor 4 to rotate counterclockwise.

この様に前置パルス区間による電圧をいずれか
一方のコイルに印加する事により回転方向を決定
する事ができる。
In this manner, the direction of rotation can be determined by applying a voltage according to the pre-pulse section to either one of the coils.

第6図は駆動回路及び駆動方法を工夫した実施
例である。
FIG. 6 shows an embodiment in which the driving circuit and driving method are devised.

特にIC内に駆動用インバータ29,30,3
1を構成する場合、IC内に占める駆動用インバ
ータの面積を小さくできるのでこの様な接続が有
利となる。この例ではコイル5の端子8はインバ
ータ29にコイル6の端子9はインバータ31
に、そしてコイル5の端子7とコイル6の端子1
0とは共にインバータ30に接続していて共通端
子となつている。
In particular, drive inverters 29, 30, 3 are installed in the IC.
1, this type of connection is advantageous because the area occupied by the driving inverter within the IC can be reduced. In this example, terminal 8 of coil 5 is connected to inverter 29, and terminal 9 of coil 6 is connected to inverter 31.
and terminal 7 of coil 5 and terminal 1 of coil 6
Both terminals 0 and 0 are connected to the inverter 30 and serve as a common terminal.

電子回路28の中に適当な論理回路を設ける事
によつて、コイル5,6に第4図b,cに示した
様な右回転駆動パルス波形ならびに左回転パルス
波形を得る事ができる。第7図a,bに駆動用イ
ンバータ29,30,31の出力8,9の電圧波
形と、コイル5,6に印加される駆動パルス波形
の一例を示す。
By providing a suitable logic circuit in the electronic circuit 28, it is possible to obtain clockwise rotation drive pulse waveforms and counterclockwise rotation drive pulse waveforms for the coils 5 and 6 as shown in FIGS. 4b and 4c. FIGS. 7a and 7b show an example of the voltage waveforms of the outputs 8 and 9 of the drive inverters 29, 30 and 31 and the drive pulse waveforms applied to the coils 5 and 6.

次に駆動回路及び駆動方法の第2の実施例を示
す。
Next, a second embodiment of the drive circuit and drive method will be described.

第8図において電子回路40、駆動用インバー
タ41,42,45はC−MOSICで構成されて
いて、その中のインバータ45だけはP−チヤネ
ルゲート43とN−チヤネルゲート44のゲート
入力が分離されている。従つてゲート43とゲー
ト44の両方ともOFFとする事により出力を高
インピーダンス状態とする事ができる。第9図は
この駆動法を示す模式図である。この例では3つ
の駆動用インバータ41,45,42の出力をや
H,Lならびに高インピーダンス状態Xで表して
いる。
In FIG. 8, an electronic circuit 40 and driving inverters 41, 42, and 45 are composed of C-MOSICs, and only the inverter 45 has gate inputs of a P-channel gate 43 and an N-channel gate 44 separated. ing. Therefore, by turning off both gates 43 and 44, the output can be placed in a high impedance state. FIG. 9 is a schematic diagram showing this driving method. In this example, the outputs of the three drive inverters 41, 45, and 42 are represented by H, L, and a high impedance state X.

第9図aでは3つの端子は全て“L”で電流は
流れない非駆動時である。次に右回転駆動を行う
場合を考えると、前置パルス区間として第9図b
のように端子8を“H”、端子7,10,9を
“L”にすると電流はコイル5のみに流れる。次
に続いて第9図cに示すように端子8,9をこの
ままの状態で端子7,10を高インピーダンス状
態“X”にすることにより電流はコイル5,6を
流れ本駆動パルス区間となる。これによりロータ
が180゜右回転した後、第9図d,eを印加すれば
更にロータは右回転を行い、連続的な右回転が可
能になる。第9図f,g,iは左回転駆動時の駆
動方法を示したものである。上記第2の実施例が
第1の実施例と異なる点は、第1の実施例が本駆
動パルス区間では両方のコイルに並列に電圧を印
加したのに対して、第2の実施例では両方のコイ
ルに直列に電圧を印加している点である。
In FIG. 9a, all three terminals are at "L" and no current flows during non-drive. Next, considering the case of performing clockwise rotation drive, as the pre-pulse section, Fig. 9b
When terminal 8 is set to "H" and terminals 7, 10, and 9 are set to "L", current flows only to coil 5. Next, as shown in FIG. 9c, by setting the terminals 7 and 10 to the high impedance state "X" while leaving the terminals 8 and 9 as they are, the current flows through the coils 5 and 6 and becomes the main drive pulse section. . As a result, after the rotor has rotated 180 degrees clockwise, if the conditions d and e in FIG. 9 are applied, the rotor will further rotate clockwise, making continuous clockwise rotation possible. FIGS. 9f, g, and i show the driving method for left rotation driving. The difference between the second embodiment and the first embodiment is that in the first embodiment, a voltage is applied to both coils in parallel during the main drive pulse period, whereas in the second embodiment, voltage is applied to both coils in parallel. The point is that a voltage is applied in series to the coil.

次に第10図に本発明による両回転ステツプモ
ータの具体的実施例を示す。
Next, FIG. 10 shows a specific embodiment of a double-rotation step motor according to the present invention.

コイル部は高透磁率材により一体に形成された
磁心50の2ケ所に巻線部51,52が設けられ
た構造である。2つの巻線部51,52の間に導
電パターン54を有するリード基板53が配置さ
れていて、これに巻線の端末が接続されている。
The coil portion has a structure in which winding portions 51 and 52 are provided at two locations on a magnetic core 50 that is integrally formed of a high magnetic permeability material. A lead board 53 having a conductive pattern 54 is arranged between the two winding parts 51 and 52, and the ends of the windings are connected to this.

ステータ部55は一対の主磁極60,61と副
磁極62が可飽和狭部56,57,58によつて
接続された一体構造となつている。可飽和狭部は
モータ駆動時には磁気飽和してステータ部は磁気
的に分離した3つの磁極として機能する。
The stator portion 55 has an integral structure in which a pair of main magnetic poles 60, 61 and a sub magnetic pole 62 are connected by saturable narrow portions 56, 57, 58. The saturable narrow portion is magnetically saturated when the motor is driven, and the stator portion functions as three magnetically separated magnetic poles.

ロータ部は径方向に2極に着磁された永久磁石
58と回転力を取り出すためのカナ部59により
構成され上下に設けられたホゾ部63,64を軸
支される。ステータ部とコイル部は3ケ所のネジ
穴60,61,62でネジ締めされる事により磁
気的に結合され、さらにネジ穴61では駆動回路
からの端末を有するリード基板とコイルリード基
板53が対向してネジ締めされ電気的に接続され
る。
The rotor part is constituted by a permanent magnet 58 magnetized into two poles in the radial direction and a pinion part 59 for extracting rotational force, and is supported by tenon parts 63 and 64 provided above and below. The stator part and the coil part are magnetically coupled by tightening screws through three screw holes 60, 61, and 62, and furthermore, in the screw hole 61, the lead board having the terminal from the drive circuit and the coil lead board 53 face each other. The screws are then tightened and electrically connected.

この様な両回転ステツプモータの製造技術は、
電子時計用ステツプモータによつて確立されてい
て、磁石材にサマリウムコバルトを用い、また磁
心、ステータにパーマロイ材を用いて、ロータ径
1〜2mm、モータの平面形状1cm×5mm、厚さ2
mm程度の大きさで容易に大量生産可能である。
The manufacturing technology for such a double-rotation step motor is
It has been established as a step motor for electronic watches, and uses samarium cobalt for the magnet material and permalloy material for the magnetic core and stator.The rotor diameter is 1 to 2 mm, the planar shape of the motor is 1 cm x 5 mm, and the thickness is 2.
With a size of about mm, it can be easily mass-produced.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したように、一対の主磁
極と1つの副磁極を有するステツプモータの、2
つのコイルを並列又は直列に接続して、一方のコ
イルに駆動パルスを印加し、この駆動パルスによ
り発生する磁束と同方向となるように、他方のコ
イルに所定時間遅れて駆動パルスを印加するよう
にしたので、以下に記載する効果を有する。
As explained above, the present invention provides a step motor having a pair of main magnetic poles and one sub magnetic pole.
Two coils are connected in parallel or in series, and a driving pulse is applied to one coil, and the driving pulse is applied to the other coil after a predetermined time delay so that it is in the same direction as the magnetic flux generated by this driving pulse. Therefore, it has the effects described below.

多極のロータを用いなくても、2極のロータ
により、ステツプモータの両回転が実現でき
る。
Even without using a multi-pole rotor, a two-pole rotor allows the step motor to rotate in both directions.

2つのコイルの仕様の合わせ込みの精度は厳
しくなく、量産性が良い。
The accuracy of matching the specifications of the two coils is not strict, and mass production is good.

小型の両回転ステツプモータが得られる。 A small double-rotation step motor is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による両回転ステツプモータの
模式図、第2図はロータ回転角とボテンシヤルエ
ネルギの関係を示すグラフ、第3図は駆動回路の
一例、第4図a,b,cはコイルの端子電圧波形
と駆動電圧波形の一例、第5図a,b,c,dは
両回転ステツプモータの動作説明図、第6図、第
7図a,bは他の駆動回路の例とコイルの端子電
圧波形と駆動電圧波形の一例、第8図、第9図a
からiは更に他の駆動回路の一例と駆動方法の説
明図、第10図は両回転ステツプモータの具体的
実施例である。 1,2……主磁極、3……副磁極、4……ロー
タ、5,6……コイル、13,28,40……電
子回路、14,15,16,17,29,30,
31,41,42,45……駆動用インバータ、
24,26……前置パルス区間、25,27……
本駆動パルス区間、50……磁心、51,52…
…巻線部、56,57,58……可飽和狭部、5
8……ロータ、60,61……主磁極、62……
副磁極。
Fig. 1 is a schematic diagram of a dual-rotation step motor according to the present invention, Fig. 2 is a graph showing the relationship between rotor rotation angle and potential energy, Fig. 3 is an example of a drive circuit, and Fig. 4 a, b, and c are graphs showing the relationship between rotor rotation angle and potential energy. Examples of coil terminal voltage waveforms and drive voltage waveforms; Figures 5a, b, c, and d are explanatory diagrams of the operation of a dual-rotation step motor; Figures 6 and 7a and b are examples of other drive circuits. Examples of coil terminal voltage waveforms and drive voltage waveforms, Figures 8 and 9a
to i are explanatory diagrams of an example of another drive circuit and a drive method, and FIG. 10 is a specific example of a dual-rotation step motor. 1, 2... Main magnetic pole, 3... Sub magnetic pole, 4... Rotor, 5, 6... Coil, 13, 28, 40... Electronic circuit, 14, 15, 16, 17, 29, 30,
31, 41, 42, 45... drive inverter,
24, 26... pre-pulse section, 25, 27...
Main drive pulse section, 50...Magnetic core, 51, 52...
...Winding part, 56, 57, 58...Saturable narrow part, 5
8... Rotor, 60, 61... Main magnetic pole, 62...
Sub magnetic pole.

Claims (1)

【特許請求の範囲】 1 径方向に2極に磁化されたロータと、 前記ロータを介して対向して設けられた一対の
主磁極と、 前記ロータに対する磁力の強さが前記主磁極の
磁力の強さよりも小さく、かつ、前記主磁極に対
して略直角に設けられた副磁極と、 前記主磁極の1つ及び前記副磁極に磁気的に結
合する第一のコイルと、 前記主磁極の他の1つ及び前記副磁極に磁気的
に結合する第二のコイルと、から成るステツプモ
ータを、 前記第一のコイルと前記第二のコイルを並列に
接続して、 前記第一のコイル又は前記第二のコイルのいず
れか一方のコイルに駆動パルスを印加し、 前記駆動パルスを印加している間に、前記駆動
パルスにより前記コイルに発生する磁束と同一方
向の磁束が発生するように、前記駆動パルスの印
加開始時よりも所定の時間遅れて他方のコイルに
駆動パルスを印加することを特徴とする両回転ス
テツプモータの駆動方法。 2 径方向に2極に磁化されたロータと、 前記ロータを介して対向して設けられた一対の
主磁極と、 前記ロータに対する磁力の強さが前記主磁極の
磁力の強さよりも小さく、かつ、前記主磁極に対
して略直角に設けられた副磁極と、 前記主磁極の1つ及び前記副磁極に磁気的に結
合する第一のコイルと、 前記主磁極の他の1つ及び前記副磁極に磁気的
に結合する第二のコイルと、から成るステツプモ
ータを、 前記第一のコイルと前記第二のコイルを直列に
接続して、 前記第一のコイル又は前記第二のコイルのいず
れか一方のコイルに駆動パルスを印加し、 前記駆動パルスを印加している間に、前記駆動
パルスにより前記コイルに発生する磁束と同一方
向の磁束が発生するように、前記駆動パルスの印
加開始時よりも所定の時間遅れて他方のコイルに
駆動パルスを印加することを特徴とする両回転ス
テツプモータの駆動方法。
[Scope of Claims] 1. A rotor magnetized into two poles in the radial direction, a pair of main magnetic poles facing each other with the rotor interposed therebetween, and the strength of the magnetic force applied to the rotor is equal to the magnetic force of the main magnetic poles. a sub-magnetic pole smaller in strength than the main magnetic pole and provided substantially perpendicular to the main magnetic pole; a first coil magnetically coupled to one of the main magnetic poles and the sub-magnetic pole; and a second coil magnetically coupled to the auxiliary magnetic pole, the first coil and the second coil are connected in parallel, and the first coil or the second coil is connected in parallel. Applying a driving pulse to either one of the second coils, and applying the driving pulse so that magnetic flux in the same direction as the magnetic flux generated in the coil by the driving pulse is generated while the driving pulse is being applied. 1. A method for driving a dual-rotation step motor, characterized in that a drive pulse is applied to the other coil with a predetermined time delay after the start of application of the drive pulse. 2. A rotor magnetized into two poles in the radial direction, a pair of main magnetic poles facing each other with the rotor interposed therebetween, and the strength of the magnetic force on the rotor is smaller than the strength of the magnetic force of the main magnetic poles, and , a sub magnetic pole provided substantially perpendicular to the main magnetic pole, a first coil magnetically coupled to one of the main magnetic poles and the sub magnetic pole, another one of the main magnetic poles and the sub magnetic pole. a second coil magnetically coupled to a magnetic pole; the first coil and the second coil are connected in series, and either the first coil or the second coil Applying a drive pulse to one of the coils, at the time of starting application of the drive pulse so that a magnetic flux is generated in the same direction as the magnetic flux generated in the coil by the drive pulse while the drive pulse is being applied. 1. A method for driving a dual-rotation step motor, characterized in that a driving pulse is applied to the other coil with a predetermined time delay.
JP29055188A 1988-11-17 1988-11-17 Driving method for bothway rotating stepping motor Granted JPH01157294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29055188A JPH01157294A (en) 1988-11-17 1988-11-17 Driving method for bothway rotating stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29055188A JPH01157294A (en) 1988-11-17 1988-11-17 Driving method for bothway rotating stepping motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4100481A Division JPS57156662A (en) 1981-03-20 1981-03-20 Super-miniaturized two-way rotation stepping motor

Publications (2)

Publication Number Publication Date
JPH01157294A JPH01157294A (en) 1989-06-20
JPH056440B2 true JPH056440B2 (en) 1993-01-26

Family

ID=17757496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29055188A Granted JPH01157294A (en) 1988-11-17 1988-11-17 Driving method for bothway rotating stepping motor

Country Status (1)

Country Link
JP (1) JPH01157294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537435B2 (en) 2013-09-20 2017-01-03 Casio Computer Co., Ltd. Stepping motor and timepiece provided with stepping motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658648B2 (en) * 2005-03-16 2011-03-23 シチズンホールディングス株式会社 Step motor for forward / reverse rotation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548815A (en) * 1977-06-21 1979-01-23 Seikosha Kk Motor that rotates in both directions
JPS5615163A (en) * 1979-07-06 1981-02-13 Ebauches Sa Electromagnetic motor rotating bidirectionally

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548815A (en) * 1977-06-21 1979-01-23 Seikosha Kk Motor that rotates in both directions
JPS5615163A (en) * 1979-07-06 1981-02-13 Ebauches Sa Electromagnetic motor rotating bidirectionally

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537435B2 (en) 2013-09-20 2017-01-03 Casio Computer Co., Ltd. Stepping motor and timepiece provided with stepping motor

Also Published As

Publication number Publication date
JPH01157294A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
JP2575628B2 (en) Brushless motor
KR100284881B1 (en) Switching magnetoresistive motor and manufacturing method thereof
US20090160391A1 (en) Hybrid permanent magnet motor
US3469133A (en) Electric motor with a bridge-type magnetic circuit
EP0234587A2 (en) Two-phase brushless motor
KR100363909B1 (en) Multipolar motor with two rotors
JPH0332387A (en) Plural phase reluctance type motor
US4242623A (en) Miniature electric stepping motor
JPS60243590A (en) Motor assembly
JP6414115B2 (en) Stepping motor, motor drive device, and time display device
JPH056440B2 (en)
JPH0216679B2 (en)
US10014806B2 (en) Stepping motor driving device and timepiece
JPS59136062A (en) Magnetic resistance motor
JPH01259794A (en) Reversibly rotary stepping motor
CN102342004A (en) Electric machine
JPH09247909A (en) Method for magnetizing permanent magnet motor
JPS63157646A (en) Magnetization of motor
SU879718A1 (en) Electric stepping motor
DE3375841D1 (en) Reversible step motor and method of controlling the same
JPS5828469Y2 (en) Kogata Denchi Dokeinomo - Takozo
JPH033456B2 (en)
JPS5944957A (en) Electric machine with conduction controlling means
KR940006442B1 (en) Method of magnet excitation
KR100624086B1 (en) A generator of hall signal using of one hall sensor in the BLDC motor